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A B S T R A C T   

Crashworthiness is the capability to leverage the controlled failure of a structure to dissipate the 
kinetic energy of an impact, thus protecting occupants of vehicles and valuable equipment. 
Composite materials have exciting potential in airborne and ground vehicles’ crashworthy 
structures thanks to their high Specific Energy Absorption. However, their performances depend 
on several design factors, such as material constituents, stacking sequence, and component ge
ometry. Numerical simulations have proved to be a valid tool to analyze the effect of these pa
rameters and streamline the design phase, reducing costs and time to market. Nevertheless, 
material calibration is a critical step in implementing reliable numerical simulations. ESI Virtual 
Performance Solution software supports two damage models for orthotropic laminae: Ladevèze 
and Waas-Pineda. After a brief description of the two models, the required calibration procedures 
for a unidirectional ply laminate are presented.   

1. Introduction 

In aeronautical and automotive vehicles, crash-absorbing structures ensure the safety of occupants and payload. Composite ma
terials have shown high performances [1,2] and, therefore, are widely used in energy-absorbing structures [3]. However, crash
worthiness properties are influenced by several design factors such as composite constituents [4–6], trigger [7], profile geometry [8], 
working environment [9,10], etc. Experimental studies of the influence of each parameter would lead to costly and time-consuming 
campaigns. For this reason, different numerical models and modeling strategies have been developed to simulate the crushing event at 
different dimensional scales and detail levels. Large structures are usually modeled with simplified approaches, losing predictive 
capabilities but gaining the possibility to evaluate the responses of multiple structures in a short time. More detailed simulations allow 
an in-depth analysis of the physics of crushing but require higher computational time and longer preprocessing phases. The choice of 
damage models is influenced by the final aim of the numerical analysis: Progressive Failure Models (PFM [11,12]) are usually 
implemented in large-scale simulations, giving, however, no chance to analyze the crushing morphology and complexity; Continuum 
Damage Models (CDM [13,14]) implement damage parameters to evaluate the material damage evolution and the material degra
dation throughout the crushing event; Non-local Damage Models (NDM [15,16]) have the versatility of the previous models while 
overcoming the characteristic mesh sensitivity of CDMs. The last two models are nowadays widely used for crashworthiness simu
lations; still, they both require the identification of several material constitutive and modeling parameters to be obtained following 
software user-manuals guidelines. However, manuals are usually brief, contain many references to regulations and papers, and often 
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offer little in terms of operative procedures. Focusing on Unidirectional (UD) composite laminates, this paper aims to provide the 
reader with a short guide containing a brief theoretical description and a more extensive practical procedure for the implementation 
and calibration of Ladevèze CDM model [13,17] and Waas-Pineda NDM model [18,19] in ESI-VPS Visual-Crash PAM v18.0-2022 
software. 

2. Models description 

Different failure modes can be identified in compressive crush events of composite structures. The most important are fiber 
fragmentation, splaying of lamina bundles, and wall buckling, each of which is associated with different energy dissipations [8,20]. 
Numerical simulations, therefore, should consider these failure modes correctly to ensure reliable results. Moreover, due to the layered 
nature of a composite component, the delamination failure mode must also be modeled accurately. Consequently, a composite 
structure is commonly modeled employing different shell layers, representing a single ply or bundles of aligned plies each, and in
teractions between them to simulate interlaminar behavior. 

The following sections provide an in-depth look at the ESI-VPS shell modeling, strictly related to unidirectional composite plies. 

2.1. Basic shell model 

In this work, the composite laminates are modeled by means of plate shell elements, where the properties of the unidirectional 
fiber-reinforced material are homogenized. This results in a transversely isotropic lamina that could be defined by six parameters: two 
Young’s moduli in the longitudinal and transverse direction, the Poisson’s modulus, and three shear moduli. Conventionally, for 
unidirectional composites, G13 is considered equal to G12 and, therefore, the stiffness tensor can be defined as in (1). 
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where εij represent the strains, σij the stresses, Eij the Young’s moduli, Gij the shear moduli, and υ12 the Poisson’s modulus. The 
subscripts i and j can be equal to 1, 2, or 3, representing the plane on which the property is calculated. 

The damage is modeled throughout the degradation of the material stiffness as Ed
ij =

(
1 − dij

)
E0

ij, where dij is the damage parameter, 
varying from 0 (undamaged conditions) to 1 (ultimate failure). The superscript 0 or d refers to the as-built and damaged quantities, 
respectively. When the material has totally failed, i.e. dij = 1, the stiffness is null, resulting in the inability to transfer the load. 

2.2. Ladevèze model 

The Ladevèze (LV) model [19,20] represents the composite material’s global response starting from the individual lamina’s local 
deformation status. The scalar damage parameters affecting the constitutive equations are non-interactive and non-healing. This 
means that damage values for different loading conditions are independent, and their value cannot decrease during loading. Moreover, 
the in-plane shear moduli are the only ones affected by the damage evolution. 

The fiber damage is based on linear moduli reduction between two limit strains, followed by a region where the stress is bounded 
above. Under compression loads, fibers are subjected to micro-buckling that leads to a nonlinear behavior in the fiber direction; 
therefore, a softening parameter γ is introduced, as shown in (2). 
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where E0c
11 is the elastic modulus in the initial loading step, Eγ

11 the tangent elastic modulus in the non-linear stage, and εγ
11 the related 

deformation (Fig. 1). 
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The matrix damage model derives from two physical phenomena: the debonding between fibers and matrix, and the micro-cracking 
of the matrix parallel to the fiber direction. The damage evolution functions, Ys and Yt , considering these two phenomena, are defined 
as 

Ys =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Zs + bZt

√

Yt =
̅̅̅̅
Zt

√
(4)  

where Zs and Zt are the damage functions for the shear and transverse directions respectively, b is an optional coupling factor between 
shear and transverse direction, which is unused in this work. The damage functions are calculated as: 

Zi =
∂ED

∂di
(5)  

with ED representing the strain energy density ED =
∫ εi

0 σidεi, where σi is the stress and εi the strain, and di the scalar damage parameter 
in shear or transverse conditions. 

Finally, the matrix plasticity is implemented using a hardening law depending on the effective plastic strain p, as R(p) = R0 + β(p)m, 
where the initial yield stress R0 and the hardening parameters β and m are determined experimentally. 

Failed elements are removed from the simulation by means of the element elimination settings that can be defined in two different 
modalities: through an equivalent shear strain limit (which cannot be triggered by normal loading modes but is only activated by shear 
deformation) or a more detailed strain-based failure method (allowing the definition of strain limits in three axial and three shear 
directions, both positive and negative). 

2.3. Waas-Pineda model (WP) 

The Waas-Pineda model [18,19,21] implemented in the ESI-VPS software inherits the orthotropic elasticity and matrix plasticity 
from Ladevèze and adds a nonlocal crack formulation to allow material softening effectively. The material behavior throughout the 
loading is modeled by means of three distinct states characterized by irreversible transitions (Fig. 2): continuum, cohesive, and post- 
damage states. The continuum state represents the pristine material condition up to the first damage occurrence; in the cohesive state, 
the damage propagates up to a maximum damage value, while in the last stage, it remains constant. The transition from the continuum 
to the cohesive state is triggered by a quadratic failure criterion. In contrast, the second transition, from cohesive to post-damage state, 
follows a maximum allowable damage criterion. 

The quadratic failure criterion can be stress-based or strain-based as shown in (6): 
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Fig. 1. Fiber direction tension and compression material behavior. The represented parameters are: Eγ
11, the tangent elastic modulus in the non- 

linear stage for compression loading; E0j
11, the elastic modulus in the undamaged step; εfj

i , the strain at the first non-linearity; εfj
f , the strain at the 

damage end; σfj
u , the ultimate failure stress. j = cort, for compression or tension loading conditions, respectively. 
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where considering j = c, t for tensile and compressive property respectively, Σ11,j is the longitudinal initiation stress, Σ22,j is the 
transversal initiation stress, T12 is the in-plane shear initiation stress, E11,j is the longitudinal initiation strain, E22,j is the transversal 
initiation strain, Γ12 is the in-plane shear initiation strain, σ11 is the longitudinal stress, σ22 is the transversal stress, σ12 is the shear 
stress, ε11 is the longitudinal strain, ε22 is the transversal strain, ε12 is the shear strain. 

The cohesive state uses traditional bilinear cohesive traction-separation σ(δ) laws and is characterized by cohesive stiffness K = σ/δ 
and parameters for fiber and matrix damage. Considering the longitudinal, transverse, and shear loads, the traction-separation laws 
can be conveyed as in (7): 

σ11 = (1 − Df )K11δ11
σ22 = (1 − Dm)K22δ22
σ12 = (1 − Dm)K12δ12

(7)  

where the fiber and matrix damage parameters are defined as: 
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and the ultimate separation derives from the critical fracture energies GCkk in longitudinal (k = 1) and transversal (k = 2) direction: 

δult
11 =

2GC11

σcrit
11

(9)  

δult
22 =

2GC22

σcrit
22 

The matrix-dominated damage is characterized by the following traction-separation parameters: 

δm =
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(10)  

where GCij are the critical fracture energies (i, j = 1 or 2). 

The post-damage state is defined by a prescribed critical damage Dmax =
(

1 − σij/σcrit
ij

)
, that is unique for all the five damage modes 

described in the model. These are fiber rupture under tension, fiber kinking under compression, matrix cracking and fiber–matrix 
debonding under tension, matrix cracking under transverse compression, and matrix shear cracking. 

In this model, the element elimination is based on the equivalent shear strain limit εelim = εij − (1/3)εkkδij (i, j, k = 1 or 2). 

2.4. Delaminations 

Capturing all the failure modes of a crashing structure requires the use of a multi-shell model to obtain not only the failure of the 
composite plies but also the delaminations of the interlaminar interfaces. In ESI-VPS, these interactions can be modeled as 1D beams 
(called TIED elements, Fig. 3) connecting nodes and elements belonging to two adjacent surfaces. Main interlaminar damage prop
erties derive from Mode I and Mode II experimental tests and follow the classic traction-separation law [22] where the initial (δi

I and 
δi

II) and final (δf
I and δf

II) separation values are calculated as follows: 

Fig. 2. Example of the three distinct states of the Waas-Pineda damage model.  
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δi
I =

σmax
I

E0
and δf

I =
2GIC
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I

for Mode I

δi
II =

σmax
II

G12
and δf

II =
2GIIC

σmax
II

for Mode II
(11)  

where σmax
I is the interlaminar tensile strength, σmax

II is the interlaminar shear strength, E0 and G12 are the Young’s modulus and the 
shear modulus, GIC and GIIC are the fracture toughness in Mode I and Mode II, respectively. 

The mixed-mode interaction can then be implemented either using the well-known Benzeggagh-Kenane Eq. (12) or the power law 
model (13) [21,23], expressed by means of the following equations: 

GIC +(GIIC − GIC)

(
GII

i

GII
i + GI

i

)η

= GC (12)  

(
GI

i

GIC

)η

+

(
GII

i

GIIC

)η

= 1 (13)  

3. Damage calibration and modeling strategies 

Every damage model needs proper calibrations to obtain reliable results. However, usually the FEM software manuals only provide 
a brief description of the theoretical working of the damage models, and accurate calibration is often left to the user for the specific 
cases of interest. 

Moreover, mesh layout, boundary conditions, and contact algorithms highly influence the model outcomes and should be opti
mized for the specific model implementation to obtain results as close as possible to reality. 

In the following paragraphs, the calibration approaches for the Ladevèze and Waas-Pineda damage models for unidirectional plies 
are described. In addition, the authors’ modeling strategies to obtain reliable crushing simulations are proposed. 

3.1. Damage models calibration procedures 

As explained in §2.2, the LV model needs material parameters, deriving from experimental characterization, and specific numerical 
parameters, calibrated iteratively from numerical simulations. 

To achieve reliable results, quasi static tests in tension (ASTM D3039 [24]), compression (ASTM D3410 [25]) and in-plane shear 
(ASTM D3518 [26]) as well as cyclic in-plane tests are necessary. 

From quasi-static tension and compression tests, the undamaged Young’s moduli E0j
kk, the stress values σj

kk,i at first nonlinearity, the 

ultimate failure stresses σj
kk,u (k indicates the direction of the property, j is equal to t or c for tension or compression tests) are obtained. 

In-plane shear tests allow the measure of the material shear properties (shear modulus G12, ultimate shear stress σ12, shear strain ε12). 
Cyclic in-plane shear tests are then essential to calculate the conjugate forces Yi. These tests are conducted in accordance with the 

ASTM D3518 and involve carrying out a series of loading and unloading cycles with increasing relative maximum load. A minimum of 
five cycles are required for calculation accuracy, while a maximum of ten cycles limits the low cycle fatigue effects. In each cycle, the 

Fig. 3. 1D beam elements (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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damaged modulus is calculated; damage parameter and conjugate force derive from (4) that can be written as a function of the elastic 
strain at i-th cycle, Yi(εe

12,i). Plotting the damage parameter di as a function of the conjugate force Yi for each i-th cycle, it is possible to 
interpolate the curve Yi = f(di) and calculate the needed damage parameters. Moreover, the matrix plasticity parameters are obtained 
from the interpolation of the Ri(p) curve. 

The damage parameters should be then validated by simulating the experimental tests and comparing the outputs with the test 
results. 

Lastly, the best-fit value for the limit strains εlim has to be determined iteratively by comparing experimental and numerical results 
of Compact Tension (CT) and Compact Compression (CC) tests. 

Similarly to the LV damage model, the WP damage model employs many material parameters, obtained through experimental 
mechanical characterization tests, and few numerical parameters needed to stabilize the simulation. 

Quasi-static tests are necessary to determine ultimate stresses under tension, compression, and shear load (Σkk,t, Σkk,c and T12 
respectively). Stiffness moduli are calculated as well: longitudinal and transversal Young’s moduli in tension and compression (Ekk,t 

and Ekk,c) in addition to the shear modulus (Γ12) from in-plane shear tests. 
The ultimate stress values are considered as stress thresholds for damage initiation, and it is possible to define different damage 

initiation thresholds for tension, compression, and shear loading conditions. 
CC and CT tests are then performed to evaluate the intralaminar fiber fracture energies. These values are applied in the model and 

the whole set of experimental tests is simulated to verify the numerical implementation. As suggested by Pinho et al. in [27], however, 
transversal and shear intralaminar fracture energies can also be obtained from interlaminar Mode I and Mode II tests. In particular, 
G22,t can be set equal to GIC, while G22,c and G12 can be set equal to GIIC. 

The last step of the calibration procedure for the WP damage model consists of the determination of the maximum damage (Dmax) 
and the element elimination parameter (εelim) to fulfill the numerical stability of the crashing simulation. This is achieved through a 
tuning process. It is important to consider that setting high εelim values may result in an unsuccessful element elimination, leading to 
unstable simulations. Conversely, low εelim values may cause an early and uncontrolled element elimination. On the other hand, it is 
recommended to set a high Dmax value to ensure greater stability and obtain more accurate outcomes. It is recommended to use εelim 
between 0.15 and 0.3 and Dmax between 0.6 and 0.9: it has been observed that values within these ranges work properly in most 
situations. 

The interlaminar properties for Mode I and Mode II failure modes (GIC and GIIC, respectively) are measured by means of Double 
Cantilever Beam (DCB, ASTM D5528 [28]) and End Notched Flexure (ENF, ASTM D7905 [29]) tests. For Mode I toughness, it is 
suggested to consider only the initiation threshold, as the propagation values may be influenced by fiber bridging at the interfaces. 

Table 1 provides a summary of the required experimental tests, along with the corresponding parameters for the damage models. 

3.2. Mesh and boundary conditions 

In the majority of Finite Element software, the default mesh type is the uniformly structured mesh, usually aligned with the 
principal geometry direction. However, for crush tests, this results in unstable loads and unreliable output: in fact, when an aligned row 
of elements is loaded, all the elements reach the damage thresholds together, as well as the elimination value, and are removed 
simultaneously. Therefore, the contact between the crushing wall and the component is lost and the compression is released until 
contact is reestablished. This discontinuous load generates a high-intensity pressure wave traveling across the part. Since no dissi
pation is introduced, these pressure waves quickly accumulate and generate spurious load peaks, ultimately leading to undesired 
failure. 

To overcome this issue, an unstructured or skewed mesh is suggested (Fig. 4). In this way, the elements are eliminated gradually as 
the crushing wall advances, effectively assuring the continuity in the contact between the wall and the specimens and reducing the load 
oscillations. 

Mesh convergence for interlaminar damage and measures to compensate for mesh sensitivity of ply damage were investigated in 
previous works from the authors [30,5] respectively. The need for a mesh insensitive formulation when using non-local damage 
models was also investigated by Reiner et al. [31,32]. Notably, when unstructured meshes are generated only a target average element 
side length is achieved, while small local variations in element size is present and to be expected. Nevertheless, their scatter is small, 
and the global behavior is not influenced by these small variations. 

Each experimental test simulation (whose results are described in §4) should include boundary conditions that replicate the test 

Table 1 
Input parameters derived from experimental tests.  

Test Base material LV Model WP Model 

Tensile E0t
11, E0t

22 ,ν12 Y110,Y11c,Y11f Σ11t , Σ22,t 

Compressive E0c
11, E0c

22 Yc
110,Yc

11c,Yc
11f Σ11,c, Σ22,c 

In-plane G0
12 ,R0 ,β,m Y120,Y12c,Y12f,ε12lim T12,G12 

CC  ε11,clim, ε22,clim G11c 

CT  ε11,tlim, ε22,tlim G11t 

DCB   G22t 

ENF   G22c ,G12  
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conditions. 
In the case of tension, in-plane shear and compression, the testing fixture is simulated by fixing the proper degree of freedom of the 

nodes at the ends of the coupon. The testing velocity is applied to one end of the specimen while the other is fixed: this adequately 
represents the real testing conditions (Fig. 5). For these simulations, the model consists of a single shell that reproduces the entire 
stacking sequence, with a mesh size of 1 mm. The tensile and compression simulations take less than 10 min to complete, while the in- 
plane shear model takes approximately 20 min. 

For CC and CT tests, the coupon is loaded by a displacement applied on the loading holes (Fig. 6). At the same time, the other nodes 
cannot move out of the specimen plane, simulating the external guides used during the experimental test to avoid out-of-plane 
bending. CC and CT models are composed of a single shell which models the entire stacking sequence. The mesh size around the 
crack tip is set to 0.25 mm, and the run time is approximately 2.5 h each. 

In DCB tests, the pre-cracked area, which is experimentally obtained by using a thin release film in the middle of the stacking 
sequence, is modeled as an area between the two shells (each representing half of the specimen, Fig. 7) without interlaminar beam 
elements (TIED); the load is applied to both halves of the specimen. Average run time is approximately 30 min using a 1 mm mesh size. 

Finally, the crash tests are performed on corrugated self-supporting specimens. These specimens, as described by Feraboli in [33], 
have the advantage of not requiring additional anti-buckling fixtures. To ensure a stable crushing behaviour, during experimental tests, 
a 45◦ central chamfer trigger was crafted on the loading edge of the specimens. Nominal section dimensions are reported in Fig. 8, 
while specimen height is 80 mm. 

For crush simulations, test geometries are modelled using the stacked shell approach [34], which has been successfully adopted in 
multiple scenarios where delamination damage and extensive ply sliding is expected [35,36]. This allows to retain a higher physical 

Fig. 4. Examples of structured (a, b) and skewed (c, d) meshes: one shell for structured and two shells for skewed meshes are shown to highlight 
undesired (b) and proper (d) crash failures. 

Fig. 5. Experimental and numerical conditions: (a) tension and in-plane shear, (b) compression.  
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fidelity compared to single shell models and homogenized solid elements models. The inclusion of delamination effects opens the 
possibility to visually compare the morphology of crushing and identify weaknesses in the geometries that would not be possible with 
more simplified methods. At the same time, the computational cost is kept relatively low: the geometries described in this work are 
represented with less than 2.0 x 105 degrees of freedom, explicit time increments higher than 1.0 x 10-4 ms, and every run takes 
approximately 30 min to complete. 

The specimen is modeled with six shells, each representing a bundle of two plies with the same fiber orientation, and five inter
laminar beam elements (TIED) layers, representing the interfaces between plies. The crushing dynamic is represented by imposing a 
constant velocity to a rigid plate moving towards the free end of the composite part. The constrained end of the specimen is simulated 
by fixing all the translational degrees of freedom of the last row of nodes. A graphical representation is shown in Fig. 9. 

3.3. Contact properties 

In order to obtain a reliable crushing simulation, two different contact properties are necessary. First of all, a symmetric master
–slave node-to-segment/edge contact algorithm between the specimen and the crushing wall is required. In addition, a self-impacting 
node-to-segment/edge contact between adjacent plies is needed whenever the laminate is represented by multiple stacked shells. Both 
contacts use a penalty algorithm. ESI-VPS automatically handles the coexistence of contact and TIED elements by activating the self- 
contact locally. In particular, the contact between adjacent shells is initially disabled for every node with active connectivity to a TIED 
link. Contact is then activated locally only when the TIED element linked to each node is deactivated or eliminated due to damage. 

Friction coefficients equal to 0.2 for the shell-to-wall contact and 0.4 for the self-contact were used: these values determine a crush 

Fig. 6. Experimental (a) and numerical (b) conditions for CT and CC tests.  

Fig. 7. Experimental (a) and numerical (b) conditions for DCB tests.  

Fig. 8. Section drawing of the self-supported specimen (dimensions in mm).  
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morphology most similar to experimental evidence, as demonstrated in the literature [8,14,37,38]. 

4. Numerical-experimental comparison 

Experimental tests are performed both for parameters calculation and model calibration. The test specimens used in this work were 
manufactured with T700-DT120-UD prepreg by means of hand-layup and autoclave cure. Specimen geometry and thickness differ for 
each mechanical characterization test according to the corresponding regulations. Five specimens per each characterization were 
tested. The main results are summarized in the following sections, specifically focusing on the parameters needed to populate the 
material cards (Tables 2 and 3). 

4.1. Static tests 

By means of static tension tests (ASTM D3039 [24]) on [0]8 and [90]8 specimens and compression tests (ASTM D3410 [25]) on [0]20 
and [90]20 specimens, the Young’s moduli along the longitudinal and the transversal direction, the stresses and strains at failure, and 
the Poisson ratios were measured. 

The micro-buckling parameter (γ), describing the non-linear behavior in compression, was calculated as previously described. The 
comparison between numerical simulations and experimental results is presented in Fig. 10: a good agreement between the experi
mental and numerical curves can be spotted in both tension (a) and compression (b) loading cases. 

4.2. Cyclic in-plane tests 

The matrix damage and plasticization were characterized by means of cyclic in-plane shear tests (ASTM D3518 [26]) performed on 
[45/ − 45]2s specimens. The value of the shear modulus was obtained per each i-th cycle (Gi

12) and the damage calculated as di =

1 − Gi
12/G0

12, where G0
12 is the undamaged shear modulus. From these values, knowing that the parameter Y can be computed as: 

Fig. 9. Crash test example: (a) experimental, (b) numerical boundary conditions.  

Table 2 
Ladevèze ply material card - main parameters.  

Experimental tests Property Parameter Value 

Tensile Elastic modulus - longitudinal E0t
11 135.5 GPa 

Elastic modulus - transversal E0t
22 14.5 GPa 

Poisson modulus ν12 0.295  

Shear tension Shear modulus G0
12 4.95 GPa 

Plasticity threshold stress R0 30 MPa 
Plasticity multiplicative factor β 1.6804 GPa 
Plasticity exponential factor m 0.5465  

Cyclic shear tension Initial shear damage Y0 0.0094 GPa0.5 

Critical shear damage Yc 0.024 GPa0.5  

Compressive Elastic modulus E0c
11 111.2 GPa  
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Yi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

G0
12

(
2εe

12,i
)2

√

(14) 

it is possible to rearrange the equation as Yi = Y0 + Ycdi, to obtain the initial damage threshold Y0 and the critical damage YC. 
For the matrix plasticity, the sum of the yield strength R0 and the hardening function Ri is: 

R0 +Ri =
σi

12

1 − di
(15)  

while the effective plastic strain pi can be expressed as: 

pi =

∫ εp
12

0
(1 − di)dεp

12,i (16)  

where εe
12,i is the elastic strain at i-th cycle (εe = ε − εp, with ε the total strain and εp the residual plastic strain at zero stress). Rear

ranging (15) as a power function of p, it is possible to interpolate the function R(p) = βpm to calculate the parameters β and m. 
The comparison between experimental, analytical, and numerical results for the cyclic in-plane tests is presented in Fig. 11. 

Notably, whereas here LV is able to replicate the laminate behavior at every point, WP differs significantly. This is a consequence of the 
model imposing a softening cohesive-like behavior to every damage mode and is to be expected for this type of tests. The equivalence 
with the experimental results can only be interpreted in terms of strain-energy to failure. 

4.3. Interlaminar tests 

Mode I and Mode II fracture toughness values were obtained through Double Cantilever Beam (DCB) and End-Notched Flexure 

Table 3 
Waas-Pineda damage model - main parameters.  

Experimental tests Property Parameter Value 

Tensile Tensile axial limit Σ11,t 1.76 GPa 
Tensile transverse limit Σ22,t 56 MPa  

Compressive Compressive axial limit Σ11,c 820 MPa 
Compressive transverse limit Σ22,c 185 MPa  

Shear tension Shear limit T12 43.5 MPa  

Fracture toughness Axial tensile fracture energy G11,t 0.105 J/mm2 

Axial compressive fracture energy G11,c 0.082 J/mm2 

Transverse tensile fracture energy G22,t 0.00047 J/mm2 

Transverse compressive fracture energy G22,c 0.00179 J/mm2 

Shear fracture energy G12 0.00179 J/mm2  

Fig. 10. Tension (a) and compression (b) tests: numerical-experimental comparison. Five experimental curves are showed in tension, two in 
compression. 
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(ENF) tests, respectively. Test coupons are obtained from a [0]24 laminate. The damaging interlaminar interaction is simulated with 
cohesive traction-separation formulation by means of TIED beam elements in ESI-VPS [21]. A description of the inner working of TIED 
elements is also found in [13]. 

The Mode I and Mode II toughness values obtained were 470 J/m2 and 1790 J/m2, respectively. The comparison between nu
merical and experimental DCB results is shown in Fig. 12. 

4.4. Compact tension and compact compression 

The intralaminar fracture energy can be measured through many test methods, among which the most valuable ones are the CT and 
the CC tests [39,40]. As already seen in §2.2.1 and §2.3.1, these tests are essential in both LV and WP models. In the first case, sim
ulations are used to iteratively tune the value of the element elimination parameter εlim, assuring numerical stability. In the WP model, 
instead, they allow tuning the fiber fracture energy values. The tuning process involves iteratively adjusting the elimination parameter 
and fiber fracture energy values until an improved representation of experimental tests is obtained. This can be done either manually or 
through a look-up table algorithm. The authors in this work opted for a manual tuning process. 

Fig. 13 shows the comparison between experimental CT and CC tests and the numerical simulations (obtained after parameters 
optimization) results. Simultaneously, Fig. 14 shows the comparison between the experimental and numerical crack growth. 

Fig. 11. In-plane shear tests: experimental, analytical, and numerical comparison.  

Fig. 12. DCB tests: experimental and numerical comparison. Five experimental tests are shown.  
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4.5. Crashworthiness 

In order to verify the effectiveness of the calibration procedures, compressive crush tests were performed on [02/902/02]s corru
gated self-supporting specimens. From the compressive crush tests (Fig. 15), Load-Displacement curves were obtained, as well as the 
Specific Energy Absorption (SEA) values. This parameter measures the energy dissipated due to the damaging, normalized by the 
weight of the material participating in the crushing. In the literature, different methods are used to calculate the SEA [6]; in this work, 
due to the intrinsic difference between numerical and physical triggers, the value used for comparison is the Steady-State SEA (SEAss). 
This excludes the transient region that includes the initial compression and the force peak observed in the first millimeters of 
displacement, defined by x0 in the formula below: 

SEAss(xc) =

∫ xc
x0

fdx
m(xc − x0)/h

(17)  

where f is the sustained crush force, m and h the coupon weight and height, and xc the total displacement value used for computation. 
As shown in Fig. 16-a, the numerical simulations capture the main crushing failure modes: delaminations and splaying lamina 

bundles. In addition, Fig. 16-b shows a good agreement between the Load-Displacement curves with the two numerical models and the 
experimental tests. 

For the steady-state portion of the Load-Displacement curves, the crush behavior in the range between 3 and 8 mm is correctly 
captured by both numerical models. Instead, the damage models tend to underestimate the experimental load resistance at higher 
displacements. This phenomenon is attributed to the necessity to include numerical element erosion at complete failure. In fact, post- 
mortem observation of crushed specimens indicates that the fragmented debris, confined in the central wedge between splayed plies, 
play a significant role in the overall crushing behavior and load bearing. At the current stage, it is not possible to include this phe
nomenon in a numerical simulation at the constitutive model level. Instead, this behavior is usually obtained with ad-hoc techniques 
like adding specific dissipative elements or introducing extraneous rigid body elements in the wedge region with additional friction 
behavior. However, a downside of these techniques is that they need ex-post calibration, increasing the deviation from a realistic 
representation. Therefore, they are ultimately not suited for a predictive tool and are not investigated further. 

The behavior of the component within the range of 0 to 3 mm cannot be considered representative of its energy absorption capacity. 

Fig. 13. CT (a) and CC (b) tests: experimental–numerical comparison. Three experimental curves are shown.  

Fig. 14. Compact tension and compact compression tests crack growth: experimental–numerical comparison.  
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This is due to the variability in the geometry of the trigger during the manufacturing stage, as well as the differences in its numerical 
modeling. Therefore, it is not possible to draw any meaningful conclusions based on this initial behavior. Additionally, the primary 
focus of the proposed method is to illustrate the Steady-State crushing process while disregarding any transient and unstable behavior. 

In conclusion, in the limited displacement range indicated above, the average Steady-State SEA of the tested samples is equal to 
102.7 J/g (the standard deviation is 7.5 J/g, corresponding to a 7.3 % variation), while simulated values are 95.9 J/g (Waas-Pineda 
model) and 98.5 J/g (Ladevèze model). This slight difference (6.6 % and 4.1 % for WP and LV, respectively) supports the good 
agreement of the results and proves the reliability of the model and calibration procedures. 

5. Conclusions 

This paper provides a concise theoretical overview and detailed specific calibration procedures for Ladevèze and Waas-Pineda 
damage models for unidirectional laminae. These particular implementations are based on individual lamina (or sub-laminate) 
properties, including interlaminar fracture, therefore retaining more physical detail of the crush phenomenology than a purely 
energy-based simulation. The proposed guidelines, related to the damage models’ calibration and simulation strategies, ensure a 
reliable set-up for crashworthiness simulations by means of ESI-VPS Crash PAM. The related experimental mechanical material 
characterization campaign is briefly described, focusing on straightforward methods for deriving the parameters required to populate 
the material cards as presented in the software. Using this data, numerical simulations tailored for calibration and validation are 
performed. A good agreement is found between tests and simulations, supporting the reliability of the proposed calibration methods. 
These procedures are, therefore, ready for further implementation into more complex geometries and load cases. 
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Fig. 15. Sample screenshots of one compressive crush test.  

Fig. 16. Comparison of crash test experimental–numerical results: left side, failure mode; right side, load-displacement curves.  
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