	Reference Number	Title	Species and Cell Type	Molecular Treatment	Results*
Odontogenesis	[76]	Mechanical Changes in Human Dental Pulp Stem Cells during Early Odontogenic Differentiation	hDPSCs	CD (5 µM)	\downarrow
	[77]	Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells	hDPSCs	CD (10 µM)	Ļ
	[63]	Topographic cues of a novel bilayered scaffold modulate dental pulp stem cells differentiation by regulating YAP signalling through cytoskeleton adjustments	hDPSCs	CD (1 µg/mL)	Ļ
Myogenesis	[78]	Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts	mC2C12 myoblasts	CD (0.5 µM)	Ļ
	[79]	Growth and cell density-dependent expression of stathmin in C2 myoblasts in culture	mC2 myoblasts	CD (1 µg/mL)	\downarrow
	[80]	Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts	mC2C12 myoblasts	DHCB (1 µg/mL)	Ļ
	[81]	A novel in vitro model for the assessment of postnatal myonuclear accretion	mC2C12 myoblasts	CD (0.3 µM)	\downarrow
	[82]	Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments	mC2C12 myoblasts	CD (1 µg/mL)	Ļ
Tenogenesis	[84]	RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells	hBM-MSCs	CD (1 µg/mL)	Ļ

Table S1. Cytochalasins and mesodermal differentiation.

h, human; m, mouse; DPSCs, dental pulp-derived stem cells; C2, C2 mouse myoblasts; C2C12, subclone of C2 mouse myoblasts; bone marrow mesenchymal stem cells, BM-MSCs; RhoA/Rho-associated protein kinase, RhoA/ROCK; cytochalasin D, CD; dihydrocytochalasin B, DHCB; *arrows in the results column indicate the effect of cytochalasins on mesodermic differentiation: \downarrow (reduce).

Reference Number	Title	Species and Cell Type	Molecular Treatment	Results*
	RhoA/ROCK and Cdc42 regulate cell-cell contact			-
[85]	and N-cadherin protein level during	P19 mESCs	CB (5 µM)	
	neurodetermination of P19 embryonal stem cells			
	Surface topography during neural stem cell			(related to the
[86]	differentiation regulates cell migration and cell	h/mNSCs	CD (0.1 µM)	surface
	morphology			topography)
[07]	Impact of actin filament stabilization on adult	mouse	CD (1 µM)	Ļ
[87]	hippocampal and olfactory bulb neurogenesis	synaptosomes		
	Early-stage development of human induced	rat neurons		-
[88]		hiPSC-derived	CD (1 µM)	
	pluripotent stem cell-derived neurons	neurons		
	High glucose condition suppresses neurosphere			Ļ
[89]	formation by human periodontal ligament-	hPDLSCs	CB (10 µM)	
	derived mesenchymal stem cells		•	·
	h human m mouse ESCs embryon	ic stem cells: PD	LSCs periodonta	l ligament-deriv

h, human; m, mouse; ESCs, embryonic stem cells; PDLSCs, periodontal ligament-derived mesenchymal stem cells; iPSC, induced pluripotent stem cell; CB, NSCs, neural stem cells; cytochalasin B; CD, cytochalasin D; *arrows in the results column indicate the effect of cytochalasins on neurogenesis: - (no effect) \downarrow (reduce).