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A method to retrieve the elastic constants of rectangular wooden plates is presented, relying on the measurement 
of a set of eigenfrequencies and the identification of the corresponding mode shapes, and belonging to the more 
general category of non-destructive inverse parameter estimation methods. Compared to previous work, the 
current method is effective with any choice of boundary conditions. Furthermore, the error function is linear 
in the elastic constants, which may be computed easily via a matrix inversion. This framework lends itself 
naturally to a physical interpretation of the results in terms of linear combinations of eigenmodes, yielding new 
sets of modes and associated combined mode shapes in which the elastic constants are completely uncoupled. 
Several numerical benchmark tests and experimental cases are treated in detail, highlighting the reliability of 
the proposed methodology in cases of interest in acoustics and musical acoustics.
1. Introduction

Inverse parameter estimation refers to a wealth of techniques used to 
identify model parameters in materials such as wood [1,2], composites 
[3–7], ceramics [8,9], metals [10,11] and others. Commonly, one looks 
for parameters minimising the discrepancy between the experimental 
data and a suitable reference model, using various techniques differing 
in application and methodology [12]. A typical distinction in this sense 
considers destructive and non-destructive techniques. The measurement 
of the elasticity constants through traction, compression, bending and 
twisting is a typical example of the former: for elastic specimens, some 
form of permanent damage usually results when the applied forces op-
erate beyond the linear regime [11,13]. Dynamic or vibrational testing, 
on the other hand, is an example of the latter. In this case, the oper-
ating regime is most often linear, and the measurement setup does not 
usually produce damage to the specimens [1–4,14].

Inverse parameter estimation is useful to measure the parameter 
variability across wood samples, the subject of this work. Wood is often 
modelled as an orthotropic material, depending on nine independent 
elastic constants: three Young’s moduli, three shear moduli, and three 
Poisson’s ratios [15]. Inverse parameter techniques have been success-
fully devised for this case, for example employing 3D laser vibrometry 
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and finite element model updating [3,16]. Differences across cuts from 
the same tree have been reported [17], [18, ch.3], and [19, ch.4]. 
Furthermore, wood is susceptible to changes in environmental condi-
tions such as temperature and moisture [20] and to chemical treatment 
[21,22]. These changes entail macroscopic modifications in a sample’s 
density and size and in its response to excitation [23]. Whilst the for-
mer are easily recognised and measurable, the latter is established by 
changes in the sample’s elastic properties, which are harder to quan-
tify.

In some cases, a reduction of the number of elastic constants is pos-
sible through further approximations, such as when the sample is thin, a 
case most often encountered in musical instruments where typical thick-
nesses are found in the range of a few millimetres [24]. Well-established 
techniques for obtaining the elastic constants of thin rectangular plates 
exist, such as the ones presented by McIntyre and Woodhouse [1] and 
by Caldersmith and Freeman [2]. A similar approach was presented by 
Igea and Cicirello [25]. In these cases, the elastic constants are retrieved 
by measuring the frequencies of three specific modes of a plate with free 
edges, and by comparing them with approximate analytic solutions ob-
tained via the Rayleigh method. These techniques have a simple and 
inexpensive setup and have become commonplace among scientists and 
instrument builders alike [26–28].
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This work offers an extension of such techniques, not relying on 
a specific set of boundary conditions or a fixed set of modes and 
leveraging numerical simulation. Following the assumption that, in the 
thin-plate model, the squared modal frequencies depend linearly on the 
elastic constants, the linear coefficients can be extracted from a batch 
of numerical training plates sharing the same boundary conditions and 
aspect ratio as the experimental plate.

Once such modal coefficients are known, the elastic constants can 
be estimated immediately via a matrix inversion in a least-square sense. 
Compared to well-established techniques in the literature, the current 
method can perform multiple estimates of the elastic constants using 
various combinations of boundary conditions and modes. Furthermore, 
the mathematical problem is linear, thus avoiding the need for nonlin-
ear solvers or iterative methods for which the existence and uniqueness 
of the solution may not be guaranteed [29]. One only needs to associate 
the experimental frequency to a matching set of modal coefficients de-
pending on the nodal lines on the plate’s surface, which can be achieved 
quickly using the known method by Chladni [1,2,25,30]. The proposed 
methodology allows measuring three out of four independent thin-plate 
constants. The remaining constant, a Poisson’s ratio, is supposed to be 
known and obtained from tabulated values. Due to the limited variation 
of this constant among different specimens, the suggested methodology 
continues to be reliable, as will be demonstrated by the results pre-
sented in this work.

Numerical benchmark tests and experimental results show the 
method’s ability to accurately measure the elastic constants of spruce 
boards. The paper is structured as follows: Section 2 presents the 
methodology, specifically focusing on the linear dependence of the 
non-dimensional squared plate frequencies on the elastic constants. 
Section 3 presents a few numerical benchmark tests, highlighting the 
proposed methodology’s feasibility under various choices of boundary 
conditions. Section 4 describes the setup to obtain the frequencies of 
a cantilever Finnish spruce plate and a clamped red spruce plate. Fi-
nally, Section 5 presents the estimates of the elastic constants for the 
two experimental plates and discusses the method’s validity.

2. Methodology

The flexural vibration of a thin, rectangular wood panel can be de-
scribed by the orthotropic Kirchhoff plate equation [31, Ch.10]. This 
is:

𝜌ℎ𝜕2
𝑡
𝑢 = −

(
𝐷𝑥(𝜕4𝑥 + 𝜈𝑦𝑥𝜕

2
𝑥
𝜕2
𝑦
) +𝐷𝑦(𝜕4𝑦 + 𝜈𝑥𝑦𝜕

2
𝑥
𝜕2
𝑦
) +𝐷𝑠 𝜕

2
𝑥
𝜕2
𝑦

)
𝑢. (1)

Here, 𝑢 = 𝑢(𝐱, 𝑡) ∶  ×ℝ+
0 →ℝ is the flexural displacement of the plate, 

a function of the spatial coordinates 𝐱 ∈  = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤
𝑦 ≤ 𝐿𝑦}, as well as time 𝑡 ≥ 0. In the above, 𝜕𝑙

𝑟
denotes the 𝑙𝑡ℎ partial 

derivative with respect to 𝑟. Boundary conditions of classic type are 
imposed at the plate’s edges, such as free, clamped or simply-supported. 
Let  denote the set of boundary conditions imposed along the plate’s 
edges, such that, for example,  = {C-S-F-C} denotes a plate with a 
clamped, a simply-supported, a free and another clamped edge. For an 
edge perpendicular to the 𝑦 direction, these are defined as follows [31, 
Ch.10]:

C: 𝑢 = 𝜕𝑥𝑢 = 0, (2a)

S: 𝑢 = (𝜕2
𝑥
+ 𝜈𝑦𝑥𝜕

2
𝑦
)𝑢 = 0, (2b)

F: (𝐷𝑥𝜕
3
𝑥
+ (𝐷𝑥𝜈𝑦𝑥 +𝐷𝑠)𝜕𝑥𝜕2𝑦 )𝑢 = (𝜕2

𝑥
+ 𝜈𝑦𝑥𝜕

2
𝑦
)𝑢 = 0, (2c)

with analogous definitions holding for an edge perpendicular to the 𝑥
direction (one only needs to swap 𝑥 and 𝑦 in the above). A further con-
dition must be imposed at a corner of two free edges, namely 𝜕𝑥𝜕𝑢𝑢 = 0
(for an explanation of why such a condition arises, see, e.g. [31, page 
38], as well as [32, page 335]).

In the model above, constants appear as: 𝜌, the volume density of the 
2

plate (in kg ⋅ m−3); the plate dimensions 𝐿𝑥, 𝐿𝑦, ℎ (in m, and where the 
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thickness ℎ is assumed constant across ); the three rigidity constants 
𝐷𝑥, 𝐷𝑦, 𝐷𝑠 (in N ⋅ m). These are defined by:

𝐷𝑥 =
𝐸𝑥ℎ

3

12(1 − 𝜈𝑥𝑦𝜈𝑦𝑥)
, 𝐷𝑦 =

𝐸𝑦ℎ
3

12(1 − 𝜈𝑥𝑦𝜈𝑦𝑥)
, 𝐷𝑠 =

𝐺𝑥𝑦ℎ
3

3
, (3)

where 𝐸𝑥, 𝐸𝑦 are Young’s moduli (in Pa), 𝜈𝑥𝑦, 𝜈𝑦𝑥 are dimensionless 
Poisson’s ratios, 𝐺𝑥𝑦 is a shear modulus (in Pa). The rigidity constants 
are defined in terms of five elastic constants (𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦, 𝜈𝑥𝑦, 𝜈𝑦𝑥). 
However, due to the symmetry of the compliance matrix in the elasticity 
equations, only four of them are independent [33]. Usually, one of the 
two Poisson’s ratios is set according to:

𝐸𝑥𝜈𝑦𝑥 =𝐸𝑦𝜈𝑥𝑦. (4)

The wood’s fibre orientation is responsible for the orthotropic char-
acter of lumber and results from the particular cutting technique em-
ployed. In quarter sawing, logs are quartered lengthwise with the an-
nual rings placed almost perpendicular to the board faces [34]. This 
technique, whilst wasteful, produces boards with an increased resis-
tance against environmental factors such as moisture and is most prized 
in musical instrument making. Conveniently, the axes’ orientation may 
be referred back to the fibres. In the following, 𝑥 will denote the direc-
tion along the grain (longitudinal); 𝑦 will denote the direction across the 
grain (radial); and 𝑧 will denote the tangential direction; see also Fig. 1. 
The stiffness in the longitudinal direction is usually an order of magni-
tude higher than in the other two directions, resulting in increased wave 
propagation velocity at reference wavelengths.

2.1. Non-dimensional model

Equation (1) depends on six constants: 𝜌, ℎ, 𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦, 𝜈𝑥𝑦, as well 
as the side lengths 𝐿𝑥, 𝐿𝑦. Inverting a system with such a large num-
ber of parameters may be impractical and lead to non-uniqueness of the 
resulting solution, an issue often emerging in inverse parameter estima-
tion methods [35]. In some cases, typically in machine learning and 
deep learning frameworks, interpretability is unnecessary so long as the 
expected system’s output is produced [36]. In other cases, such as here, 
a physical interpretation of the model may be obtained by recasting the 
problem in a form needing a minimal amount of independent param-
eters, as one may do immediately through non-dimensionalisation. To 
that end, divide both sides of (1) by 𝜌ℎ, and collect 𝐷𝑠 on the right-hand 
side. This gives:

𝜕2
𝑡
𝑢 = −𝛾2

(
(𝜕4
𝑥
+ 𝜈𝑦𝑥𝜕

2
𝑥
𝜕2
𝑦
)𝑝+ (𝜕4

𝑦
+ 𝜈𝑦𝑥𝜕

2
𝑥
𝜕2
𝑦
) 𝑞 + 𝜕2

𝑥
𝜕2
𝑦

)
𝑢, (5)

where 𝛾2 ∶= 𝜌−1ℎ−1𝐷𝑠, 𝑝 ∶= 𝐷−1
𝑠
𝐷𝑥, 𝑞 ∶= 𝐷−1

𝑠
𝐷𝑦. Non-dimension-

alisation of the system proceeds as follows. Define:

𝑢 =𝐴
1
2 �̄�, 𝑥 =𝐴

1
2 �̄�, 𝑦 =𝐴

1
2 �̄�, 𝑡 = 𝛾−1𝐴𝑡, (6)

where the overbar notation denotes a non-dimensional variable, and 
where 𝐴 ∶=𝐿𝑥𝐿𝑦 is the plate surface area. Thus, (5) becomes:

𝜕2
𝑡
�̄� = −

(
(𝜕4
�̄�
+ 𝜈𝑦𝑥𝜕

2
�̄�
𝜕2
�̄�
)𝑝+ (𝜕4

�̄�
+ 𝜈𝑦𝑥𝜕

2
�̄�
𝜕2
�̄�
) 𝑞 + 𝜕2

�̄�
𝜕2
�̄�

)
�̄�, (7)

defined over the non-dimensional domain ̄ = {(�̄�, �̄�) | 0 ≤ �̄� ≤ 𝜎
1
2 , 0 ≤

�̄� ≤ 𝜎
− 1
2 }, with 𝜎 ∶=𝐿−1

𝑦
𝐿𝑥 denoting the aspect ratio of the plate. Equa-

tion (7) depends only on the two ratios 𝑝, 𝑞, as well as 𝜎.
Transforming (7) in the frequency domain (that is, using 𝜕𝑡 → 𝑗�̄�, 

𝜕�̄� → 𝑗�̄��̄�, 𝜕�̄� → 𝑗�̄��̄� for temporal frequency �̄� and wavenumbers �̄��̄�, 
�̄��̄�), the non-dimensional dispersion relation is recovered:

�̄�2 = (�̄�4
�̄�
+ 𝜈𝑦𝑥�̄�

2
�̄�
�̄�2
�̄�
)𝑝+ (�̄�4

�̄�
+ 𝜈𝑥𝑦�̄�

2
�̄�
�̄�2
�̄�
) 𝑞 + �̄�2

�̄�
�̄�2
�̄�
, (8)

from which the modal frequencies �̄�𝑚,𝑛, are extracted as a quantised 
version of (8). Here, 𝑚, 𝑛 ∈ ℕ denote a pair of modal indices related to 

the nodal lines in the 𝑥 and 𝑦 directions. For fixed 𝑝, 𝑞, the quantisation 
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Fig. 1. Fiber direction convention in this article. 𝑥: longitudinal; 𝑦: radial; 𝑧: tangential.
depends exclusively on the boundary conditions  and the aspect ratio 
𝜎. On the other hand, when one allows 𝑝, 𝑞 to vary keeping 𝜎 and 
fixed, a linear dependence is assumed:

�̄�2
𝑚,𝑛

= 𝑎𝑚,𝑛 𝑝+ 𝑏𝑚,𝑛 𝑞 + 𝑐𝑚,𝑛, (9)

for modal number-dependent coefficients (𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛) ≥ 0. This is a 
key feature of the current formulation, allowing the rigidity constants 
to be estimated using a simple matrix inversion, as shown in the fol-
lowing sections. Before proceeding, notice that the dimensional modal 
frequencies 𝜔𝑚,𝑛 are obtained via multiplication of the non-dimensional 
frequencies by the time scaling constant, as per (6):

𝜔2
𝑚,𝑛

∶= 𝛾2𝐴−2�̄�2
𝑚,𝑛

=𝐷𝑠 𝜌
−1ℎ−1𝐴−2�̄�2

𝑚,𝑛
. (10)

Substituting the linear relationship (9) in (10), one obtains:

𝜔2
𝑚,𝑛

= 𝜆
(
𝑎𝑚,𝑛𝐷𝑥 + 𝑏𝑚,𝑛𝐷𝑦 + 𝑐𝑚,𝑛𝐷𝑠

)
, (11)

with 𝜆 ∶= 𝜌−1ℎ−1𝐴−2.

2.2. Problem formulation

In the following, assume one wishes to estimate the rigidity con-
stants 𝐷𝑥, 𝐷𝑦 𝐷𝑠 for the experimental plate under study. Furthermore, 
the plate parameters 𝜌, 𝐿𝑥, 𝐿𝑦, ℎ are assumed to be known, along with 
the boundary conditions .

The method relies on minimising a suitably defined error between 
the dimensional numerical eigenfrequencies 𝜔𝑚,𝑛 in (11) and a set of 
experimentally measured frequencies Ω𝑚,𝑛, where the minimisation is 
performed with respect to the unknown parameters �̃�𝑥, �̃�𝑦, �̃�𝑠 (these 
are approximations of the “true” rigidity constants 𝐷𝑥, 𝐷𝑦, 𝐷𝑠). Thus, 
define:

𝝍 ∶= 𝜆−1𝛀2, 𝝓
(
�̃�𝑥, �̃�𝑦, �̃�𝑠

)
∶=

[
𝐚,𝐛, 𝐜

] ⎡⎢⎢⎣
�̃�𝑥

�̃�𝑦

�̃�𝑠

⎤⎥⎥⎦ ∶=𝐗𝐝, (12)

where 𝐗 ∶=
[
𝐚,𝐛, 𝐜

]
, 𝐝 ∶=

[
�̃�𝑥, �̃�𝑦, �̃�𝑠

]⊺
. Here, 𝐚 is a column vector 

obtained by stacking 𝑎𝑚,𝑛 for a set of modes. As an example, assume to 
work with modes (0, 1), (1, 1), (1, 2). Then, 𝐚 = [𝑎(0,1), 𝑎(1,1), 𝑎(1,2)]⊺. Anal-
ogous definitions hold for 𝐛, 𝐜. Thus, 𝝓 is a vector expression of (11)
3

using the approximate rigidity constants 𝐝.
The error between the measured and the numerical frequencies is 
here defined as:

𝜀
(
�̃�𝑥, �̃�𝑦, �̃�𝑠

)
∶= 1

2
‖𝝍 −𝝓‖22, (13)

from which the rigidity constant vector 𝐝 is obtained through a least-
square minimisation [37]:

𝐝 = argmin𝜀 =
(
𝐗⊺𝐗

)−1 (𝐗⊺𝝍
)
. (14)

From here, one computes:

�̃�𝑥 =
12(1 − 𝜈𝑥𝑦𝜈𝑦𝑥)�̃�𝑥

ℎ3
, �̃�𝑦 =

12(1 − 𝜈𝑥𝑦𝜈𝑦𝑥)�̃�𝑦

ℎ3
, �̃�𝑥𝑦 =

3�̃�𝑠

ℎ3
,

(15)

approximating 𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦. Given their small variability across speci-
mens, it will be assumed that the Poisson ratios 𝜈𝑥𝑦, 𝜈𝑦𝑥 are known and 
obtained from tabulated values.

Note that the methodology relies on the knowledge of the modal 
coefficients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛. These are, generally, unknown, but they can 
be extracted by fitting the numerical eigenfrequencies of a number of 
training plates, as shown in the next section.

3. Numerical benchmark tests

The methodology described above is now tested in several numerical 
case studies to evaluate its performance. Firstly, the validity of the lin-
ear relationship (9) is assessed. Subsequently, the ability of the current 
formulation to predict accurate rigidity constant values from a batch of 
numerical test plates is demonstrated. A cantilever plate case is anal-
ysed in Sections 3.1 and 3.2; a fully-clamped plate case is discussed 
in Section 3.3; an evaluation of the fully-free case is presented in Sec-
tion 3.4. It is worth noting that the fully free case has been extensively 
addressed in prior literature (for instance, see McIntyre and Woodhouse 
[1], Caldersmith and Freeman [2], Igea and Cicirello [25]). Thus, the 
primary objective of the test cases presented below is to emphasise the 
generalisation of such well-established methods, showcasing the capac-
ity of the proposed methodology to yield reliable results for boundary 
conditions that have received limited attention. The fully-clamped case 
holds particular significance in this context due to its challenging na-
ture, as it is inherently difficult to isolate the effects of individual elastic 

constants, making it a rigorous test case.
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Table 1

Input constants for the COMSOL simulations, inspired from the 
table in [15] (page 96). These constants are used to create a 
“training” set from which the modal coefficients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛
are estimated. The plates included in the training set have ma-
terial and geometrical constants as per the table, and where 
(𝐸𝑥, 𝐸𝑦) are selected as the twenty-five possible combinations 
of the elements of the sets 𝑥, 𝑦, where 𝑥 = 𝐯𝐸0

𝑥
, 𝑦 = 𝐯𝐸0

𝑦
, 

with 𝐯 ∶= [0.8, 0.9, 1.0, 1.1, 1.2].
Kirchhoff plate parameters

𝜌 𝐿𝑥 𝐿𝑦 ℎ 𝐸0
𝑥

𝐸0
𝑦

𝐺𝑥𝑦 𝜈𝑥𝑦

473.9 223 114 3 10.7 716 500 0.51
kg ⋅ m−3 mm mm mm GPa MPa MPa

Thick-plate parameters

𝐸𝑧 𝐺𝑦𝑧 𝐺𝑥𝑧 𝜈𝑦𝑧 𝜈𝑥𝑧

0.39 0.023 0.62 0.45 0.50
GPa GPa GPa

The proposed method represents a departure from traditional ap-
proaches, as it relaxes certain methodological constraints while expand-
ing the range of conceivable test cases. It is essential to note that the 
intention here is not to advocate exclusively for the use of cantilever 
or clamped plates in such tests. Instead, the aim is to demonstrate the 
feasibility of accurately estimating the elastic constants, even when em-
ploying plates presenting fixed edges.

3.1. Linear dependence of the non-dimensional frequencies on 𝑝, 𝑞

A key assumption in the current formulation is the linear depen-
dence of the squared non-dimensional frequencies �̄�2

𝑚,𝑛
on the elastic 

constant ratios 𝑝, 𝑞, as per (9). This is now checked by computing the 
numerical eigenfrequencies of a set of plates created by varying refer-
ence plate parameters. All throughout, the aspect ratio and the bound-
ary conditions are kept fixed: 𝜎 = 223∕114,  = {C-F-F-F}, with the 
clamped edge lying along 𝑦 (the radial direction). The unusual value 
for 𝜎 can be justified by referring to the test case described in Sec-
tion 4.1, where an experimental tonewood with the same aspect ratio 
is considered. The finite element simulation software package COMSOL 
is used for the numerical simulations. The Plate COMSOL component 
is selected. Note that the input COMSOL parameters are dimensional 
and include the thick-plate parameters in addition to the eight param-
eters listed in Section 2.1, though the former have a small influence 
on the first few eigenmodes for thin and moderately thick plates [38, 
Appendix A]. Table 1 summarises the dimensional parameters used in 
the simulations, representative of spruce [15, p. 96]. From the table, 
twenty-five combinations of the elastic constant ratios 𝑝, 𝑞 are created, 
with 4.3 < 𝑝 < 6.6, 0.28 < 𝑞 < 0.45. These values are obtained by per-
turbing the original spruce elastic constant 𝐸0

𝑥
, 𝐸0

𝑦
by ±20%, keeping 

𝐺𝑥𝑦 fixed. Such perturbation is arbitrary, and its only purpose is to sam-
ple the (𝑝, 𝑞) space in order to perform the training. One may choose to 
work with larger bounds, provided enough sample points are used for 
the fit procedure described below. Here, twenty-five sample points are 
used to cover the (𝑝, 𝑞) plane in the ranges given above, yielding very 
good results, as will be seen shortly. The modal frequencies computed in 
COMSOL are then sorted according to mode number and belong to the 
modes (1,0), (1,1), (2,0), (1,2), (2,1), (2,2). In order to assign the cor-
rect modal frequency to each modal shape when batch exporting from 
COMSOL, the modal assurance criterion (MAC) can be used. Let 𝐔, 𝐔′

denote the column vectors containing the sampled modal displacements 
of two modes. The MAC index, a scalar value, is defined as [39]:

MAC(𝐔,𝐔′) ∶= |𝐔⊺𝐔′|2
‖𝐔‖2 ‖𝐔′‖2 . (16)

Values close to one indicate that the modal shapes 𝐔, 𝐔′ are highly cor-
4

related. In COMSOL, the sampled modal shapes can be batch-exported 
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Table 2

Linear fit results for a plate with 𝜎 = 223∕114, and  =
{C-F-F-F} (a cantilever plate clamped along the 𝑦 (radial) 
direction). The coefficients of determination 𝑅2 are also 
listed.

(1,0) (1,1) (2,0) (1,2) (2,1) (2,2)

𝑎𝑚,𝑛 3.21 3.99 117.0 14.4 124 134
𝑏𝑚,𝑛 0.00 0.94 41.9 1720 15.6 1910
𝑐𝑚,𝑛 0.00 40.5 13.6 155 328 1260

𝑅2 1.00 1.00 0.999 0.999 1.00 1.00

Table 3

Test plate parameters and errors for the case 𝜎 = 223∕114,  = {C-F-F-F}. 
The other plate parameters are as per Table 1. The training ranges, from 
Section 3.1, are: 4.3 < 𝑝 < 6.6, 0.28 < 𝑞 < 0.45. The relative errors are de-
fined as per (17), and here the percentage values are reported. The modes 
considered in this test are (1,0),(1,1),(2,1),(2,2). The values of 𝐸0

𝑥
, 𝐸0

𝑦
are 

given in Table 1.

𝐸𝑥∕𝐸0
𝑥

𝐸𝑦∕𝐸0
𝑦

𝑝 𝑞 err𝑥(%) err𝑦(%) err𝑠(%)

Plate 1 1.3 0.7 7.1 0.25 0.77 0.9 0.78
Plate 2 1.0 0.7 5.4 0.25 0.65 1.2 0.031
Plate 3 1.3 1.0 7.1 0.36 0.28 0.11 0.57

and MAC indices can be computed against a reference set of eigen-
shapes. Fig. 2 reports a few MAC matrices. Note that modal crossings 
may sometimes take place. Furthermore, in many cases out of the train-
ing batch, the modes (2,0) and (1,2) cannot be easily recognised, as one 
can see from the same figure. This happens because the nodal lines are 
bent compared to the reference (𝑥, 𝑦) axes: these modes deform con-
siderably when changing 𝑝, 𝑞, not allowing a clear identification of the 
modal indices (𝑚, 𝑛). This is a property of the quarter-sawn plates re-
ported in [24, p.84]. The cases for which a clear modal identification is 
difficult are therefore discarded. See also Fig. 3.

The coefficients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛 can now be estimated in Matlab via a 
constrained linear fit, such that 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛 are non-negative, as per 
(9). The results are summarised in Table 2. Note that the coefficients 
of determination (𝑅2) are very close to one in all cases, highlighting 
the ability of the linear relationship (9) to reproduce the correct modal 
frequency as a function of 𝑝, 𝑞. A visual representation of the fit results 
for the modes is given in Fig. 4.

3.2. Assessment of the method in the case  = {C-F-F-F}

The modal coefficients from Table 2 can be used to estimate the 
rigidity constants of a batch of test numerical plates sharing the same 
boundary conditions  = {C-F-F-F} and aspect ratio 𝜎 = 223∕114. It is 
helpful to test the methodology for plates presenting 𝑝, 𝑞 outside of the 
training ranges to assess the predicting power of the fit. Hence, three 
test plates are considered, all sharing the same parameters as per Ta-
ble 1, but selecting 𝐸𝑥, 𝐸𝑦, so as to place 𝑝, 𝑞 inside or outside their 
respective training ranges. Table 3 collects all such parameters. For 
all test plates, the eigenfrequencies are computed numerically, and the 
rigidity constants �̃�𝑥, �̃�𝑦, �̃�𝑠 are estimated according to (14), using the 
values of the modal coefficients 𝐚, 𝐛, 𝐜 as in Table 2.

The results are reported in Table 3, displaying errors below 1.2%. 
The relative errors in the Table are defined as follows:

err𝑥 =
𝐷𝑥 − �̃�𝑥

𝐷𝑥

, err𝑦 =
𝐷𝑦 − �̃�𝑦

𝐷𝑦

, err𝑠 =
𝐷𝑠 − �̃�𝑠

𝐷𝑠

. (17)

It is worth commenting on the results. An important aspect concerns 
the selection of an appropriate batch of modes for the estimation of 
the elastic constants. Modes presenting an influence on all three con-
stants may be used, provided that at least three of them present linearly 

independent modal coefficients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛, as is the case for the co-
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Fig. 2. Modal Assurance Criterion (MAC) for the plate 𝜎 = 223∕114,  = {C-F-F-F}, under various choices of the parameters 𝑝, 𝑞. A white square denotes a high 
correlation between the reference mode shapes (denoted by 𝑅), and the batch of modal shapes for the indicated 𝑝, 𝑞, ordered according to increasing frequency from 
1 to 6. Modal crossings may take place in some cases, such as in the second square (𝑝 = 4.36, 𝑞 = 0.40). Some ambiguity exists in identifying modes (2,0) and (1,2), 
as seen in the last two matrices. These cases are discarded when performing the fit. The reference set of modes is selected as the batch 𝑝 = 4.36, 𝑞 = 0.29.

Fig. 3. Modal shapes for a plate with 𝜎 = 223∕114,  = {C-F-F-F}, 𝑝 = 6.53, 𝑞 = 0.29. Modes (1,2) and (2,0) are marked with a star as assigning unambiguous modal 
indices may be difficult in some cases. See also Fig. 2.
Fig. 4. Linear dependence of the non-dimensional frequencies �̄�2
𝑚,𝑛

on the elas-
tic constant ratios 𝑝, 𝑞. Here, the plate has 𝜎 = 223∕114, and  = {C-F-F-F} (a 
cantilever plate clamped along the radial direction). The dots represent the non-
dimensional modal frequencies as a function of 𝑝, 𝑞, and the planes are plotted 
according to (9) using the values of 𝑎𝑚,𝑛 , 𝑏𝑚,𝑛, 𝑐𝑚,𝑛 listed in Table 2.

efficients listed in Table 2. From the same table, it is clear that using 
only modes (1,0), (1,1) and (2,1) will not yield reliable results, as 𝐷𝑦

has no influence on these modes’ dynamics (the 𝑏𝑛,𝑚 coefficients are ei-
ther zero or small compared to 𝑎𝑛,𝑚, 𝑐𝑛,𝑚). In other words, the matrix in 
5

the least-square formula (14) becomes poorly conditioned [40].
3.2.1. Sensitivity analysis for the case  = {C-F-F-F}
The numerical benchmark test carried out above highlights the abil-

ity of the proposed method to recover the correct elasticity constants 
with very small errors. However, the “experimental” frequencies were 
obtained via controlled numerical simulation and are unaffected by 
all sources of error besides a small inaccuracy due to the numerical 
approximation. Furthermore, the dynamics of real plates may be some-
what more complicated than what is implied by model (1): perfectly 
orthotropic conditions are seldom encountered in wooden boards; thick-
ness profiles may not be completely uniform; the boundary conditions, 
especially of fixed type, may not be implemented exactly. Whilst care 
must be taken to ensure that the experimental plate and the measure-
ment setup are as close to the ideal case as possible, experimental fre-
quencies are likely affected by some form of error. Thus, it is important 
to test the reliability of the method using perturbed frequencies. Results 
are reported in Table 4, where the rigidity constants of Plate 1 from 
Table 3 are computed using a perturbed set of eigenfrequencies, with 
perturbations generated randomly within ±2% of the original eigenfre-
quencies. As expected, the errors are higher, though still in line with 
error bounds reported with previous methods, such as via the FEMU-
3DVF [3].

3.3. Assessment of the method in the case  = {C-C-C-C}

As a second case, consider the fully-clamped case with 𝜎 = 150∕103. 
As previously, the aspect ratio is selected to comply with the experi-
mental case presented in Section 4.2. First, the modal coefficients 𝑎𝑚,𝑛, 
𝑏𝑚,𝑛, 𝑐𝑚,𝑛 are computed as explained in Section 3.1. These are reported 
in Table 5. The coefficients of determination (𝑅2) are all equal to 1.00 
in this case, highlighting the validity of the linearity assumption (9) in 

the fully-clamped case. The modal shapes for the same modes are re-
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Table 4

Sensitivity test for the Plate 1 of Section 3.2, Table 3, with 𝜎 = 223∕114,  = {C-F-F-F}. 
The perturbation 𝜖 was selected randomly within the interval ±2% with respect to the 
exact modal eigenfrequency, and is reported in the table as a percentage. The definitions 
of err𝑥, err𝑦 and err𝑠 are as per (17).

𝜖(1,0) 𝜖(1,1) 𝜖(2,0) 𝜖(1,2) 𝜖(2,1) 𝜖(2,2) err𝑥(%) err𝑦(%) err𝑠(%)

Test 1 1.8 -1.7 1.1 -0.73 1.6 0.95 -4.2 13.0 -3.8
Test 2 -1.6 0.76 1.6 -1.1 -1.4 -2.0 -3.5 7.2 11.0
Test 3 0.03 -0.1 1.6 -0.95 1.3 -1.4 -6.4 11.0 8.6
Test 4 0.76 0.89 0.66 0.79 1.7 1.6 -3.4 9.2 -6.0
Test 5 -0.94 -0.55 0.026 -0.35 0.15 -0.92 -2.4 9.1 4.3

Fig. 5. Modal shapes for a plate with 𝜎 = 150∕103,  = {C-C-C-C}, 𝑝 = 6.53, 𝑞 = 0.29.
Table 5

Linear fit results for a plate with 𝜎 = 150∕103, and  =
{C-C-C-C}. The coefficients of determination 𝑅2 are also listed.

(0,0) (0,1) (1,0) (0,2) (1,1) (1,2)

𝑎𝑚,𝑛 236 237.5 1790 242 1792 1799
𝑏𝑚,𝑛 1214 8589 1652 31910 10180 35250
𝑐𝑚,𝑛 146.9 552.3 534.9 1196 2051 4469

𝑅2 1.00 1.00 1.00 1.00 1.00 1.00

Table 6

Test plate parameters and errors for the case 𝜎 = 150∕103,  = {C-C-C-C}. 
The training ranges, from Section 3.1, are: 4.3 < 𝑝 < 6.6, 0.28 < 𝑞 < 0.45. 
The errors are defined as per (17), and are here reported as percentages. 
All six modes are considered in this test.

𝐸𝑥∕𝐸0
𝑥

𝐸𝑦∕𝐸0
𝑦

𝑝 𝑞 err𝑥(%) err𝑦(%) err𝑠(%)

Plate 1 1.3 0.7 7.1 0.25 0.81 0.86 0.12
Plate 2 1.0 0.7 5.4 0.25 -0.28 -0.26 0.043
Plate 3 1.3 1.0 7.1 0.36 - 0.12 -0.12 0.036

ported in Fig. 5. A numerical benchmark test, similar to what was done 
for the previous case, is reported in Table 6. The elastic constants are 
estimated with errors below 0.9%. A sensitivity analysis, analogous to 
what was done previously, is performed on the fully clamped plate. The 
results, reported in Table 7, show that 𝐷𝑥, 𝐷𝑦 are estimated consis-
tently well across all tests, and within small error bounds. A somewhat 
larger error is observed in the estimation of 𝐷𝑠. In order to account for 
such a larger sensitivity, a statistical approach can be adopted, as will 
6

be shown in Section 5.
3.4. Comparison against classic methods in the fully free case

Since the proposed method works under general boundary condi-
tions, it is worth comparing its performance against the classic method 
by McIntyre and Woodhouse [1] and by Caldersmith and Freeman [2]
in the case of a plate with fully free edges,  = {F-F-F-F}, with 𝜎 = 1. 
The plate frequencies are computed in COMSOL and used as input “ex-
perimental” frequencies to test out the accuracy of the methods. These 
are reported in Table 8, along with the plate parameters.

For the proposed method, the linear fit results from the training set 
are given in Table 9, again highlighting the goodness of the linearity 
assumption (9).

For a square plate, the closed-form formulae given by McIntyre and 
Woodhouse are as follows:

�̃�𝑥 = 0.079𝑓 2
(2,0) 𝜌𝐴

2ℎ, (18a)

�̃�𝑦 = 0.079𝑓 2
(0,2) 𝜌𝐴

2ℎ, (18b)

�̃�𝑠 = 0.27𝑓 2
(1,1) 𝜌𝐴

2ℎ, (18c)

whilst Caldersmith and Freeman give:

�̃�𝑥 = 0.08𝑓 2
(2,0) 𝜌𝐴

2ℎ, (19a)

�̃�𝑦 = 0.08𝑓 2
(0,2) 𝜌𝐴

2ℎ, (19b)

�̃�𝑠 = 0.40𝑓 2
(1,1) 𝜌𝐴

2ℎ. (19c)

Since these classic methods use only three modes, the proposed opti-
misation is here run using the same modes, i.e. (1,1), (2,0), (0,2). The 
results for all three methods are summarised in Table 10. From the ta-
ble, it results that the Young’s moduli can be estimated very accurately 
using all three methods. The shear modulus, however, presents a some-
what larger error when formula (25) in [1] and formula (9) in [2] are 
applied. An interpretation of such a larger error is obtained immedi-

ately by glancing at the modal coefficients for mode (1,1) in Table 9. 
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Table 7

Sensitivity test for the Plate 1 of Table 6, with 𝜎 = 150∕103,  = {C-C-C-C}. The pertur-
bation 𝜖 was selected randomly within the interval ±2% with respect to the exact modal 
eigenfrequency, and is reported in the table as a percentage. The definitions of err𝑥, err𝑦
and err𝑠 are as per (17).

𝜖(0,0) 𝜖(0,1) 𝜖(1,0) 𝜖(0,2) 𝜖(1,1) 𝜖(1,2) err𝑥(%) err𝑦(%) err𝑠(%)

Test 1 0.64 0.51 0.37 -1.0 1.6 -0.95 -2.5 3.7 10.6
Test 2 2.0 -1.0 -1.7 -0.86 -1.4 1.7 8.3 8.4 -52
Test 3 1.2 1.4 2.0 -1.9 -0.65 0.63 -1.1 5.7 -6.9
Test 4 -0.49 -1.2 -1.1 0.8 0.98 1.3 3.7 3.3 -30.0
Test 5 0.89 -0.95 -0.2 -1.9 0.75 -1.6 -1.1 5.4 11.0
Table 8

COMSOL modal frequencies for a fully free plate with 𝐿𝑥 = 𝐿𝑦 = 204
mm, ℎ = 1.18 mm, 𝜌 = 687 kg ⋅ m−3, 𝐸𝑥 = 13.0 GPa, 𝐸𝑦 = 702 MPa, 
𝐺𝑥𝑦 = 688 MPa, 𝜈𝑥𝑦 = 0.3.

(1,1) (0,2) (1,2) (2,1) (2,2) (2,0)

COMSOL freqs. (Hz) 29.3 29.5 66 81.2 120 127

Table 9

Linear fit results for a plate with 𝜎 = 1, and  = {F-F-F-F}.

(1,1) (0,2) (1,2) (2,1) (2,0) (2,2)

𝑎𝑚,𝑛 0.15 0.519 1.73 4.7 497 6.41
𝑏𝑚,𝑛 15.1 483 550 3620 0 3790
𝑐𝑚,𝑛 122 0.269 506 9.98 0 1140

𝑅2 0.996 1.00 1.00 1.00 1.00 1.00

This does not appear to be a pure “shear” mode, as implied by the 
formulae above: 𝐸𝑦 has a non-negligible influence on mode (1,1) and, 
hence, neglecting this contribution leads to erroneous estimates of 𝐺𝑥𝑦. 
Such approximate results can be refined using the iterative procedure 
described in [1].
For the sake of completeness, the coefficients form Table 9 will be used 
in combination with (11) to yield a refined formula for �̃�𝑠. Thus, the 
following are proposed, valid for square plates with all free edges:

�̃�𝑥 = 0.079𝑓 2
(2,0) 𝜌𝐴

2ℎ, (20a)

�̃�𝑦 = 0.079𝑓 2
(0,2) 𝜌𝐴

2ℎ, (20b)

�̃�𝑠 = 0.32𝑓 2
(1,1) 𝜌𝐴

2ℎ− 0.1 �̃�𝑦. (20c)

Using these formulae, the errors become err𝑥 = 0.1%, err𝑦 = 0.2%, 
err𝑠 = 0.2%.

3.5. Interpretation of the results in terms of the Moore–Penrose inverse

As seen in the previous section, using free boundary conditions al-
lows estimating the Young’s moduli fairly easily, as these appear uncou-
pled in two “beam” modes. The shear modulus may itself be obtained 
with a slight modification of the classic formulae given in [1,2], using 
a correction term accounting for the influence of 𝐸𝑦 on mode (1,1). No 
such triplet of modes exists for different boundary conditions, particu-
larly of fixed type where the effects of the elastic constants are densely 
coupled for all the modes, as one can see easily from Table 5. Yet, the 
proposed methodology is able to retrieve the correct elastic constant 
values with very small errors. The linear formulation of the method of-
fers a viable interpretation of such results. From (14), one has that the 
rigidity constants are obtained in terms of the Moore-Penrose inverse 
𝐗†, given by [41]:

𝐗† ∶= (𝐗⊺𝐗)−1𝐗⊺. (21)

This linear operation reduces the overdetermined system comprising 
𝑁 > 3 equations to a 3 × 3 system, obtained as a linear combination of 
7

the 𝑁 available modes with the shortest Euclidian distance between the 
experimental and reconstructed eigenfrequencies. It is natural to com-
bine the eigenshapes via 𝐗† and to observe the resulting modal shapes. 
This operation is unnecessary to determine the elastic constants as such, 
though it helps develop an intuitive interpretation of the results. The 
operation is a simple matrix multiplication:

⎡⎢⎢⎣
𝜶⊺

𝜷⊺

𝜸⊺

⎤⎥⎥⎦ =𝐗†
⎡⎢⎢⎣
𝐔⊺
1
...

𝐔⊺
𝑁

⎤⎥⎥⎦ , (22)

where 𝜶, 𝜷 , 𝜸 are the combined mode shape column vectors, and where 
𝐔𝑖 is the 𝑖𝑡ℎ normalised column eigenshape. A visual representation is 
offered in Fig. 6, where the effects of 𝐸𝑥, 𝐸𝑦 and 𝐺𝑥𝑦 are now decoupled 
for modes 𝛼, 𝛽, 𝛾 , and are clearly visible. The possibility of combining 
modes in the current framework is one of the most interesting findings 
of this work, allowing the implementation of the method using vari-
ous choices of boundary conditions. The next section presents two such 
experiments.

4. Experimental setup

In order to validate the presented methodology, two experimental 
plates are now considered, with the same boundary conditions and as-
pect ratios as the numerical plates presented in Section 3. They are 
representative of soundboards used in the production of stringed musi-
cal instruments: a kantele and an acoustic guitar.

4.1. Tonewood specimen with  = {C-F-F-F}

A sample of Finnish tonewood spruce was obtained from a master 
luthier based in Finland. The sample was a leftover coming from the 
production of a concert kantele, a Finnish plucked stringed musical in-
strument [42]. This board has dimensions 𝐿0

𝑥
= 25.3 cm, 𝐿𝑦 = 11.4 cm, 

ℎ0 = 5 mm. The thickness is reduced to ℎ = 3 mm using a belt sander. 
This operation is not strictly necessary: differences between the thin 
and thick plate models were shown to be small for piano soundboards 8 
mm thick, up to a few kHz [38, Appendix A]. In the current case, thin-
ning allows keeping the discrepancy between the thin- and thick-plate 
eigenfrequencies below 2% in the 3 mm case from about 6% in the 5 
mm case, up to the sixth mode, as assessed from a preliminary numeri-
cal simulation of the spruce board using standard elastic constant values 
found in [15, p. 96].

To realise the experimental boundary conditions, a clamping system 
is implemented as in a previous study [43]. Two angular 1.8 kg iron el-
ements are clamped together using six spring plastic clamps distributed 
along the entire length of the two angular components. To better dis-
tribute the pressure along the 𝑦 axis, an additional 1.2 kg iron plate 
is placed between one of the two angular elements and the specimen 
under test. An additional layer of rubber material is wrapped around 
the clamped plate’s side to prevent damage to the specimen given the 
large pressure applied to it. Fig. 7 shows the final experimental setup 
for the plate boundary conditions. The clamping mechanism shortens 
the specimen along the 𝑥 direction, such that the effective length re-

sults as 𝐿𝑥 = 22.3 cm. The final plate dimensions 𝐿𝑥, 𝐿𝑦, ℎ as well as 
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Table 10

Estimates of the elastic constants using the proposed and reference methods. 
Here, 𝜎 = 1,  = {F-F-F-F}. Only the first estimate for the elastic constants is 
considered for the methods given in [1,2] (no refinement). Better estimates for 
𝐺𝑥𝑦 can be obtained through an iterative process, as described in [1].

�̃�𝑥 (GPa) �̃�𝑦 (MPa) �̃�𝑥𝑦 (MPa) err𝑥(%) err𝑦(%) err𝑠(%)

Ref. [1] 13.0 701 594 0.1 0.2 14
Ref. [2] 13.1 709 880 -1.1 -1.0 -28
Proposed 12.9 701 686 0.8 0.1 0.3

Fig. 6. Combined mode shapes for the fully-clamped plate. These are obtained by combining the mode shapes of Fig. 5 using the Moore–Penrose inverse 𝐗† , so to 
obtain the modes 𝛼, 𝛽, 𝛾 for which the dependence on, respectively, 𝐸𝑥 , 𝐸𝑦 and 𝐺𝑥𝑦 is completely decoupled.

Fig. 7. Experimental setup for the tonewood sample with  = {C-F-F-F}, 𝜎 = 223∕114, for which the modal coefficients are listed in Table 2. The hammer is mounted 
8

on a pendulum, which stops after recoiling to avoid double hits. Below, the protective rubber pad in the clamping system is visible.
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Fig. 8. Frequency spectra obtained from the six measurement points assessed on the tonewood spruce plate. The frequency range of interest here is up to 800 Hz. 
Dashed lines mark the spatially averaged experimental frequencies.
Table 11

Spatially averaged experimental frequencies and identified mode 
shapes for the cantilever Finnish spruce tonewood.

(1,0) (1,1) (2,0) (1,2) (2,1) (2,2)

Measured freqs. (Hz) 52 98 310 337 398 637

the density 𝜌, are the same as the ones reported in Table 1. In partic-
ular, the modal coefficients 𝑎𝑚.𝑛, 𝑏𝑚,𝑛, 𝑐𝑚.𝑛 for this plate are listed in 
Table 2.

In this experiment, a miniature impact hammer (PCB 086E80) is 
used to excite the plate and a monoaxial accelerometer (PCB 352A21) 
is used to measure the plate’s impulse response. A vinyl cover is used on 
the hammer’s hard tip to reduce the damage caused by the impacts on 
the wooden plate surface. This softer tip limits the force spectrum of the 
excitation signal [44], though it still delivers sufficient energy to excite 
the board in the frequency range of interest (below 1 kHz). The im-
pact hammer roves across six equally spaced measurement positions to 
conduct the measurements, whereas the accelerometer is mounted and 
kept still in the same position during the entire measurement campaign. 
The selection of the input and output locations is such as to be able to 
identify the frequencies of the first six modes, as will be shown below. 
To account for the measurement uncertainty caused by the low repro-
ducibility of the impact hammer force signal [45], five different impulse 
responses are averaged over each measurement position. Particular care 
is taken to avoid placing the accelerometer close to the nodal lines of 
the interested modes listed in Table 2. Finally, the collected data is post-
processed in Matlab to analyse the frequency response functions from 
each measurement position.

Fig. 8 shows the resulting frequency spectra, and Table 11 sum-
marises the experimental eigenfrequencies identified through a “peak 
finding” routine implemented in Matlab and averaged across all the 
measurement positions. As mentioned in Section 2, a crucial step of 
the presented methodology requires the identification of the nodal lines 
along the 𝑥 and 𝑦 directions of the tonewood’s fibres, in order to as-
sociate the measured frequencies with the corresponding modal coeffi-
cients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛. The modal shapes can be simply observed through 
the well-known technique by Chladni [30]. Here, a mini shaker (PCB 
2004E) is used to excite the cantilever plate which is now horizontally 
oriented to facilitate the mounting of the shaker to the plate surface (as 
shown in Fig. 9) through the use of adhesive material (i.e. beeswax). 
Pure tones having the same frequencies as the six measured eigenfre-
quencies reported in Table 11 are used as excitation signals for the 
plate covered with off-the-shelf white sand. Fig. 9 shows the observed 
Chladni patterns.

4.2. Acoustic guitar top board with  = {C-C-C-C}

In a second experiment, a full guitar board is considered. This is the 
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assembly of two rectangular quarter-sawn spruce billets, referred to as a 
Fig. 9. Experimental setup including the miniature shaker (left) and Chladni 
patterns (right) on the tonewood sample.

book-matched top. Glueing together the half-boards to form a full guitar 
board represents a preliminary step in constructing and designing gui-
tars conducted by luthiers and builders [46]. The board was purchased 
from Ciresa,1 a Fiemme Valley red spruce reseller, and is here tested 
under fully clamped boundary conditions, mimicking those occurring 
in the final assembled instrument [19]. An 8 kg plexiglass frame is built 
to clamp the board along all its edges. Here, equally distributed clamps 
are mounted along the frame’s edges and are used to apply pressure 
on an additional plexiglass counter-frame resting directly on the board 
under test. The experimental setup is shown in Fig. 10. The clamped 
board’s dimensions are: 𝐿𝑥 = 60 cm, 𝐿𝑦 = 41.2 cm, ℎ = 3 mm, and its 
density is 𝜌 = 399 kg ⋅ m−3. Thus, the aspect ratio is 𝜎 = 105∕103, and 
the modal coefficients 𝑎𝑚,𝑛, 𝑏𝑚,𝑛, 𝑐𝑚,𝑛 are as per Table 5.

Given the larger size and weight of the guitar board compared to 
the cantilever plate illustrated in Section 4.1, a higher force ampli-
tude is needed to excite all the interested modes with sufficient energy. 
Furthermore, as the experimental fully clamped constraints require the 
board to be now horizontally fixed to a frame, a different experimen-
tal setup is here employed for ease of operation [47,48]. Accordingly, 
the guitar board is excited by an 8 Ω nominal impedance 48 g electro-
dynamic exciter with a 25 mm diameter voice coil. Such a setup allows 
1 https://www .ciresafiemme .it/.

https://www.ciresafiemme.it/
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Fig. 10. Experimental setup and Chladni patterns for the Fiemme Valley red spruce guitar top. The microphone is an Earthworks MD30 class-1, and the exciter is a 
custom-built 8 Ω nominal impedance 48 g electro-dynamic exciter with a 25 mm diameter voice coil.
Table 12

Spatially averaged experimental frequencies and identified mode 
shapes for the fully clamped red spruce plate.

(0,0) (0,1) (1,0) (1,1) (0,2) (1,2)

Measured freqs. (Hz) 57 99 130 162 170 224

for a higher excitation amplitude and ease of operation on the horizon-
tal board.

An exponential sine sweep ranging from 45 Hz to 8 kHz is used as 
the test signal. Similarly to the previous measurement campaign, the ex-
citer roves across four different measurement points distributed over the 
guitar’s board. As a receiver, an Earthworks MD30 class-1 microphone 
is placed at a 125 mm distance from the board to capture the output sig-
nal from the guitar board. Finally, the recorded data is post-processed 
using the Aurora plugins [49], yielding the impulse responses which 
are then further processed and analysed in Matlab. Table 12 reports the 
measured eigenfrequencies. For the presented case study, Chladni pat-
terns are obtained by exciting the plate at the measured frequencies 
using pure tones and dried tea leaves, and are visible in Fig. 10.

5. Results and discussion

The elastic constants for the Finnish and the Fiemme Valley spruce 
tonewoods are retrieved using the experimental frequencies from Ta-
bles 11 and 12 respectively, the modal coefficients from Tables 2 and 
5, and formulae (14) and (15). Various combinations of modes can be 
used here. Both cases include six identified experimental modes; thus, it 
is possible to run (14) using forty-two combinations containing at least 
three modes out of six. This permits many estimates of the elastic con-
stants, yielding a statistically significant set from which mean values 
and standard deviations can be computed. It is best to exclude all spu-
rious estimates from the statistics. First, negative estimates should be 
excluded (these appear in some cases when the Moore-Penrose is poorly 
conditioned [40], as discussed previously). Second, outliers should be 
excluded. These may be computed using the IQR (interquartile range) 
method, such that a sample is considered an outlier if it falls outside 
of the range [𝑄1 − 1.5 IQR, 𝑄3 + 1.5 IQR], where IQR = 𝑄3 − 𝑄1, and 
where 𝑄1, 𝑄3 are the first and third quartile, respectively [50]. Results 
are summarised in Figs. 11 and 12.

The mean values and standard deviations of �̃�𝑥, �̃�𝑦, �̃�𝑥𝑦 for the 
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two plates are summarised in Table 13. Note that the standard devia-
tions are very low in all cases, except for the shear modulus in the fully 
clamped case. This is a consequence of the sensitivity of the method 
under fully-clamped conditions, as discussed in Section 3.3, though the 
statistical approach adopted here is able to contain the deviation to 
within a reasonable threshold. The estimated mean values are in line 
with previously reported values for spruce, such as in [15, p.96].

The average elastic constant values can be used as input parameters 
in COMSOL, and the numerical frequencies obtained can be assessed 
against the measured experimental frequencies. This is done in Table 14
and 15, where the numerical frequencies are in both cases predicted 
very accurately: errors fall below 2% in all cases, highlighting the ac-
curacy of the proposed methodology in retrieving appropriate elastic 
constant values.

6. Conclusion

This work offered a method to estimate the elastic constants of thin, 
rectangular orthotropic panels, as an application of non-destructive in-
verse parameter estimation methods. Compared to previously available 
techniques in the literature, the proposed framework does not rely on 
a specific set of boundary conditions or modes, allowing multiple es-
timates of the elastic constants via simple matrix inverses. This way, 
not only mean values but also deviations can be estimated. The en-
abling idea is identifying a linear relationship between the elastic con-
stants and the squared non-dimensional plate frequencies, with modal-
dependent coefficients that can be easily computed from a batch of 
numerical training plates. An interpretation of the method was offered 
in terms of the Moore-Penrose inverse, which combines the eigenmodes 
to yield three modes in which the influence of the thin-plate elastic 
constants is completely decoupled. A refinement of the closed-form 
formulae for the fully free square plate was offered, improving the ac-
curacy of the shear modulus estimate by an order of magnitude. Several 
numerical and experimental tests showed the reliability of the proposed 
methodology in cases of interest in musical acoustics.
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Fig. 11. Elastic constant estimates for the Finnish spruce tonewood. Forty-two mode sets are considered, corresponding to all possible combinations containing at 
least three experimental modes out of the six measured ones. Mean values and standard deviations are represented as dashed lines and coloured bands, respectively. 
Outliers are detected using the IQR method [50].

Fig. 12. Elastic constant estimates for the Fiemme Valley red spruce tonewood. The same analysis as per Fig. 11 holds.

Table 13

Elastic constant mean values and relative standard deviations for the two spruce 
tonewoods. Values are in line with previously reported values for spruce, such 
as in [15, p.96].

�̃�𝑥 (GPa) �̃�𝑦 (MPa) �̃�𝑥𝑦 (MPa)

Finnish spruce (cantilever)
mean 13.0 700 668
rel. std 4.0% 2.2% 6.5%

Fiemme Valley spruce (clamped)
mean 10.4 994 526
rel. std 0.9% 3.1% 14%
11
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Table 14

Errors between the experimentally measured and numerically com-
puted eigenfrequencies for the Finnish spruce plate under cantilever 
boundary conditions. The numerical frequencies were computed in 
COMSOL using the mean elastic constant values from Table 13.

Meas. (Hz) Num. (Hz) Δ𝑓𝑛 (Hz) Δ𝑓𝑛
𝑓𝑛

(%) Δ𝑓𝑛 (cent)

(1,0) 52 51 -1 -1.9 -34
(1,1) 98 100 2 2.0 35
(2,0) 311 315 4 1.3 22
(1,2) 337 335 -2 -0.6 -10
(2,1) 398 394 -4 -1.0 -17
(2,2) 637 629 -8 -1.2 -22

Table 15

Errors between the experimentally measured and numerically com-
puted eigenfrequencies, for the Fiemme Valley red spruce plate, under 
fully clamped boundary conditions. The numerical frequencies were 
computed in COMSOL using the mean elastic constant values from Ta-
ble 13.

Meas. (Hz) Num. (Hz) Δ𝑓𝑛 (Hz) Δ𝑓𝑛
𝑓𝑛

(%) Δ𝑓𝑛 (cent)

(0,0) 57 56 -1 -1.8 -31
(0,1) 99 98 -1 -1 -17
(1,0) 130 130 0 0 0
(1,1) 162 161 -1 -0.6 -11
(0,2) 170 168 -2 -1.2 -20
(1,2) 224 221 -3 -1.3 -23
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[33] Wilczyński A, Kociszewski M. Determination of elastic constants of particleboard 

layers by compressing glued layer specimens. Wood Res 2011;56(1):77–91.
[34] How S, Sik H, Ahmad I. Review on six types of log cutting methods in various 

applications: Part I. Timber Tech Bull 2007;45.
[35] Berg S, Unsal E, Dijk H. Non-uniqueness and uncertainty quantification of 

relative permeability measurements by inverse modelling. Comput Geotech 
2021;132:103964.

[36] Esqueda F, Kuznetsov B, Parker JD. Differentiable white-box virtual analog mod-
eling. In: 24th international conference on digital audio effects (DAFx), Vienna, 
Austria; 2021. p. 41–8.

[37] Boyd SP, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
[38] Ege K. La table d’harmonie du piano – Études modales en basses et moyennes 

fréquences. Ph.D. thesis. Paris, France: ‘École Polytechnique; 2009.
[39] Pastor M, Binda M, Harčarik T. Modal assurance criterion. Proc Eng 2012;48:543–8.
[40] Wei Y, Diao H, Qiao S. Condition number for weighted linear least squares problem. 

J Comput Math 2007:561–72.
[41] Barata JCA, Hussein MS. The Moore–Penrose pseudoinverse: a tutorial review of the 
theory. Braz J Phys 2012;42:146–65.

http://refhub.elsevier.com/S0003-682X(24)00100-2/bib336C9EDB8F08DF6204053F52FC8D246Ds1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib336C9EDB8F08DF6204053F52FC8D246Ds1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib13FBB071C9D8414D4634D396BEF8B441s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib13FBB071C9D8414D4634D396BEF8B441s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibBB5FC87BA24BEB2D5F8AC06E639E2796s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibBB5FC87BA24BEB2D5F8AC06E639E2796s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibBB5FC87BA24BEB2D5F8AC06E639E2796s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibBB5FC87BA24BEB2D5F8AC06E639E2796s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibBB5FC87BA24BEB2D5F8AC06E639E2796s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib5149AB0BC01EFB06D17E86685CFDBCB6s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib5149AB0BC01EFB06D17E86685CFDBCB6s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib5149AB0BC01EFB06D17E86685CFDBCB6s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib00859898C8EEBB7869349B10D87D3D5Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib00859898C8EEBB7869349B10D87D3D5Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib00859898C8EEBB7869349B10D87D3D5Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9671DD1DAFD1AE5AB058A8DF9192A7B2s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9671DD1DAFD1AE5AB058A8DF9192A7B2s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDE217CB19B325A7E19D72DBC74DC41AAs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDE217CB19B325A7E19D72DBC74DC41AAs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDE217CB19B325A7E19D72DBC74DC41AAs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDC5AB843547D41B0996732116B2F9D09s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDC5AB843547D41B0996732116B2F9D09s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDC5AB843547D41B0996732116B2F9D09s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib2ED63858665EC71C616B1DF7F84E7DBFs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib2ED63858665EC71C616B1DF7F84E7DBFs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib2ED63858665EC71C616B1DF7F84E7DBFs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib0D50A127830CD855DBC84D9A328843B4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib0D50A127830CD855DBC84D9A328843B4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib0D50A127830CD855DBC84D9A328843B4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDA50B97B96E4720124496CE142ABB3E6s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibDA50B97B96E4720124496CE142ABB3E6s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4033789235FE32D2A1901D993DE350C1s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4033789235FE32D2A1901D993DE350C1s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4033789235FE32D2A1901D993DE350C1s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibB17E2C1A5AD03B672BEA2F0681F1B47As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibB17E2C1A5AD03B672BEA2F0681F1B47As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32122B874B6A54B7E77DBD0C8A1032Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32122B874B6A54B7E77DBD0C8A1032Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32122B874B6A54B7E77DBD0C8A1032Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibABDED72CE0CD4A7BB29005CE2F858607s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibABDED72CE0CD4A7BB29005CE2F858607s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibB7445ED780576B5D1569BD24A5B390B7s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibB7445ED780576B5D1569BD24A5B390B7s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4EA89DDAFEAE0126C1E9B0C803CA27D8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4EA89DDAFEAE0126C1E9B0C803CA27D8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib4EA89DDAFEAE0126C1E9B0C803CA27D8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibA6F89405B65C6B4EF96EF8BB317A602Ds1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib719BA5A74DCE494B86DA97DE134E98EFs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib719BA5A74DCE494B86DA97DE134E98EFs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD1ABEBD569695E24FB2E30BBE065904Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD1ABEBD569695E24FB2E30BBE065904Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD1ABEBD569695E24FB2E30BBE065904Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib310CBB79DF5FDB28310397904FA3FD8As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib310CBB79DF5FDB28310397904FA3FD8As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib310CBB79DF5FDB28310397904FA3FD8As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib81A548A1DFF66AB5C355E94B3B9E32C8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib81A548A1DFF66AB5C355E94B3B9E32C8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib81A548A1DFF66AB5C355E94B3B9E32C8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib0E0C4C49AFBBD701F5B164C670854C7Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib0E0C4C49AFBBD701F5B164C670854C7Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9144C7D1F5AF8E6D609EC9EDCA1FBD2Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9144C7D1F5AF8E6D609EC9EDCA1FBD2Bs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib94E127F976E8D82BB92BC03B27BB29FDs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib94E127F976E8D82BB92BC03B27BB29FDs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib94E127F976E8D82BB92BC03B27BB29FDs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib8F30154E4746BC241AB471F6A2854647s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib68B6637F18D75E45A5417E7C4F1A98A5s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib68B6637F18D75E45A5417E7C4F1A98A5s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32EBDE9511696B7E6144C6B9619988Cs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32EBDE9511696B7E6144C6B9619988Cs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibD32EBDE9511696B7E6144C6B9619988Cs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib73460195A3B36CD162C3FD966315ADB0s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib73460195A3B36CD162C3FD966315ADB0s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib74ED5CB75FFA1438C3EA1C58D17CD648s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib74ED5CB75FFA1438C3EA1C58D17CD648s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibA1DFE789D25BD5A704FBAC8B6BC43095s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibA1DFE789D25BD5A704FBAC8B6BC43095s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib665C3EF2D67CDE1B0AE70196A5DDB234s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib774C2EF3993CDBF97A77BA05594D82FAs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib774C2EF3993CDBF97A77BA05594D82FAs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib82436145A30C68EFC0E09231EF3E64E0s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib82436145A30C68EFC0E09231EF3E64E0s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib906F5442F0EDF10D410379B5DBDF440Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib906F5442F0EDF10D410379B5DBDF440Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib906F5442F0EDF10D410379B5DBDF440Fs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib279F495E38F050393F5C2FA6E39C5AE2s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib279F495E38F050393F5C2FA6E39C5AE2s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib279F495E38F050393F5C2FA6E39C5AE2s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib29ECE81C7C29BEDCCE09034E13B43071s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib390C12B9A16B08F5401B296446A3D1CEs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib390C12B9A16B08F5401B296446A3D1CEs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibED5560E7FCDB6C6ED581E060DF96D316s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib39412D4025DDA73A7595FA1CC17B7394s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib39412D4025DDA73A7595FA1CC17B7394s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib22B1E1B65B7FCACD421194225F45D607s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib22B1E1B65B7FCACD421194225F45D607s1


Applied Acoustics 220 (2024) 109949M. Ducceschi, S. Duran, H. Tahvanainen et al.

[42] Tahvanainen H. On the acoustics of the concert kantele. In: Stockholm music acous-
tics conference, Stockholm, Sweden; 2023.

[43] Duran S, Ducceschi M, Tahvanainen H, Ausiello L. Experimentally-tuned synthesis 
of a thin plate. In: Proceedings of the institute of acoustics, Winchester, UK; 2023.

[44] Ewins D. Modal testing: theory, practice and application. John Wiley & Sons; 2009.
[45] Avitabile P. Modal testing: a practitioner’s guide. John Wiley & Sons; 2017.
[46] Rau M. Measurements and analysis of acoustic guitars during various stages of their 

construction. J Acoust Soc Am 2021;149(4 Supplement):A25.
[47] Ausiello L, Yule L, Squicciarini G, Barlow C. Guitar soundboard measurements for 

repeatable acoustic performance manufacturing. In: Reproduced sound. Bristol, UK: 
Institute of Acoustics; 2018.

[48] Ausiello L, Hockey V. Quantitative measurements to enhance performance of acous-
tic musical instruments and improve manufacturing. Acoust Bull 2021;47(2).

[49] Farina A. Advancements in impulse response measurements by sine sweeps. Audio 
engineering society convention, vol. 122. Vienna, Austria: Audio Engineering Soci-
ety; 2007.

[50] Barbato G, Barini E, Genta G, Levi R. Features and performance of some outlier 
detection methods. J Appl Stat 2011;38(10):2133–49.
13

http://refhub.elsevier.com/S0003-682X(24)00100-2/bibFA04A4B1DB6682F0076A74AB481843D8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibFA04A4B1DB6682F0076A74AB481843D8s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib78254E5171BEEF42C0B48ECB4BA54B76s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib78254E5171BEEF42C0B48ECB4BA54B76s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib35CF91C18AEC30E1A8DE05171DC6D87As1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib37762D25CABFA0630313D4702FDA53AEs1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibC39E564AE9E50972C4E07995937AB120s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibC39E564AE9E50972C4E07995937AB120s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9C6125E6FC476055B131832A3DFC6C4Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9C6125E6FC476055B131832A3DFC6C4Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib9C6125E6FC476055B131832A3DFC6C4Es1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib41C803909FE44CDF45879A4590F0A2A4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib41C803909FE44CDF45879A4590F0A2A4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib3BAE3286E7A82F54153932962DFF3A14s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib3BAE3286E7A82F54153932962DFF3A14s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bib3BAE3286E7A82F54153932962DFF3A14s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibFDF018976E8B74DA803B620299F1EDE4s1
http://refhub.elsevier.com/S0003-682X(24)00100-2/bibFDF018976E8B74DA803B620299F1EDE4s1

	A method to estimate the rectangular orthotropic plate elastic constants using least-squares and Chladni patterns
	1 Introduction
	2 Methodology
	2.1 Non-dimensional model
	2.2 Problem formulation

	3 Numerical benchmark tests
	3.1 Linear dependence of the non-dimensional frequencies on p,q
	3.2 Assessment of the method in the case ={C-F-F-F}
	3.2.1 Sensitivity analysis for the case ={C-F-F-F}

	3.3 Assessment of the method in the case ={C-C-C-C}
	3.4 Comparison against classic methods in the fully free case
	3.5 Interpretation of the results in terms of the Moore--Penrose inverse

	4 Experimental setup
	4.1 Tonewood specimen with ={C-F-F-F}
	4.2 Acoustic guitar top board with ={C-C-C-C}

	5 Results and discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


