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ABSTRACT Motion sensors are integrated into all mobile devices, providing useful information for a variety
of purposes. However, these sensor data can be read by any application and website accessed through a
browser, without requiring security permissions. In this paper, we show that information about smartphone
movements can lead to the identification of a Personal Identification Number (PIN) typed by the user.
To reduce the amount of sniffed data, we use an event-driven approach, where motion sensors are sampled
only when a key is pressed. The acquired data are used to train a Machine Learning (ML) algorithm for
the classification of the keystrokes in a supervised manner. We also consider that users insert the same PIN
each time authentication is required, leading to further side-channel information available to the attacker.
Numerical results show the feasibility of PIN cyber-attacks based on motion sensors, with no restrictions on
the PIN length and on the possible digit combinations. For example, 4-digit PINs are correctly recognized
at the first attempt with an accuracy of 37%, and in five attempts with an accuracy of 63%.

INDEX TERMS Cyber security, machine learning (ML), motion sensors, personal identification number
(PIN), smartphone PIN attacks.

I. INTRODUCTION
In recent years, we have observed a massive diffusion of
mobile electronic devices, capable of gathering informa-
tion through built-in sensors such as cameras, microphones,
motion sensors, and satellite positioning systems. This infor-
mation is exploited by applications providing services to the
users, while rigorous security policies are applied to pro-
tect privacy. However, even in modern devices, the motion
data (accelerometer and gyroscope measurements) are not
considered critical information. For example, in Android
OS they are not subject to any kind of protection [1].
This implies that any application installed on the device,
and any web page opened through a browser, is able to
freely access these data. Recent studies showed that the
knowledge about the movements of mobile devices, which
reflect human activities, can lead to possible side-channel
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cyber-attacks [2], [3]. In particular, it has been proved that
the user’s arm movements can be classified from the motion
information captured by wearable devices such as smart-
watches [4], [5], [6], [7]. Furthermore, the activity of smart
bracelets allows inferring which words are typed on a key-
board [8], [9], or which Personal Identification Number
(PIN) is entered at the Automated Teller Machine (ATM)
[10], [11]. Besides, accelerometers and gyroscopes have been
used to reveal the location of finger taps on touch screen
devices [12], [13].

In this work, we focus on smartphones, the most common
category of mobile devices, with the aim to investigate possi-
ble cyber-attacks based on motion sensor data. In particular,
we want to infer which digits are entered in a digital numeric
keypad depending on the smartphone movements captured
by the motion sensors. There are several practical ways for
an attacker to acquire the motion sensors while a PIN is
inserted. The first possibility is given by a malicious applica-
tion that could be installed on the victim’smobile device. This
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FIGURE 1. PIN recognition block diagram.

application could contain a code able to sniff motion sensor
data, even without the victim’s consent. In this case, when a
PIN is inserted on a web browser or on another application,
the malicious software running in the background would be
able to sample the motion sensors. However, on smartphones
running Android 9 or higher, background applications cannot
access sensor events as a security measure [1]. Consequently,
in such devices, this first possibility is no longer viable.
Nevertheless, a second possible solution to sniff motion data
is given by web browsers, as investigated in recent works
[14], [15]. In this case, a malicious or compromised web
page could receive the motion sensor data while the victim is
inserting a PIN on another web page, e.g., a bank website. In
[14], four types of attacks based on malicious web pages and
online advertisements are presented. Furthermore, in [15], the
authors propose a cross-site attack to infer motion-sensor data
by using a malicious web page.

Relying on these previous works on sensor data vulner-
ability, in this study we assume that an attacker has the
possibility to acquire motion sensor data from a victim’s
mobile device. Given the smartphone movements recorded
through these sensors while the victim is typing a PIN, our
objective is to infer the digits composing the PIN. Motion
sensor data are highly user-dependent, and there is no theoret-
ical model able to map this information to the corresponding
pressed digit. So, we approach the PIN recognition task as
a classification problem solved through supervised learning
techniques. In particular, we implement and evaluate four
Machine Learning (ML) algorithms: Random Forest (RF),
Support Vector Machine (SVM), Neural Network (NN), and
k-Nearest Neighbors (KNN). To obtain a realistic estimation
of the prediction accuracy, the algorithms are trained on
samples generated by multiple users with multiple devices
and tested on new unseen examples.

The key novelties of this paper can be summarized as
follows:

• We do not pose restrictions on the PIN length and,
given an N -digits PIN, we assume that all the 10N PIN
configurations are possible, differently from previous
literature.

• We acquire motion information in an event-driven man-
ner: a sample of the considered motion sensors is taken
only when a key is pressed by the user. In this way,
the amount of sniffed data necessary for the attack is
minimized.

• We observe that users insert the same PIN each time
they want to access a particular service. Thus, we pro-
pose to increase the classification accuracy by exploiting
the diversity deriving from multiple observations of the
same typed PIN.

To promote reproducible research, the dataset and simulation
code is available at https://github.com/matteonerini/pin-side-
channel-attacks.
Organization: The rest of the paper is organized as

follows. In Section II, we review the related literature. In Sec-
tion III, we discuss the system model and the data collec-
tion. In Section IV, we briefly describe the ML algorithms
involved. In Section V, we present our PIN side-channel
attack based on motion sensors. In Sections VI and VII,
we report the obtained performance and discuss the key
observations, respectively. Finally, Section VIII contains the
concluding remarks.
Notation: Throughout the paper, capital boldface letters

denote matrices and tensors, while lowercase bold letters
denote vectors. (A)T, ∥A∥2, and [A]i,j denote the transpose,
the ℓ2-norm, and the (i, j)-th element of a matrix A.

II. RELATED WORK
In this section, we review the literature on the role of motion
sensors and behavioral biometrics in smartphone security.
Motion sensors are able to capture behavioral biometrics,
i.e., recurrent patterns typical of each person [16], [17],
[18]. For this reason, some studies proposed authentication
methods completely based on behavioral biometrics, utilizing
wrist-worn devices. In [19], [20], and [21], these devices are
used to collect wrist movements while the user performs a
specific gesture. Thus, the identity of the person wearing
the device is verified from these motion data. In [6] and
[22] , wrist movements are analyzed jointly with mouse and
keystroke activities. The correlation between these activities
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is used to provide Continuous Authentication (CA). CA can
be provided also on the basis of the behavioral traits contained
in the movements recorded by smartphones [23], [24]. Here,
the user is authenticated while performing daily life activities
such as sitting, walking, and running. In [25], CA on smart-
phones is obtained by using app-usage information. However,
authenticationmethods solely based on behavioral biometrics
might be not enough accurate due to the irregular nature of the
movements [26].

Motion sensors and behavioral biometrics have been
also used to make a PIN, or an alphanumeric pass-
word, more robust against cyber-attacks. In some works,
the PIN is entered using touch gestures substituting the
keystrokes, making it more secure against shoulder surfer and
side-channel attacks [27], [28]. In [15], the effectiveness of
side-channel attacks is reduced by adding Gaussian noise to
the motion sensor data. However, this data perturbation also
affects the accuracy of the sensors and their utility. In [29]
and [30], the user is requested to draw the digits of the PIN or
predefined patterns on the touchscreen. In this way, the user’s
drawing traits are used as a further authentication measure,
beyond the secrecy of the PIN. In [31], the PIN strength
is improved by verifying that the smartphone movements
during the PIN insertion are typical of the smartphone owner.
In this way, the PIN security is improved with no further
actions required from the user. Finally, keystroke dynamics
information, describing the person’s typing rhythm, can be
used to enhance the security of alphanumeric passwords [32],
[33], or to provide free-text authentication [34].

The information provided by smartphone sensors has been
also used to compromise smartphone security. In [35], the
sounds produced while typing the PIN have been used to
infer the PIN secret combination. In [36], smartphone speak-
ers have been used to produce ultrasound signals. Then,
the PIN has been inferred based on the echos recorded by
the smartphone microphone. Supervised learning techniques
have been used to identify the PIN from motion data [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46]. However,
three problems can be identified in the related works. First,
the set of possible PINs configurations has been significantly
reduced in other works, with consequent simplification of
the problem. In particular, several works restricted the search
space to a subset of a few tens of possible 4-digits PINs [37],
[38], [39], [40], [41]. To select the most user-chosen PINs,
dedicated studies have been conducted [42]. Second, another
important issue regards motion data acquisition. A common
strategy is to sample the motion sensors with the maximum
allowed sampling frequency, ranging typically from 50 Hz to
100 Hz [37], [40], [43], [44], [45]. This approach produces a
huge amount of data to sniff from the device. Third, in some
works, the generalization capability of the PIN cyber-attack
has not been fully tested. In [43], a subset of the training
set has been used to test the classifier accuracy. As a con-
sequence, the recognition capabilities cannot be generalized
to unseen patterns. In [46], training and testing are carried

out on a dataset built with a single user typing on a single
smartphone model, which is a strong assumption, and hard to
implement in a practical attack.

III. SYSTEM MODEL
In this section, we describe how a real-world dataset has
been constructed and which relevant features deriving from
motion sensor data have been selected. To collect the training
and test data, we developed a smartphone application able to
sample motion sensors when the user enters a digit in a digital
numeric keypad. Note that a web page could be equivalently
used to capture the data through a browser. To capture the
data through a web page, a dedicated website could be built to
sample the sensor data while the user is interactingwith a key-
pad, as investigated in [14] and [15]. Through our application,
when a digit is pressed, sensor data are recorded and labeled
with the respective digit. Since the sensor sampling operation
is triggered only in correspondence with each keystroke, the
amount of sniffed data is significantly low.

A. SENSORS OF INTEREST
Android OS supports three categories of sensors: motion sen-
sors, environmental sensors, and position sensors [1]. For our
purposes, we consider only motion sensors, since their access
is not protected. In Android Studio, their values are provided
according to a coordinate system defined with respect to the
device screen. More precisely, the î axis is horizontal and
points to the right, the ĵ axis is vertical and points upward, the
k̂ axis is perpendicular to the screen of the device (see Fig. 1).
We selected six relevant sensors for the PIN recognition,
which are described below:

• The Accelerometer measures the total acceleration in
m/s2, experienced on the three axes î, ĵ, k̂ .

• The Gravity sensor gives the components of the gravita-
tional acceleration g in m/s2 along each direction î, ĵ, k̂ .

• The Gyroscope measures the angular speed, in rad/s,
around the three device axes î, ĵ, k̂ . The rotation is posi-
tive in the counter-clockwise direction.

• The Linear Acceleration indicates the acceleration expe-
rienced along each device axis î, ĵ, k̂ , without the gravity
contribution.

• The Rotation Vector is composed of three dimensionless
components and it represents the rotations of the device
î, ĵ, k̂ axes with respect to the East, the geomagnetic
North, and the Zenith, respectively.

• The Orientation sensor returns an array of three angles:
azimut, i.e. is the angle between the geomagnetic North
direction and the device ĵ axis; pitch, i.e., is the angle of
rotation around the î axis; and roll, which is the angle of
rotation around the ĵ axis.

Among the 18 total values provided, three of them can be
discarded because not relevant to our scope. In particular,
we did not consider the components of the Rotation Vector
taken with reference to the North and East directions, and we
discarded the azimut value of the Orientation sensor. These
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three features are linked to the geographic direction pointed
by the smartphone, which is independent of the pressed digit.
In addition, we appended a further valueM to the features set
representing the total inclination with respect to the Zenith,
defined as M =

√
pitch2 + roll2. In conclusion, a total

of 16 features have been used to represent the smartphone
movement.

B. DATA COLLECTION
For data acquisition, we developed a smartphone application
able to sample the motion sensors when a user enters a digit
in a numeric keypad. The application, developed with the
Android Studio environment, has been designed to collect
both the training set, to instruct the classification algorithms,
and the test set, to evaluate their classification performance.
The user interface consists of a single screen exhibiting a
numeric keypad, as represented in Fig. 1. The recorded data is
organized by the application into a table stored in a Comma-
Separated Values (CSV) file. When a digit in this keypad is
pressed, the considered motion sensors are recorded together
with the value of the pressed digit, and a row is added to the
CSV file. Finally, each row contains 17 numerical values: one
value representing the pressed digit, and 16 features sampled
by the considered motion sensors.

We recruited 12 volunteer students, expert smartphone
users, who installed the dedicated application on their smart-
phones. All devices were Android, running an updated ver-
sion of the operative system (7 Nougat or higher). Each
student was asked to type a list of 500 digits randomly gen-
erated (50 samples of each digit per student) in the numeric
keypad shown in the application, while naturally holding their
smartphone with one hand. At the end of the typing session,
not all students typed exactly 500 digits, and the resulting
dataset consisted of 5400 digits. The set was randomly split
into training and test subsets. The training set, including 90%
of the dataset, was used to choose the hyper-parameters of
the ML models via 5-fold cross-validation, and for the final
training. The value 5 in the cross-validation has been chosen
such that each training subset of data samples is large enough
to be statistically representative of the whole dataset. The test
set, including the remaining 10% of the data, was considered
to assess the performance of the models. Each set contained
the same percentage of samples of each target class as the
complete dataset.

IV. THE ADOPTED CLASSIFICATION ALGORITHMS
We consider first a single-digit classification problem, and
we extend it to a general N -digits PIN recognition afterward.
The single-digit case is formalized as a classification problem
with 10 classes, solved in a supervised manner [47], [48],
[49]. In this study, we evaluate the performance of four
ML techniques commonly used for supervised classification
tasks. In this section, we briefly recall the algorithms and
the chosen hyper-parameters which have been tuned through
5-fold cross-validation [47].

A. RANDOM FOREST (RF)
A RF is an ensemble technique that fits a certain number
of decision trees, NT, on different sub-samples of the whole
dataset [50]. The sub-samples size is the same as the original
dataset size, where the samples are taken with replacement
using the so-called bootstrapping technique. In this way, the
overfitting is controlled by averaging the decision of every
individual tree [50]. In each decision tree, nodes are split
with respect to the feature that minimizes the Gini impurity,
defined as:

IG =

Nc∑
i=1

pi(1 − pi), (1)

where Nc is the total number of classes and pi the fraction
of items labeled with class i. In our RF implementation,
we found through 5-fold cross-validation that the choice of
NT = 150 trees, gives a suitable compromise between com-
plexity and performance. Furthermore, to smooth the model,
a node is split if it contains at least four samples, and the split
is considered valid if there are at least two samples in each
branch.

B. SUPPORT VECTOR MACHINE (SVM)
A SVM constructs a set of hyper-planes in a multi-
dimensional space that can be used for classification or
regression tasks [47]. Let us consider a training set composed
by No samples xn in the feature space Rs, where s = 16 is the
number of features involved. A label yn ∈ R is associated to
each training example xn. In a binary classification problem,
where yn ∈ {1, −1}, the estimated label ŷn is given by ŷn =

sign
(
wTφ(xn) + b

)
, where φ(·) denotes a fixed feature space

transformation. Thus, the goal of a SVM is to learn w ∈ Rs

and b ∈ R by minimizing the total margin violation
∑No

n=1 ζn
as follows:

min
w,b,ζn

C
No∑
n=1

ζn +
1
2

∥w∥
2
2 (2)

s.t. yn
(
wTφ(xn) + b

)
≥ 1 − ζn, ∀n, (3)

ζn ≥ 0, ∀n, (4)

where ζn is the margin violation for the sample xn. In the
objective function to be minimized, the hyper-parameter C
controls the strength of the regularization term 1

2 ∥w∥
2
2.

This optimization problem can be solved through its dual,
defined as:

min
αn

1
2

No∑
m=1

No∑
n=1

αmαnymynK (xm, xn) −

No∑
n=1

αn (5)

s.t. yTα = 0, (6)

0 ≤ αn ≤ C, ∀n, (7)

where αn are such that w =
∑No

n=1 αnynxn and K (xm, xn) =

φ(xm)Tφ(xn) is the kernel [47], [48]. In our implementation,
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we use a Radial Basis Function kernel defined by [51]:

K (xm, xn) = exp
(
−γ ∥xm − xn∥22

)
, (8)

where xm and xn are two generic dataset points. Furthermore,
γ = 1/16, and C = 3 have been chosen based on 5-fold
cross-validation. Since our problem is a 10-class classifica-
tion, the so-called one-versus-one approach is implemented:
in total, 10(10−1)/2 = 45 binary classifiers are constructed.

C. NEURAL NETWORK (NN)
A feed-forward NN can be employed to set the boundaries
between the classes representing the different digits [48].
In our architecture, all the layers are fully connected, with
activation functions being Rectified Linear Unit (ReLU) for
the hidden layers and softmax for the output layer. The net-
work is trained with all the training set points for a maxi-
mum of NE = 1000 epochs through the Adam stochastic
gradient-based optimizer algorithm, with learning rate λ =

5 × 10−3. The loss function to be minimized is given by
the cross-entropy [48]. Convergence of the optimization is
considered to be reached if the classification accuracy on the
validation set does not decrease by at least 10−4 in 25 con-
secutive epochs. The NN input layer has 16 neurons (as the
number of features), while the output layer has 10 neurons
since there are 10 possible digits (i.e., the classes in our
classification problem). Additionally, two hidden layers have
been used, with 100 and 50 neurons, respectively. To avoid
overfitting, we add an ℓ2 regularization term with strength
10−4 to the loss function.

D. K-NEAREST NEIGHBORS (KNN)
In KNN a set of No pairs {(xn, yn)}

No
n=1 is given as training set,

where xn takes values in the feature space Rs upon which is
defined the metric d(xn, xm). Here, this metric is taken as the
Euclidean distance. When k = 1, given a test point (xm, ym),
the estimate of ym is given by the nearest neighbor training
point with respect to the test point as

ŷm =

{
yl : xl = argmin

xn
d(xn, xm)

}
, (9)

so that xm is assigned to the same class of the nearest point xl .
In general, instead of considering only the closest neighbor,
the nearest k neighbors are taken into account for the clas-
sification, according to the majority rule [52]. In our KNN
algorithm, the 5-fold cross-validation suggested k = 8.

V. PIN SIDE-CHANNEL ATTACK
To recognize an N -digit PIN, we first analyze the classi-
fication of a single digit taking values from 0 to 9. This
is formalized as a multi-class classification problem with
10 classes. Then, we solve N instances of this problem by
feeding the classifier with a new input for each digit that
composes the PIN. In this way, the identification is extended
from a single digit to the whole PIN. To classify a single
digit, we implement and evaluate four ML algorithms: RF,

SVM, NN, and KNN [47]. These ML techniques receive in
input the 16 values obtained from the motion sensors, as dis-
cussed in Section III, and return the predicted class of the
pressed key. For the considered algorithms, we are interested
in the likelihood for all 10 classes, since every authentication
system allows multiple attempts to enter the correct numer-
ical password. To this end, for each classification algorithm
considered, the likelihoods of the output classes have been
defined as follows:

• For each tree of the RF, given a specific input xn,
we define the likelihood of each class as the fraction
of training samples of the class in the leaf where xn is
collocated. Then, these values are averaged over all trees
to obtain the likelihood estimates.

• For each binary SVM constructed, the output score for a
given sample xn is given by the distance between xn and
the separating hyper-plane. Pairwise coupling has been
used to calculate the likelihood estimate for each class,
by combining the 45 binary score values [47].

• In the NN, the likelihood estimates for each class are
given by the values of the softmax activation function
applied to the output layer, when the sample xn is pro-
vided in input.

• In the KNN classifier, given a sample xn, the likelihood
estimate of a class is the fraction of the k neighbors of
xn belonging to that class.

For all these classification algorithms, the final output con-
sists of a list of 10 likelihoods.

Furthermore, a user inserts always the same PIN when
authenticating to access a particular service. Thus, we assume
that several samples corresponding to the same pressed digits
can be sniffed by the attacker, who exploits this diversity
to increase recognition accuracy. Based on this observation,
considering a diversity order D, we feed the classifier fCLF (·)
with D samples {x(1), x(2), . . . , x(D)}, taken from the test
set, corresponding to the same pressed digit y. Then, for
each output class, the obtained estimates {ℓ(1), ℓ(2), . . . , ℓ(D)}

are combined to obtain a more reliable one ℓ, as shown in
Fig. 1. Finally, the first choice is the class with the highest
combined likelihood. Three combining methods have been
implemented and tested, in which the resulting likelihoods
have been designed as:
i) the maximum among the D likelihoods

ℓk = max
{
ℓ
(1)
k , ℓ

(2)
k , . . . , ℓ

(D)
k

}
, k = 1, . . . , 10 ; (10)

ii) the arithmetic mean of the D likelihoods

ℓ =
1
D

D∑
d=1

ℓ(d) ; (11)

iii) the geometric mean of the D likelihoods

ℓ =

(
D∏
d=1

ℓ(d)

)1/D

; (12)

where the product is to be intended as element-wise. For
the sake of comparison, we analyze the performance of all
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FIGURE 2. Confusion matrix, in percentage, of the four classifiers without diversity (D = 1), on the left, and with diversity D = 10, on the right.

the four aforementioned classifiers used as fCLF (·). Thus,
we implement the function fCLF (·) independently with the
four considered classifiers: RF, SVM, NN, and KNN. Exper-
imentally, for the KNN classifier, the best-performing com-
biner has been proved to be the arithmetic mean. For the other
algorithms, we found that the geometric mean leads to a more
accurate recognition. Indeed, the product is able to penalize
the estimates which are close to zero, hence excluding those
digits which are very unlikely in at least one output over
the D available. Thus, in the following, the presented results
have been obtained with these combining techniques. The
simulations have been conducted on Google Colab servers,
running a Central Processing Unit (CPU) Intel Xeon, with a
clock frequency of 2.20 GHz [53]. The considered classifi-
cation algorithms have been implemented in Python through
the library Scikit-learn [54].

VI. NUMERICAL RESULTS
In this section, we measure the performance of our attack in
terms of accuracy (or success rate) A1, and F-score, defined
as follows. We define the accuracy A1 as the proportion of
correct predictions among the total number of tested samples.
Thus, given a multi-class classifier with confusion matrix C,
the accuracy writes as

A1 =

∑C
k=1 [C]k,k∑C

i=1
∑C

j=1 [C]i,j
, (13)

where C is the number of classes. Furthermore, in a multi-
class classification problem, for the k-th class, we denote
as TPk (resp. FPk ) the number of true (resp. false) posi-
tives, i.e., the number of test samples correctly (resp. incor-
rectly) classified as belonging to that class. Similarly, for
the k-th class, we denote as TNk (resp. FNk ) the number of
true (resp. false) negatives, i.e., the number of test samples
correctly (resp. incorrectly) classified as not belonging to

that class. For the k-th class, the F-score Fk is given by the
harmonic mean of precision and recall. Thus, it can be written
as

Fk =
2TPk

2TPk + FPk + FNk
. (14)

Given a confusion matrix C, the F score for the k-th class
(14) can be computed as

Fk =
2 [C]k,k

2 [C]k,k +
∑

i̸=k [C]i,k +
∑

j̸=k [C]k,j
. (15)

Finally, the overall F-score F is computed as the mean over
the 10 possible classes F =

1
10

∑10
k=1 Fk .

A. SINGLE-DIGIT RECOGNITION
We start by analyzing the performance on the test set of the
four considered classification algorithms for the single-digit
classification problem. To obtain robust assessments, inde-
pendent of the split of the dataset into training and test sets,
we repeated our experiments by dividing 20 times the dataset
with different seeds, according to the Monte Carlo method.
Fig. 2 shows the confusion matrices, in percentage, for digit
recognition performed with the RF, SVM, NN, and KNN
classifier. Here, we consider no diversity, on the left, and
diversityD = 10, on the right. In general, the digits which are
more difficult to recognize are ‘‘2’’, ‘‘5’’, and ‘‘8’’. These are
the internal keys in the numeric keypad, and, as expected, are
the most difficult to classify. On the other hand, the digits
occupying corner positions in the keypad are detected with
the highest accuracy.

Within the test set, composed of samples never used during
the training phase, each of the four considered algorithms
correctly classifies the pressed digit with an accuracyA1. This
means that the correct classification of a digit occurs at the
first attempt with a rate A1. In addition, we denote with A2
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FIGURE 3. Accuracy in recognizing the pressed digit at the first and the
second attempt, A1 and A2, for each classifier, and with different diversity
orders D.

the accuracy of the same algorithms when the second most
likely class is chosen as the prediction. Thus, we have that the
correct classification takes place on the second attempt with
a rate A2. In Fig. 3, the accuracies A1 and A2 are reported for
different values of diversity D, while in Fig. 4, the F-score is
reported.

As expected, the accuracy of all four implemented clas-
sifiers increases monotonically with the diversity degree.
Among them, the RF gives the best classification perfor-
mance. When diversity is not considered, the RF recognizes
a digit with a success rate of 33% and 19% at the first
and second attempt, respectively. In the presence of diver-
sity, the accuracy improves significantly. For example, when
D = 10, i.e. the attacker can obtain 10 different samples asso-
ciated with the same inserted digit, the correct recognition
takes place with a probability of 78% and 14% at the first
and second attempt, respectively. Finally, we notice that the
first-attempt accuracy A1 reflects approximately the F-score
of the classifiers for every value of diversity.

B. N-DIGIT PIN RECOGNITION
Now, the identification is extended from a single digit to a PIN
composed ofN digits. In this case, it is not possible to provide
reliable experimental results given the high number of classes
in this multi-class classification problem, i.e., 10N . For this
reason, we use a probabilistic approach assuming that an
N -digit PIN classification is composed of N independent
single-digit classifications. Given a probability confusion
matrix C ∈ R10×10 of a single-digit classifier, its entries are
conditional probabilities defined as

[C]m+1,n+1 = P (n|m) , (16)

where P (n|m) denotes the probability to detect the digit n
given the true digit m. Similarly, the (i, j)-th entry of the

confusion matrix of a N -digit classifier C(N )
∈ R10N×10N is

given by the conditional probability[
C(N )

]
i+1,j+1

= P ((j1, . . . , jN ) | (i1, . . . , iN )) , (17)

FIGURE 4. F -score for each classifier, and with different diversity
orders D.

where in and jn are defined such that i =
∑N

n=1 in10
N−n and

j =
∑N

n=1 jn10
N−n. Assuming that the classifications of the

N digits are independent, (17) can be reformulated as[
C(N )

]
i+1,j+1

=

N∏
n=1

P (jn|in) . (18)

Thus, plugging (16) into (18), we obtain[
C(N )

]
i+1,j+1

=

N∏
n=1

[C]in+1,jn+1 , (19)

providing the expression of the N -digit PIN classification
confusion matrix C(N ) as a function of the single-digit classi-
fication confusion matrix C.
Given the obtained C(N ), an N -digit PIN is correctly

entirely recognized at the first attempt with an accuracy

A(N )
1 =

∑10N
k=1

[
C(N )

]
k,k∑10N

i=1
∑10N

j=1
[
C(N )

]
i,j

, (20)

according to the definition of accuracy. First, the numerator
of (20) can be rewritten as

10N∑
k=1

[
C(N )

]
k,k

=

10N∑
k=1

N∏
n=1

[C]kn,kn (21)

=

10∑
k1=1

· · ·

10∑
kN=1

N∏
n=1

[C]kn,kn (22)

=

10∑
k1=1

[C]k1,k1 · · ·

10∑
kN=1

[C]kN ,kN (23)

=

(
10∑
k=1

[C]k,k

)N
, (24)

by applying (19). Since A1 =
∑10

k=1 [C]k,k /10, we have

10N∑
k=1

[
C(N )

]
k,k

= (10A1)N . (25)
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FIGURE 5. N-digit PIN recognition accuracy, where N ∈ {3, 4, 6}, using the
RF classifier, with different diversity orders D.

Second, according to (17), the denominator of (20) is given
by

10N∑
i=1

10N∑
j=1

[
C(N )

]
i,j

= 10N . (26)

Thus, plugging (25) and (26) into (20), we obtain

A(N )
1 = A1N . (27)

The intuition behind (27) is that an N -digit PIN is cor-
rectly identified at the first attempt when all the N digits are
correctly identified. In addition, there are N combinations
in which the i-th position is occupied by the key recognized
at the second attempt, with i ∈ {1, 2, . . . ,N }, while the
N − 1 remaining digits are immediately correctly identified
at the first attempt. The probability A(N )

2:N+1 that the PIN under
attack is in the set of these N is:

A(N )
2:N+1 = NA1N−1A2. (28)

Finally, by adding (27) and (28), we obtain the probability
A(N )
1:N+1 to identify an N -digit PIN within N + 1 attempts:

A(N )
1:N+1 = A(N )

1 + A(N )
2:N+1 = A1N + NA1N−1A2. (29)

Such accuracies are plotted in Fig. 5 for three different PIN
lengths: N = 3, N = 4, and N = 6. We selected these values
since N = 3 is the length of the Card Verification Value
(CVV), a code commonly used to perform online payments,
while N = 4 and N = 6 are the most popular PIN lengths.
In Fig. 5, the solid colored bars represent the accuracy with
which the PIN is correctly identified at the first attempt,
while the faded colors depict the accuracies A(N )

2:N+1. Thus, the
total height of the bars indicates the accuracy with which an
N -digit PIN is recognized in N + 1 trials. In particular, pro-
vided thatD = 10 different observations of the PIN have been
acquired by the attacker, a 3-digit PIN is identified in four
attempts with accuracy 72%, a 4-digit PIN is identified in five
attempts with accuracy 63%, and a 6-digit PIN is identified
in seven attempts with accuracy 47%. If at most five attempts
are allowed to insert the PIN, the accuracy is 74% and 38% for

FIGURE 6. N-digit PIN recognition F -score, where N ∈ {3, 4}, using the RF
classifier, with different diversity orders D.

3-digit and 6-digit PIN, respectively. With respect to previous
literature, each digit is here correctly recognized at the first
attempt on average with an accuracy of 78%, to be compared
with accuracy 70% in [46] and [55]. Moreover, the proposed
event-driven attack requires significantly less sniffed data,
as analyzed in Section VII.

Finally, we assess the N -digit PIN recognition in terms
of F-score. Given an N -digit PIN classifier with confusion
matrix C(N ), the F score for the k-th class (14) can be com-
puted as

F (N )
k =

2
[
C(N )

]
k,k

2
[
C(N )

]
k,k +

∑
i̸=k

[
C(N )

]
i,k +

∑
j̸=k

[
C(N )

]
k,j

.

(30)

Besides, the overall F-score F (N ) is computed as the mean
over the 10N possible classes F (N )

=
1

10N
∑10N

k=1 F
(N )
k . This

F-score is reported in Fig. 6 for two different PIN lengths:
N = 3 and N = 4. We observe that the F-score is similar
to the accuracy A(N )

1 shown in Fig. 5, as in the single-digit
recognition problem.

VII. DISCUSSION
In the case of the NN classifier, a common problem affecting
the classification performance on the test set is overfitting.
When overfitting occurs, the classifier has high accuracy on
the training set by low accuracy on unseen samples. To verify
that our NN is not overfitting, we report the observed learning
curves in Fig. 7. Here, the training loss is the cross-entropy
loss on the training set, while the validation accuracy is the
accuracy on the validation set over iterations. The curves have
been averaged over 20 training runs initialized with random
values. Aswe can observe from the validation accuracy curve,
overfitting is successfully avoided thanks to two properties
of our NN. First, we add an ℓ2 regularization term to the
loss function. Second, we implement the so-called ‘‘early-
stopping’’ technique to interrupt the training process as soon
as the classification accuracy stops improving over iterations.
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FIGURE 7. Learning curves of the NN classifier.

FIGURE 8. Feature importance on the single-digit classification task using
the RF, together with the 95% confidence interval.

In our experiments, all the relevant motion sensors avail-
able in Android smartphones have been considered. To under-
stand the contribution of each sensor in the construction of
the RF, i.e., the best-performing classifier, we introduce the
so-called feature importance. For any feature, this metric
is the increase in the classification error when the values
of that feature are randomly permuted over the out-of-bag
observations, i.e., the samples ignored during the construction
of each tree. The feature importance is evaluated for every
tree, then averaged over the entire forest and divided by the
standard deviation over the ensemble. The importance of the
16 features described in Section III-A is reported in Fig. 8.
Here, the values are averaged over 20 RF instances, initialized
with different seeds. In these different instances, we do not
observe large variations, as we can see from the narrow confi-
dence intervals. Since each bar in the chart is strictly positive,
we can conclude that all the sensors considered are informa-
tive, even if some components significantly contributed more
than others. The Rotation Vector component, which accounts
for the rotation of the device k̂ axis with respect to the Zenith
direction, resulted to be the most important feature, followed
by the acceleration along the î and ĵ axes.
In the related literature, the motion sensors are sampled

with the maximum allowed sampling frequency fs, ranging
typically from 50 Hz to 100 Hz, as in [37], [40], [43], [44],

TABLE 1. Reduction factor for different sampling frequencies fs and DPS
values.

and [45]. Conversely, in our method, the sensors are sampled
only in correspondence with a keystroke. Thus, the sam-
pling frequency is given by the digits per second (DPS) the
user inserts. Experimentally, we notice that the DPS ranges
approximately from 1 Hz (when the PIN digits are inserted
very slowly) to 5 Hz (when the PIN digits are inserted very
quickly). We present the reduction in sniffed data compared
with the literature in Tab. 1. From Tab. 1, we notice that
the maximum reduction is obtained when the user inserts
1 digit per second. Compared with a sampling frequency
fs = 100 Hz, we sniff 100 times fewer data. Conversely, the
minimum reduction is experienced when the user inserts
5 digits per second. In this case, compared with a sampling
frequency fs = 50 Hz, we sniff 10 times fewer data. In con-
clusion, our method requires 10 to 100 times less sniffed data
compared to the related literature.

VIII. CONCLUSION
In this study, we have shown the feasibility of inferring
numerical passwords inserted on smartphones just by read-
ing motion sensor data, which are freely accessible. To this
end, we proposed a ML-based approach able to learn a
mapping between smartphone movements and the pressed
digits. We minimized the amount of needed data with an
event-driven sampling of the considered sensors. Assuming
a smartphone user inserts the PIN with a rate of 2 digits per
second, our method requires 50 times less sniffed data than
related studies employing a sampling frequency of 100 Hz.
In addition, we considered a diversity-based method to sig-
nificantly improve recognition performance. Our approach,
trained and validated with different smartphone models and
with several users, requires significantly less sniffed data with
respect to previous methods, achieving better accuracy at the
same time. 3-digit PINs are correctly recognized at most four
attempts with an accuracy higher than 70%. To prevent such
side-channel attacks, security restrictions should be imple-
mented also for data apparently not sensitive.

We identify two different future research directions. First,
possible attacks based on smartphone motion sensors should
be investigated also for other authentication methods. For
instance, several authentication methods require the user to
draw patterns on the touch screen. These patterns could be
identified by an attacker accessing smartphone movements.
Second, techniques to counteract such motion sensors-based
attacks should be developed. To this end, a possible strategy
involves the use of behavioral biometrics to strengthen the
security of authentication methods such as PINs or patterns.
To effectively process behavioral biometrics, data-driven
techniques such as ML could be employed.
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