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ABSTRACT
In this experimental investigation, we explore the propagation characteristics of surface Rayleigh waves in a Locally Resonant Metamaterial
(LRM) layer positioned on an elastic half-space. The study focuses on characterizing the dispersion and attenuation properties of these waves
and validating analytical and numerical models of the LRM. For practical purposes, we utilize a thin-plate sample and construct the LRM
layer, featuring multiple rows of sub-wavelength resonators, by machining the resonators at one edge of the plate. Employing a piezoelectric
transducer coupled to the plate and a laser vibrometer, we actuate and receive the surface-like waves propagating at the plate edge. Two
resonant layer configurations, comprising 3 and 5 rows of resonators, corresponding to heights of ∼0.6λh and λh, where λh represents the
reference wavelength of Rayleigh waves, are examined. The experimental observations reveal the hybridization of the fundamental surface
mode at the resonant frequency of the embedded resonators, leading to the creation of a low-frequency bandgap. This bandgap, attributed
to the local resonance mechanism, exhibits a remarkable attenuation of surface wave amplitudes. To support our experimental findings, we
conduct both analytical and numerical studies. These analyses demonstrate the confinement of the lowest-order surface mode within the
frequency ranges proximate to the resonators’ resonance. The insights gained from this experimental study contribute to the advancement of
strategies for mitigating surface waves through the application of resonant metamaterials and metastructures.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171532

I. INTRODUCTION

Locally resonant metamaterials (LRMs) are artificial compos-
ite materials with extraordinary mechanical properties, such as zero
or negative mass density1,2 and negative bulk modulus,3 which are
induced by the material-specific microstructure. These unique char-
acteristics have made LRMs a popular research topic over the past
two decades and opened up the possibilities of using them for dif-
ferent engineering applications. LRMs are typically constructed by
encasing resonant elements in a host medium.1 The distributed local
resonances create a narrow stop-band frequency region close to the

resonant frequency of the resonators.4 Within this specific frequency
range, the propagation of waves is impeded, allowing LRMs to be
used in a variety of applications where the attenuation of elastic
waves is needed.

More recently, LRMs have been used to control the prop-
agation of surface waves (SWs) traveling along the surface of a
waveguide, such as the ground surface or the surface boundary of
a solid material.5,6 If their resonant frequency is tuned to match the
frequency of incoming surface waves, they can be used as efficient
surface wave filters.7,8 Hence, LRMs have found multiple appli-
cations in the context of seismic surface wave mitigation6,7,9 and
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railway-induced vibration abatement systems.10,11 Other applica-
tions for surface wave manipulation include wave guiding12 and
wave focusing.13,14

So far, most of the previous studies on the interaction of sur-
face waves and LRMs have primarily focused on locally resonant
metasurfaces. Such structured materials are generally composed of
resonant units placed atop an elastic medium in a desired periodic
or aperiodic pattern to form a thin (e.g., strongly sub-wavelength)
resonant boundary.7,8,15,16 For this reason, resonant metasurfaces are
typically modeled as boundary conditions acting at the surface of the
elastic waveguide.5,7,8,17–20 During recent years, such resonant meta-
surfaces have found various applications in the design of surface
wave barriers,7 topological insulators,21 and energy harvesters,22–24

just to name a few.
Although the metasurface boundary-condition models are use-

ful in certain applications, they are not able to correctly capture the
interaction between surface waves and resonant structures with a
depth comparable to the propagating wavelength, as in the case of
mitigation systems for ground-borne vibrations. For such scenar-
ios, a few numerical and experimental studies have been proposed.25

For instance, an experimental investigation was recently performed
by Zaccherini et al.26 to study the dynamics of a metabarrier with
multi-layer sub-wavelength resonators attached to a heterogeneous
granular medium. Notably, in such a medium, multiple surface
modes exist, the so-called guided surface acoustic modes, which can
couple with the added metabarrier.

In parallel, we recently proposed an analytical formulation
based on a homogenization technique27 to investigate the dynamics
of a multi-layer resonant barrier embedded within a homogeneous
medium. In such a medium, only a fundamental surface mode,
e.g., the Rayleigh wave, propagates and couples with the collective
motion of the barrier. The proposed approach treats the reso-
nant layer (RL) as an equivalent homogeneous layer with effective
mechanical parameters. The equivalent layer is used to derive a
closed-form dispersion law suitable to investigate deep barriers in
the long-wavelength regime.

The objective of this work is to complement our previous ana-
lytical study by providing an experimental investigation of Rayleigh
waves propagating in a layer of LRMs overlaying an elastic half-space
(HS). To achieve this, we design and realize a resonant metamaterial
layer composed of resonant unit cells arranged periodically within a
hosting thin-plate. The use of thin plates as experimental platforms
to explore the dynamics of surface waves in half-space media is justi-
fied by the similarity between Rayleigh waves and extensional waves
propagating along the edge of a thin plate.28,29 By using the laser
Doppler vibrometry technique, we measure the wavefield of surface
waves propagating along the resonant layer and characterize its dis-
persive features. To analyze the resonant frequency of the unit cell
and calculate the effective parameters of the homogenized layer, we
develop numerical finite element (FE) models. Finally, we compare
the experimental results with those predicted by the analytical for-
mulation and numerical models. This comparative analysis enables
us to assess the accuracy and validity of the proposed dispersion
formulation.

The remainder of the paper is structured as follows: Sec. II
describes the problem of interest and the related experimental test
setup; Sec. III presents the experimental results; and Sec. IV discusses
the numerical and analytical models used to interpret the experi-

FIG. 1. Schematics of (a) a homogeneous and isotropic plate equipped with a res-
onant layer containing an array of resonators, (b) a unit cell, and (c) an equivalent
homogenized layer with effective elastic parameters.

TABLE I. Material properties of the model parameters.

Parameter Unit PVC Steel

Mass density (ρ) kg/m3 ρh = 1470 ρr = 7850
Elastic modulus (E) GPa Eh = 4.15 Er = 210
Poisson’s ratio (ν) ⋅ ⋅ ⋅ νh = 0.4 νr = 0.3

mental findings. Finally, Sec. V concludes the paper and explores
potential future applications of the LRMs to control the propagation
of surface waves.

II. EXPERIMENTAL SETUP
We analyze the propagation of vertically polarized surface

waves in a resonant layer consisting of multiple strata of embed-
ded resonators coupled to an elastic half-space. For this purpose,
we utilize a plate made of Polyvinyl chloride (PVC) material hav-
ing dimensions of H × L × t, 1 × 1 × 0.01 m3, as the host medium.
Within the plate, we manufacture a resonant layer with a total height
of HRL, composed of a periodic arrangement of square unit cells with
a spacing of a = 0.035 m, as depicted in Fig. 1(a). Each unit cell, as
illustrated in Fig. 1(b), contains an internal resonator that is realized
by a cubic steel mass with dimensions ar = 0.01 m and an external
casing attached to the host material through four elastic connectors;
each connector measures 0.003 × 0.002 × 0.002 m3. Each cell was
directly manufactured in the hosting plate by perforating the plate
using a Computer Numerical Control (CNC) machine. The holes
created through the perforation process are then used for the real-
ization of resonators by press-fitting the steel cubes inside the plate.
The mechanical properties of the considered PVC and steel materials
are provided in Table I.

We investigate the dynamics of elastic surface waves polarized
in the x–z plane and propagating along the x-direction. Notably, the
dispersive law of such edge waves is identical to the one of Rayleigh
waves in a half-space, provided that the plate dilatational velocity
cL,h = [Eh/ρh(1 − ν2

h)]1/2 is used to replace the bulk dilatational wave
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velocity of the medium. Here, Eh is Young’s modulus, ρh is the den-
sity, and νh is the Poisson’s ratio of the PVC material. Given these
premises, we designed the experimental setup shown in Fig. 2(a)
to characterize the dispersive properties of such surface waves. In
particular, we consider three plates, namely (i) a pristine PVC plate
(without LRMs) as a reference case, (ii) a plate configuration with
three rows of resonators, and another case (iii) with five rows of
resonators, as shown in Fig. 2(b). The depths of the resonant lay-
ers in cases (ii) and (iii) are approximately HRL ≈ 0.6λh = 0.105 m
and HRL ≈ λh = 0.175 m, respectively. Here, λh is the wavelength of
the Rayleigh wave at the resonant frequency of the resonators, cal-
culated as λh = cR,h/ fr ≈ 0.17 m, where cR,h = 929 m/s is the Rayleigh
wave velocity in the PVC material. The resonant frequency of the
resonators is obtained numerically as fr = 5274 Hz (see Sec. IV A for
details).

We position the PVC plate horizontally on an isolated IG Series
breadboard table to mitigate any unwanted mechanical vibrations
during the measurements. To actuate the surface waves, we utilize
a Physik Instrumente P-141.03 piezoelectric transducer (PZT) with
dimensions of 0.01 × 0.01 × 0.0055 m3 and a resonant frequency
of 210 kHz, glued to the side surface of the plates. To achieve
mechanical excitation in a relatively wide frequency range of inter-
est, a short rectangular pulse of 50 μs duration and an amplitude of
2 V is used.

We note that despite the symmetry inherent in the designed
setup, both in terms of excitation and plate sample, which is
intended to ensure the decoupling of the in-plane and out-of-plane
responses, slight manufacturing discrepancies in the resonators may
result in minor coupling. Still, the behavior of the system is well
captured by assuming fully decoupled in-plane motion. Therefore,
we study the behavior of the LRM layer by measuring the uz
response at several points placed along the x-axis of the plate edge

using an Optomet Scanning Laser Doppler Vibrometer (SLDV). The
SLDV features an integrated digital signal generator used to actuate
the piezoelectric transducer. The generated signal is pre-amplified
through a TEGAM 2350 High Voltage Amplifier (hereinafter “signal
amplifier”), which provides an output signal amplitude of 200 V. A
Tektronix DPO3014 oscilloscope is used in parallel to monitor the
input signal. The SLDV is configured with a measurement range of
490 nm, a sampling frequency of 50 kHz, and an average of over
ten acquisitions. We utilize a scanning line along the edge of the
plates, with a length of Lout ≈ 4λh = 0.8 m from the sensor, to mea-
sure at least four wavelengths of the propagating surface waves at
resonance. The scanning step is set to 0.005 m to have sufficient
spatial resolution for the calculation of the experimental dispersion
relations. Similar setups have been used to investigate the interaction
of surface waves with arrays of vertical7,18 or horizontal30 surface
resonators.

III. DISPERSION ANALYSIS: EXPERIMENTS VS
ANALYTICAL RESULTS

Figure 3(a) shows the seismogram generated by the rectangular
input pulse propagating as surface waves at the edge of the pris-
tine PVC plate. This seismogram is obtained from the data collected
along the acquisition line, indicated as a yellow line in Fig. 2(b). A
wavetrain containing a packet of surface waves (SWs) dominates
the seismogram. In addition, the back-reflection of the propagat-
ing surface waves from the edge of the plate is also visible. We
perform a two-dimensional discrete Fourier transform (DFT) on
the time waveforms to obtain the dispersion relation (frequency-
wavenumber spectrum), as depicted in Fig. 3(d). The spectra of the
fundamental surface mode align with the analytical (solid green line)
and numerical (green dots) predictions (details are given in Sec. IV).

FIG. 2. Experimental characterization of surface waves interacting with thick LRMs. (a) Schematic of the experimental test setup, including a laser Doppler vibrometer and
a one-axis piezoelectric actuator; and (b) pristine PVC plate or metamaterial plate with three and five rows of resonators. The inset shows the unit cell with an internal steel
mass.
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FIG. 3. Top: seismograms of a rectangular pulse propagating in the (a) pristine PVC plate (b) and through a three-layer and (c) a five-layer LRM. Bottom: experimental (dark
spots), analytical (green line), and numerical (green dots) dispersion curves of surface mode propagating in the (d) pristine PVC plate and interacting with (e) a three-layer
and (f) a five-layer LRM. The gray regions highlight the bandgap zones, and the red and blue dashed lines represent the shear wave speed of the host material (cT ,h) and
the resonant frequency ( fr) of embedded resonators, respectively.

Figure 3(b) illustrates the seismogram generated by an identical
pulse propagating in a resonant layer with three rows of resonators
embedded below the medium surface, obtained from the same data
acquisition line. The two dashed yellow vertical lines indicate the
positions of the first and last resonators, respectively. We observe the
propagation of new, slower direct, and reflected wavetrains resulting
from surface wave scattering by the vertical motion of resonators.
We also observe the back-reflection of the pulse when it impinges
the first column of resonators.

The corresponding dispersion relation, presented in Fig. 3(e),
highlights the existence of two strongly dispersive branches that
stem from the interaction between the vertical motion of resonators
and the surface wave. The lower branch corresponds to a flat hybrid
mode associated, where resonators and host medium move in-phase.
This mode asymptotically converges to the resonant frequency of
the embedded resonators ( fr , depicted by the dashed blue line).
Conversely, the upper branch represents a surface mode where res-
onators move out-of-phase with respect to the host medium. We
use two bandpass filters, one from 0.5 to 5 kHz and the other from
5 to 10 kHz, to better visualize the frequency content of both surface
modes. In addition to these surface modes, we observe bulk modes
within the sound cone area, the triangular region separated by the

shear velocity of the host medium (cT,h, dashed red line), where only
bulk modes exist.

The existence of the hybridized surface modes well matches
the related analytical and numerical predictions. In specific, the
upper branch of the hybridized surface modes transforms into a
leaky surface mode when its apparent phase velocity falls below the
shear velocity of the host material (c < cT,h). In this scenario, the
mode disperses a portion of its elastic wave energy into the bulk
medium [refer to Fig. S5(d) in the supplementary material]. Conse-
quently, the complete surface-to-shear wave conversion phenomena
observed in the case of resonant metasurfaces6,7 do not occur for the
resonant layers.27

The hybridization mechanism yields a low-frequency bandgap
in the frequency interval of fBG,SW = [5274–7017] Hz. In this
bandgap region, the surface wave amplitude significantly decreases.
The lower edge of the bandgap corresponds to the resonant fre-
quency of the resonators, while the upper edge is determined by
the intersection between the out-of-phase branch and the shear wave
velocity of the host material.

Similar results are obtained for the case of five rows of embed-
ded resonators. The seismogram for this configuration is shown in
Fig. 3(c), and the corresponding dispersion relation is presented in
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FIG. 4. Surface wave attenuation within the bandgap frequency range. The ℱ
represents the mean DFT of the vertical nodal displacement (uz). Experimental
values are normalized relative to the maximum of each case study. The dots in
the figure represent the experimental data, while the continuous lines illustrate the
results of exponential fittings.

Fig. 3(f). When introducing two additional rows of resonators, no
significant differences are found in the frequency-wavenumber spec-
trum compared to the configuration with three rows of resonators;
however, the bandgap region slightly increases ( fBG = [5274–7028]
Hz).

We further explore the surface wave attenuation capability of
the layered LRMs within the bandgap by estimating the imaginary
part of the wavenumber, denoted as ki. This parameter quantifies
the exponential decay of surface wave amplitude in the bandgap
region as it propagates along the surface of the resonant layers. For
this purpose, signal time traces uz(x), recorded along the acquisi-
tion line, are truncated to remove back-reflections. Then, the mean
values of their frequency spectra ℱ(uz(x)) are computed within the
bandgap frequency range. Such mean spectra along the acquisition
line x, normalized by their maximum value, are presented in log-
scale in Fig. 4. The acquisition is performed between x = 0.2 m and
x = 0.8 m to minimize the near-field effects of the source. The figure
compares results for the pristine plate and LRMs with three rows
and five rows of resonators, marked with black, blue, and red dots,
respectively.

We then perform an exponential fit of the form ℱ(uz(x))
= AFek̄ ix to the experimental data. The fitted results are superim-
posed on Fig. 4 and represented by solid lines. The coefficients of the
exponential provide an estimate of the mean value of the imaginary
part of the wavenumber k̄i within the bandgap region. The estimated
values are k̄i = −0.7560, k̄i = −3.3599, and k̄i = −4.3860 for the pris-
tine plate LRMs with three and five rows of resonators, respectively.
These values highlight a substantial surface wave attenuation within
the bandgap frequency range for the LRMs layer. Interestingly, the
surface wave attenuation level is more pronounced when increasing
the height of the resonant layer from 3 to 5 rows of resonators.

IV. NUMERICAL AND ANALYTICAL MODELS
This section describes, in brief, the analytical and numerical

models used to validate the experimental findings of this study.

A. Analytical dispersion Law
The dynamic interaction between the layered LRMs and surface

waves in the long-wavelength regime can be adequately described
through the formulation presented in Ref. 27, where a homogeniza-
tion approach is used to estimate an equivalent continuum of the
LRM. This approach aims at defining the properties of an equiva-
lent homogeneous material [see Fig. 1(c)] with frequency-dependent
mass density, longitudinal, and shear wave velocities, capable of
approximating the dynamic response of the resonant layer in the
low-frequency range of interest.

The effective mass density of the unit cell can be calculated
by employing a simplified mass-in-mass model of the resonator
and host medium.2 This model results in a scalar and frequency-
dependent mass density of ρeff ( f ) = ρst + ρr f 2/( f 2

r − f 2), where
f is the frequency, ρst = ρr + ρh is the static density of the unit
cell obtained at zero frequency, and ρr is the mass density of the
resonator [see Fig. S3(a) in the supplementary material].

Following the approach in Ref. 27 to calculate the effective lon-
gitudinal (Meff ) and shear modulus (μeff ) of the LRMs, we develop
a 3D finite element model of the unit cell in Comsol Multiphysics.31

Tetrahedral mesh elements are employed to discretize the model,
with a maximum mesh size of a/30 = 0.001 m for the connectors and
a/10 = 0.003 m for the rest of the domain. Under a constrained uni-
axial strain state [see Fig. 5(a)], we applied a unitary lateral pressure
load on the lateral edges of the unit cell. Through this configura-
tion, we calculate the average stress σxx = ∫V σxxdV/V and strain
components εxx = ∫V εxxdV/V within the reference host volume
(V) to estimate the effective longitudinal modulus Meff = σxx/εxx
= 3.13 GPa. Similarly, to compute the effective shear modulus, we
impose a unitary horizontal displacement at the top surface of the
unit cell and impose continuity conditions along the unit cell lat-
eral boundaries. We then restrain the displacement of the bottom
boundary along the horizontal direction [see Fig. 5(b)] and calculate
shear stress and strain components. Consequently, we estimate the
effective shear modulus μeff = σxz/γxz = 0.47, where σxz = ∫a σxzda
× t/(at) and γxz = Δu/a.

After obtaining the effective moduli, the effective longi-
tudinal and shear wave speeds can be achieved as cL,ef f ( f )
= (Meff /ρeff ( f ))(1/2) and cT,ef f ( f ) = (μeff /ρeff ( f ))(1/2), respec-
tively [see Figs. S3(b) and S3(c) in the supplementary material].

We employ the same numerical model to calculate the res-
onance of the cell by fixing the displacements of the top, bot-
tom, and lateral edges in all directions, as depicted in Fig. 5(c).
Due to the symmetry of the unit cell, the vertical and hor-
izontal resonant frequencies are identical and equal to fv = fh
= fr = 5274 Hz.

Equipped with the frequency-dependent effective parameters
of the homogenized resonant layer, one can derive the dispersion
law for the surface wave propagating through an equivalent homog-
enized layer attached to a non-resonant half-space following the
derivations presented in Ref. 27. The dispersion law is presented
in matrix form in Eq. (A4) of the Appendix. The dispersion equa-
tion can be expressed concisely as D(k, f )A = 0, where A represents
the amplitude vector and D(k, f ) is a matrix from which its specific
components are derived in Eq. (A5). In order to obtain the dis-
persion relation for the fundamental surface mode in our dynamic
system, we set the determinant of D(k, f ) to zero and search for
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FIG. 5. Schematics of the FE model used to calculate (a) longitudinal modulus (Meff), (b) shear modulus (μeff), and (c) resonant frequency ( fr) of the LRM.

its non-trivial numerical roots using the Newton–Raphson numer-
ical root-finding scheme. The analytical dispersion relations, indi-
cated by solid green lines in Figs. 3(d)–3(f), perfectly matched the
experimental findings, including both repelling branches of the
fundamental surface mode.

B. Numerical verification of dispersion relations
To further validate the experimental and analytical findings

of this study and to compute the numerical dispersion curves, we
exploit the Wave Finite Element Method (WFEM)32 to develop
numerical models in Comsol Multiphysics.31 The efficiency of this
approach has been validated through our previous studies.9,26,27,30,33

The numerical eigensolutions are superimposed as green dots on the
dispersion relations of Figs. 3(d)–3(f), where they encompass a com-
bination of several surface and bulk modes. We use a surface mode
selection criterion to distinguish surface modes from bulk ones as
follows:27

Cr = ∫
H

0 ∣uz ∣z dz

∫ H
0 ∣uz ∣ dz

< 0.9λh, (1)

where uz is the displacement field along the z axis. The numerical
solutions match both the analytical dispersion law and the experi-
mentally reconstructed dispersive modes for all the examined cases.
In addition, the numerical dispersion analysis predicts a few extra
flat modes above the resonance and within the LRMs’ bandgap
frequency range. Further numerical investigations of the full plate
model are conducted to reveal the nature of these modes (details
are given in Sec. S4 of the supplementary material). The dispersive

analysis conducted on the unit cell reveals that such modes are asso-
ciated with a rotational motion of the embedded resonators, which
is neglected in the analytical model. In addition, harmonic numer-
ical analysis aimed at replicating a forced scenario from the PZT
source tuned at the propagation frequency of such localized modes
(e.g., 5820 Hz) confirms that such modes are not excited by the in-
plane motion generated by the source, further confirming the results
obtained via the experimental analysis.

V. CONCLUSIONS
We experimentally investigated the dispersive properties of

in-plane surface waves propagating in a resonant layer made of
embedded resonators overlaying a homogeneous half-space. For this
purpose, we designed and manufactured a tabletop setup consist-
ing of a PVC plate embedding a multi-layered array of resonators.
The dispersion curves were reconstructed by measuring edge waves
along the plate using the laser Doppler vibrometry technique.

The experimentally reconstructed dispersion curves revealed
the hybridization of the Rayleigh mode with the collective resonant
motion of the resonators. Such coupling yielded the propagation of
two distinct surface modes, e.g., an in-phase and an out-of-phase
branch, which repel each other and lead to the formation of a reso-
nant bandgap. To quantify the surface wave attenuation within the
bandgap, we estimated an average imaginary wavenumber within
the bandgap frequency region. This analysis revealed that the deeper
resonant layer, realized with five rows of resonators, exhibited a
larger attenuation compared to the thinner one, composed of three
rows of resonators.
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We further interpreted such experimental findings by com-
parison with the predictions obtained via a recently developed
homogenized (analytical) model and an FE model of the setup.
The match between analytical, numerical, and experimental predic-
tions confirmed the possibility of modeling the LRM via simplified
homogenized models.

Overall, our findings enhance understanding of Rayleigh wave
propagation along resonant media and contribute to the devel-
opment of modeling strategies for the design of deep resonant
wave barriers, such as barriers for railway or traffic-induced
vibrations.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed descriptions of
experimental data acquisition, signal processing, numerical simula-
tions, and effective parameters (including mass density, longitudi-
nal, and shear bulk wave speeds) of the homogenized LRM.
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APPENDIX: ANALYTICAL DISPERSION RELATION
OF A THICK RESONANT LAYER ATTACHED
TO A NON-RESONANT HALF-SPACE

The analytical dispersion law of surface waves propagating in
a thick LRM coupled to a homogeneous semi-infinite medium can
be obtained by exploiting the dilatation and distortional poten-
tial functions that satisfy the wave equations in the resonant layer
(RL) and the half-space (HS) after imposing the following boundary
conditions:

σzx,RL = 0, σzz,RL = 0 for z = 0, (A1)
uRL = uHS, wRL = wHS for z = HRL, (A2)

σzx,RL = σzx,HS, σzz,RL = σzz,HS for z = HRL, (A3)

namely, zero stress components at the free surface of the resonant
layer, Eq. (A1), and continuity of displacements and stresses at the
interface between the resonant layer and the half-space, Eqs. (A2)
and (A3), respectively. In these equations, σzx and σzz represent the
horizontal and vertical stress components, while u and w corre-
spond to the vertical and horizontal displacement components. By
implementing these dependent boundary conditions, we can reduce
the dispersion relation into four independent equations written in
matrix form as

D(k, f )A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3

A4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

The components of the matrix D(k, f ) are the following:

D11 = i(cos P − δ1

γ1
cos Q),

D12 = −
δ1

r1γ1
sin P − s1 sin Q,

D13 = −i,

D14 = s2
∗,

D21 = r1 sin P + δ1

s1γ1
sin Q,

D22 = i(−δ1

γ1
cos P + cos Q),

D23 = −r2
∗,

D24 = −i,

D31 = iρeff(r1γ1 sin P + δ1
2

s1γ1
sin Q),

D32 = ρeffδ1(cos P − cos Q),
D33 = −iρhγ2r2

∗,
D34 = ρhδ2,

D41 = ρeffδ1(cos P − cos Q),

D42 = iρeff(
δ1

2

r1γ1
sin P + s1γ1 sin Q),

D43 = −ρhδ2,

D44 = −iρhγ2s2
∗,

(A5)
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with the following parameters:

P = kr1HRL,
Q = ks1HRL,

γ1 = 2(kcT,ef f

2π f
)

2

,

δ1 = γ1 − 1,

γ2 = 2(kcT,h

2π f
)

2

,

δ2 = γ2 − 1,

r1 =

¿
ÁÁÀ( 2π f

kcL,ef f
)

2

− 1,

s1 =

¿
ÁÁÀ( 2π f

kcT,ef f
)

2

− 1,

r2 =

¿
ÁÁÀ( 2π f

kcL,h
)

2

− 1,

s2 =

¿
ÁÁÀ( 2π f

kcT,h
)

2

− 1,

r∗2 = r2/i,
s∗2 = s2/i.

(A6)
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