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Abstract
Regional reanalyses allow us to better describe weather patterns related to
rapidly evolving high-impact events thanks to substantially finer detailing
than global datasets. However, most regional datasets still do not permit the
explicit representation of deep convection. SPHERA (High rEsolution ReAnal-
ysis over Italy) is a new high-resolution convection-permitting reanalysis cen-
tred over Italy. It covers 26 years (1995–2020), is based on the non-hydrostatic
limited-area model COSMO, and is produced by dynamically downscaling the
global reanalysis ERA5. A nudging data assimilation scheme steers the model
toward observations. The fine horizontal grid spacing of 2.2 km allows us to
switch off deep-convection parametrization. This study reports the added value
of SPHERA over ERA5 in representing rainfall over Italy, particularly for severe
precipitation, using rain-gauge observations during 2003–2017 as reference.
Concerning the 95th percentile of spatial rainfall distributions, ERA5 presents
dry estimates with biases reaching−12 mm⋅day−1 over mountainous regions. At
the same time, the enhanced locally driven effects of SPHERA produce seasonal
biases ranging from wet in JJA (up to +12 mm⋅day−1) to dry in DJF (down to
−9 mm⋅day−1). For daily maximum rates, the regional reanalysis shows better
skill in detecting occurred events (with hit rates higher than ERA5 by roughly
0.4 points in the range of 15–80 mm⋅day−1) and frequency biases closer to 0 at
all intensities when coming to daily averages. Similarly, for hourly maximum
accumulations, improved adherence to observations is detected for SPHERA
at all intensities, conversely to the underprediction of the global driver (with
frequency biases <1 starting from 1.5 mm⋅hr−1). Additionally, the analyses of
two specific events reveal the enhancements of SPHERA in simulating extreme
precipitation, with a maximum intensity underestimation on the order of 24%
versus the 73% detected for ERA5. Further improvements include the spatial
detailing, timing, and temporal evolution of the events.
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1 INTRODUCTION

Deep moist convective processes are characterized by
extremely chaotic and nonlinear behaviour, growing from
small- to meso-scale, making their simulation particularly
challenging. The investigation of past meteorological con-
ditions leading to convection and the associated events
is crucial to enhance their understanding and extend
this knowledge to the present and future states of the
atmosphere. The most common way to investigate past
meteorological states in atmospheric science is through
reanalysis datasets. Atmospheric reanalyses respond to
the necessity of homogeneous spatio-temporal meteoro-
logical data by combining numerical weather predictions
(NWPs) and observations. In these datasets, data assimila-
tion is used to ingest observations and physically constrain
model data. Atmospheric reanalyses extend from several
years to a few decades. Among global reanalyses, ERA5
(the fifth-generation reanalysis: Hersbach et al., 2020) pro-
duced at the European Centre for Medium-Range Weather
Forecasts (ECMWF) is widely considered state-of-the-art.
Anyhow, global datasets, including ERA5, are still char-
acterized by coarse horizontal grid spacings spanning
from 125 to 31 km and with temporal frequencies vary-
ing from 6 to 1 hr. Finer spatial grids are essential
to describe small-scale and rapidly evolving features, as
for convective processes. For instance, the simulation of
deep convection needs parametrization schemes to be
accounted for in large-scale models. This constitutes a
major source of errors and inaccuracies in the simulations
(Prein et al., 2015).

The necessity of a superior level of precision led
to the development of higher-resolution limited-area
reanalyses. These are usually obtained by downscaling
a global dataset to produce a finer displacement of the
data, hence having a higher level of detail. In dynami-
cal downscaling, the boundary conditions of the global
driving model force a limited-area system to produce
atmospheric fields at the desired grid refinement (e.g. Cas-
tro et al., 2005). However, the downscaling process could
generate relevant small-scale variabilities (constrained
to the larger-scale state but not to the observations),
which can be detrimental to the finer-scale estimates
(Giorgi, 1990; Simon et al., 2013; Desamsetti et al., 2019).
The assimilation of regional observations is used to min-
imize coarse-scale driven variabilities and improve the
quality of high-resolution estimates. Regional reanal-
yses are produced by coupling a downscaling strategy
with a data assimilation method, which has proven to
be superior to a mere downscaling (i.e. hindcast) of a
global reanalysis (e.g. Bollmeyer et al., 2015; Jermey and
Renshaw, 2016). Several regional reanalyses have been
produced in recent years on the continental or national

scale. Some examples are: China Regional Reanalysis
project (CNRR: Zhang et al., 2017) having 18 km grid
spacing, ASRv2 (Arctic System Reanalysis version 2:
Bromwich et al., 2018) with 15 km grid spacing, Bureau
of Meteorology Atmospheric high-resolution Regional
Reanalyses for Australia (BARRA, New Zealand, and
Southeast Asia: Su et al., 2019), or CARRA, the Arctic
Regional Reanalysis produced by the Copernicus Climate
Change Service (C3S) at a very fine grid spacing of 2.5 km
(Køltzow et al., 2022). In Europe, the interest has been par-
ticularly high, as demonstrated by the numerous datasets
recently developed: European Reanalysis and Observa-
tions for Monitoring (EURO4M: Klein Tank, 2010) and
its continuation Uncertainties in Ensembles of Regional
Reanalyses (UERRA: Unden et al., 2016), the Con-
sortium for Small-scale MOdelling regional reanalysis
(COSMO-REA6: Bollmeyer et al., 2015) covering part of
the European CORDEX domain (Coordinated Regional
Downscaling EXperiment, cordex.org) with a grid spacing
of 6 km, the new ensemble-based Copernicus European
Regional ReAnalysis (CERRA: El-Said et al., 2021) cov-
ering Europe and North Africa at 11 km horizontal grid
spacing (while 5.5 km is used for its deterministic coun-
terpart), or MEteorological Reanalysis Italian DAtaset
(MERIDA: Bonanno et al., 2019) covering Italy with a 7
km grid. The increased detail of these datasets provides
added value, especially in the representation of precipita-
tion (Bollmeyer et al., 2015; Jermey and Renshaw, 2016)
and in the case of complex orography (Isotta et al., 2015).
However, these grid spacings are still too coarse to per-
mit the explicit representation of deep moist convection,
which is paramount for substantially improving the
simulations.

In fact, with the explicit representation of deep
convection, achieved through the so-called convection-
permitting (CP) scales, an improved description of precip-
itation is obtained in terms of different aspects: enhanced
representation of the summer diurnal cycle of precipi-
tation (Fosser et al., 2015; Brisson et al., 2016), better
accordance with the observed intensities of the most
severe precipitation events (Prein et al., 2013; Fosser
et al., 2015), lower biases of average and extreme rainfalls
(Pal et al., 2019), and smaller frequency biases of weak
precipitation events (Berg et al., 2013). Furthermore, CP
models successfully represent organized convective struc-
tures and the formation of isolated convective cells and
self-regenerating thunderstorms (Clark et al., 2016), as
well as orographically driven convection thanks also to the
enhanced detailing of the topography and surface hetero-
geneities (Weusthoff et al., 2010; Kirshbaum et al., 2018).
Similarly, CP regional reanalyses better describe the spa-
tial variability on the local scale of precipitation and the
frequency of heavy rainfall (Wahl et al., 2017). Anyhow,
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GIORDANI et al. 3

CP simulations require km-scale grid spacings (i.e. below
4 km), whose computational cost is still too high to cover
extended/global domains (e.g. Schär et al., 2020). For this
reason, CP reanalyses are limited to small spatial domains
on the order of the national and below the continen-
tal scale. Recently produced CP reanalyses over Europe
include: COSMO-REA2 (nested in COSMO-REA6: Wahl
et al., 2017) covering Central Europe at 2 km grid spac-
ing, Met Éirann ReAnalysis (MERA: Gleeson et al., 2017)
over Ireland and the United Kingdom with a 2.5 km grid,
and the in-development high-resolution regional reanal-
ysis for Iberian Peninsula and Balearic Islands (IBERA:
Calvo Sánchez et al., 2021) developed by Agencia Estatal
de METeorología (AEMET) at 2.5 km grid spacing. When
coming to Italy, the considerable interest in developing
highly resolved re-forecast datasets is demonstrated by the
recent production of two CP regional hindcasts. These are
obtained by downscaling ERA5 using the COSMO model
at 2.2 km grid spacing (Raffa et al., 2021; Reder et al., 2022)
or the model MOLOCH at 2.5 km (Capecchi et al., 2022).
Anyhow, in neither case is the additional assimilation
of regional observations included in the production of
the datasets.

This prompted the development of a new CP regional
reanalysis, SPHERA (High rEsolution ReAnalysis over
Italy), covering Italy, the surrounding seas, and part of
the neighbouring states (Figure 1). The details of SPHERA
production and the necessary preliminary experimenta-
tions to define its optimal set-up have been investigated
by Cerenzia et al. (2022). SPHERA is nested on the global
reanalysis ERA5 and based on the COSMO model, run
deterministically with a 0.02◦ × 0.02◦ grid spacing (i.e.
approximately 2.2× 2.2 km), that is coupled with a nudg-
ing data assimilation scheme ingesting regional in situ
observations. This study presents the first extensive vali-
dation of the new dataset in terms of precipitation, with
a focus on heavy rainfall occurrences, on a daily and
sub-daily basis, as well as the comparison with the par-
ent reanalysis ERA5 to quantify the added benefits of
SPHERA.

The article is organized as follows: Section 2 reports
the characteristics of SPHERA, the observational data
employed, and the validation strategy applied; Section 3
describes the preliminary sensitivity analysis for the
upscaling needed for the verification; Section 4 reports
the results of the performance for precipitation and
the comparison with ERA5 on a daily and hourly
basis and with particular focus towards extreme pre-
cipitation events; Section 5 analyses two particular
case-studies of recent severe precipitation over Italy;
and the discussions and conclusions are drawn in
Section 6.

F I G U R E 1 The spatial domain and model orography of
SPHERA reanalysis [Colour figure can be viewed at
wileyonlinelibrary.com]

2 DATA AND VALIDATION
STRATEGY

This section presents the new reanalysis SPHERA and its
driver ERA5 (Section 2.1), the observation dataset used for
their validation (Section 2.2), and the strategy to assess the
performance of the two reanalyses (Section 2.3).

2.1 The reanalysis dataset SPHERA

SPHERA (High rEsolution ReAnalysis over Italy) is
the new high-resolution regional reanalysis dataset
produced at ARPAE-SIMC (the hydro-meteo-climate ser-
vice of Emilia Romagna region, Italy), covering Italy,
part of the neighbouring countries and the surround-
ing seas (Figure 1) at the CP horizontal grid spacing of
0.02◦ × 0.02◦ (approximately 2.2× 2.2 km). Table 1 sum-
marizes SPHERA main features, including the list of
parametrizations employed to account for sub-grid phys-
ical processes. The outputs are produced with hourly
temporal frequency on 65 vertical levels (0–22 km above
sea level (a.s.l.)) and seven soil levels (0–14.58 m).
SPHERA spans 26 years (from 1995 to 2020), and further
extension of the dataset in the future will be possible.
SPHERA is based on the non-hydrostatic limited-area
model COSMO (Baldauf et al., 2011; Schättler et al., 2018),
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4 GIORDANI et al.

T A B L E 1 Main technical characteristics of SPHERA

Initial conditions ERA5

Boundary conditions ERA5, updated every hour

Nesting modality One-way nested in ERA5

Sea-surface temperature Interpolated from ERA5 every day

Deep soil temperature Parametrized from ERA5 soil temperature after Cerenzia et al. (2022)

Assimilated observations SYNOP and SHIP (not temperature at 2 m nor precipitation for either), TEMP, PILOT and AIREP

Code version INT2LM 2.04 (pre-processing), COSMO 5.05 in double precision

Spatial domain Approximately 35◦N, 5◦E; 49◦N, 20◦E (estimated from the rotated domain, Figure 1)

Spatial resolution 0.02◦ (∼2.2 km) horizontal (576× 701 grid cells), 65 vertical levels terrain-following (0–22 km),
seven soil levels (0–14.58 m)

Temporal frequency 1 hr

Temporal coverage 1995–2020

Radiation scheme 𝛿 two-stream scheme after Ritter and Geleyn (1992)

Turbulence scheme Prognostic turbulent kinetic energy closure at level 2.5 after Raschendorfer (2001)

Land-surface scheme Multi-layer soil after Jacobsen and Heise (1982)

Transfer scheme Surface layer scheme coupled with the turbulence scheme (Doms et al., 2018)

Convection scheme Only shallow convection with reduced Tiedtke (1989)

Microphysics scheme Grid-scale cloud and precipitation scheme (three-categories ice scheme) and statistical scheme
for sub-grid clouds after Sommeria and Deardorff (1977)

Subgrid-scale orography scheme Lott and Miller (1997)

Lake scheme Two-layer bulk model after Mironov (2008)

External parameter: Orography Global land 1 km Base elevation project (GLOBE task team et al., 1999)

External parameter: Land cover Global Landcover 2000 Database (Mayaux et al., 2006)

External parameter: Soil type Digital soil map of the world (UNESCO/FAO: the United Nations’ Educational, Scientific and
Cultural Organization and the Food and Agriculture Organization)

developed by the European Consortium for Small-Scale
Modelling. COSMO is an NWP model used operatively in
several European and extra-European countries belong-
ing to the eponymous consortium (i.e. Italy, Marsigli
et al., 2005; Germany, Baldauf et al., 2011; Romania,
Dumitrache et al., 2011; Russia, Rivin et al., 2015; Poland,
Starosta and Wyszogrodzki, 2016; Greece, Avgoustoglou
et al., 2018; Israel, Hochman et al., 2018; Switzerland,
Klasa et al., 2018). COSMO employs the primitive
non-hydrostatic thermo-hydrodynamical equations
for a compressible flow in a moist atmosphere. The
three-dimensional equations are defined in a rotated geo-
graphical coordinate system and include various physical
processes through parametrization schemes. A critical
process not parametrized in the configuration used in
SPHERA is deep moist convection, thanks to the fine grid
spacing allowing its explicit representation (or at least for
a large part of convective motions). The reader is referred
to Cerenzia et al. (2022) for a detailed description of the
modelling framework adopted. SPHERA is initialized

through dynamically downscaling the fifth-generation
global reanalysis ERA5 produced at ECMWF (Hersbach
et al., 2020). ERA5 is based on the Integrated Forecast-
ing System (IFS) Cy41r2, producing deterministic hourly
three-dimensional output at the spectral resolution TL639
(i.e. approximately 31 km grid spacing at midlatitudes). As
investigated in Cerenzia et al. (2022), the nesting modal-
ity to downscale the lateral boundary condition of ERA5
to SPHERA, updated every hour, is chosen as a one-step
nesting. This has proven more skilful than nesting passing
through an intermediate grid. For computational reasons,
the production of SPHERA has been performed through
six 4-year streams, each preceded by 6 months of rerun to
account for the soil spin-up. The streams are formed by
COSMO 24 hr long runs, each of which provides the ini-
tial conditions for the subsequent one. The runs are then
all stitched together to create a continuous hourly series.
The data assimilation technique implemented in COSMO
is a continuous nudging of in situ observations, similar to
COSMO-REA6 (Bollmeyer et al., 2015). The continuous
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GIORDANI et al. 5

F I G U R E 2 Average number of
assimilated observations in SPHERA per
year from 1995 to 2020. The assimilated
observational datasets are reported in
different colours. (a) SYNOP (yellow),
SHIP (dark blue), AIREP (green), and
TEMP (light blue). (b) PILOT (orange),
separated from the rest of the assimilated
data given its lower numbers [Colour
figure can be viewed at
wileyonlinelibrary.com]
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nudging is based on the Newtonian relaxation principle
and aims to dynamically adjust the model towards the
prescribed observations within a predetermined time win-
dow. This is done by inserting an additional term (so-called
nudging term) in the prognostic model equations, which
is proportional to the spatio-temporal misfit between the
observations and the model, and that continuously adapts
the simulation towards the observed values during the for-
ward integration of the model. The nudging term always
remains smaller than the largest term of the dynamics
in the model equations in order to relax the model fields
towards the observations without significantly disturbing
their dynamic balance. The reader is referred to Schraff
and Hess (2013) for a detailed description of the nudging
method implementation in COSMO. The set of observa-
tional data nudged in SPHERA comes from the ECMWF
catalogue. It comprises near-surface observations over
land and sea (SYNOP and SHIP), radiosounding and radar

profiler data (TEMP and PILOT), and aircraft reports
(AIREP). The meteorological variables assimilated include
wind speed components, pressure, air humidity, and tem-
perature, except for temperature at 2 m. All the assimilated
observations are operationally quality-checked before the
assimilation process and thus accepted or rejected fol-
lowing the standard procedure implemented in COSMO
(details are reported in Schraff and Hess, 2013).

Figure 2 reports the average number of accepted obser-
vations per year for each assimilated dataset. Notably, their
number increased almost constantly during the 26 years
of SPHERA coverage, from approximately 30,000 in 1995
up to roughly 100,000 in 2019. As an exception, in 2020
the number of accepted records is remarkably reduced for
SYNOP, SHIP, TEMP, and especially AIREP observation
types (Figure 2a). This decrease is due to the lower num-
ber of available observations (and not to an increased data
rejection) which have possibly originated from the globally
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6 GIORDANI et al.

reduced observational activity during the first year of
COVID-19 pandemic spreading (Riishojgaard, 2020). With
respect to PILOT records (Figure 2b), a consistent decrease
in the amount of data with time is noted, approaching 0
after 2012. Also in this case, this is not a consequence of an
increased rejection ratio in the assimilation process, and
is marginal compared to the much larger number of the
other types of assimilated data in SPHERA considering the
whole 26-year period.

2.2 The observational dataset

The performance of SPHERA and ERA5 is assessed
through a comparison with rainfall rain-gauge obser-
vations. These pertain to the national composite of
meteorological stations available on Dewetra, the
Italian Civil Protection database of pluviometers (Ital-
ian Civil Protection Department, CIMA Research
Foundation, 2014), containing the entirety of Italian
regional networks and covering the period 2003–2017.
These are entirely independent of both ERA5 and
SPHERA as they are assimilated in neither reanalysis.
Dewetra contains a set of ground pluviometers supply-
ing data at hourly temporal frequency. The number of
rain-gauges has significantly increased from approxi-
mately 1,500 in 2003 to 6,200 in 2017. Pluviometric data
have been quality-checked operatively by the department
of civil protection. Additional controls have been per-
formed for the most extreme rainfalls recorded (i.e. daily
accumulations exceeding 500 mm). Anyhow, it is worth
pointing out that rain-gauge data are always affected
by limitations, like the spatial inhomogeneity due to
the insufficient density of pluviometers or the sensors’
inadequacy to properly detect snowfall precipitation.
Over the Italian territory, the former is a relevant issue
in southern regions (where the situation has improved
significantly in recent years), and in mountainous terrain
(Crespi et al., 2018). The second issue pertains more to
the northern and central regions during winter, particu-
larly over mountains. Nevertheless, given the comparative
nature of this analysis, we believe these limitations are
not a major issue for assessing the added benefits of
one reanalysis over the other when investigating their
long-term statistical performance. On the other hand, for
the case-studies reported in Section 5, the spatial inho-
mogeneity of Dewetra’s pluviometers may substantially
affect the results. For this reason, only for these specific
analyses, we used two additional sources of rainfall obser-
vations to compare with the simulations, namely: the
ARchivio Climatologico per l’Italia centro-Settentrionale
(ARCIS, i.e. the high-resolution gridded precipitation
analysis of pluviometric data covering north-central Italy

at roughly 5 km spacing: Pavan et al., 2019) and surface
rainfall intensity (SRI) estimates combining rain-gauge
with radar data.

2.3 Validation strategy

A fuzzy verification approach (Ebert, 2008) is used to com-
pare precipitation performances of SPHERA and ERA5.
With a fuzzy method, the matching conditions between
the model and observations are relaxed, and the fore-
cast is required to be in approximate agreement with
the observation (by being close in space, time, or other
quantities). This is opposed to traditional nearest-point
verifications, seeking exact matches between forecast/ob-
servation pairs. Fuzzy methods are preferred when con-
sidering high-resolution models for which matching the
observations with absolute precision is too difficult, hence
risking “double-penalty” issues (i.e. to correctly fore-
cast a situation but being offset from the observation).
Indeed, small displacements in this context doubly penal-
ize the simulation by producing a false alarm and missing
the observation. Additionally, given the sparse nature of
rain-gauge observations, a spatial aggregation is necessary
to objectively assess the quality of the model simulation
(Bollmeyer et al., 2015) and to compensate for repre-
sentativeness limitations that may affect individual point
observations (e.g. Weusthoff et al., 2010). These issues
are particularly relevant in the representation of highly
localized phenomena, such as severe convective precipi-
tation, characterized by low spatio-temporal predictabil-
ity. Their description needs high-resolution simulations,
but the outcomes would be strongly penalized if tradi-
tional point-to-point comparisons were used (Lanciani
et al., 2008). With fuzzy methods, a spatial neighbourhood
to assess the closeness between forecasts and observa-
tions is defined around a certain point of interest. This is
achieved by systematically upscaling (or boxing) forecasts
and observations to a common coarser grid (compared to
the respective original ones). The verification domain is
subdivided into boxes of the same size, each containing a
certain number of reanalysis and observation points (e.g.
Weygandt et al., 2004).

The upscaled distributions are then aggregated to pro-
vide a single forecast–observation pair for each box. The
comparison between the aggregated data pairs is carried
out considering both the mean and maximum (or 95th
percentile) of their distributions within each box of the
upscaled domain (similar to Marsigli et al., 2008). This
is needed to evaluate different characteristics of the pre-
cipitation distributions. The comparison between the
mean values can indicate the average skill of a reanaly-
sis in representing precipitation. In contrast, comparing
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GIORDANI et al. 7

the maxima (or the 95th percentiles) can assess the abil-
ity to describe intense and localized rainfalls since the
most extreme events (or the tail of extremes, respectively)
are considered. Particularly, from the latter analysis, a
high-resolution system is expected to reveal its added
value over its coarser counterpart (e.g. Klasa et al., 2018).
These distribution parameters have different impacts on
identifying a useful forecast (i.e. a positive match between
reanalysis and observations within a box). The matching
between maxima is more generous than the averages: for
the former case, a useful forecast implies its maximum in
the neighbourhood to be close to the observed counterpart,
that is, the match relies only on one value of each distri-
bution; for the averages, the closeness criterion is more
restrictive since their values are calculated from the whole
distributions found in the neighbourhood (Ebert, 2008).
For this reason, comparing the performances obtained
through different statistical aggregations is also useful to
understand whether possible deviations from the observed
states are due to the method used for aggregating the
meteorological fields. An observational mask is applied
to retain only the grid cells where appropriate closeness
between reanalysis–observations is met (similarly to Mar-
sigli et al., 2008). This is done to minimize the errors owing
to the heterogeneous pluviometers distribution, and the
larger spatial domain covered by the reanalysis. For any
dimension of the upscaled grid hereafter considered (see
Section 3), boxes containing less than five rain-gauges are
withdrawn from the analysis to avoid errors caused by
insufficient sampling of the observed distribution. This
number has been defined for the operational verifica-
tion of numerical forecasts at ARPAE as the minimum
required to allow a representation of precipitation suitable
for this work. The upscaled grid neighbourhood (or box)
size defines the allowed spatial displacement between
forecast and observations. The most appropriate definition
of this horizontal scale is not trivial. It depends on various
factors (e.g. the particular features investigated through
the simulations, the time resolution, the meteorological
situation, and the model itself: Gallus, 2002; Ebert, 2008).
Therefore, a preliminary sensitivity analysis on the neigh-
bourhood size is performed to investigate how reanalysis
skill scores vary with grid size and to find the optimal grid
spacing for the upscaling (described in Section 3).

The performance assessment of SPHERA and ERA5
is carried out with a categorical approach. A 2× 2 con-
tingency table is obtained by classifying precipitation
occurrences in each box as yes/no events based on the
exceedance of a rainfall threshold and aggregating the
entire spatial domain (see Appendix A). With the contin-
gency table, a complete representation of the joint distribu-
tion between the binary observations and the binary out-
come of the simulations (i.e. event observed/forecasted or

not observed/not forecasted) is gained. From them, a series
of dichotomous scores is calculated for each threshold con-
sidered, namely: the probability of detection (POD), the
false alarm ratio (FAR), which can be expressed as the suc-
cess ratio (SR = 1−FAR), the threat score (TS) and the
frequency bias. TS measures the correspondence between
observed and simulated events when correct negatives are
removed from consideration (Wilks, 2019). TS, POD and
FAR vary from 0 to 1, while the frequency bias ranges from
0 to infinity, with a perfect simulation obtained when POD,
TS and frequency bias are 1, and FAR is 0. The skill scores
are calculated for the average and maximum values of the
daily precipitation distributions, which are both needed
to get a more complete assessment of the performance.
Conversely, since the main interest of the present article
is investigating precipitation extremes for rapidly evolving
cases, only maxima are considered for the hourly precipita-
tion analysis. The resulting skill scores are aggregated over
the entire verification domain and different temporal peri-
ods and reported through the performance diagram. This
visual tool exploits the geometrical relationships between
the four dichotomous scores considered (Roebber, 2009). A
summary of the indices used is reported in the Appendix A.

3 SENSITIVITY ANALYSIS FOR
THE UPSCALING

This section is devoted to the sensitivity analysis of
the neighbourhood size to find the optimal upscaling
configuration performed on a sample period of 3 years
(2015–2017). The maxima of SPHERA and Dewetra daily
precipitation distributions are compared within boxes of
different sizes before the verification extension to the
entire 15-year period. The box dimensions cover a broad
range from 0.14◦ × 0.14◦ to 1.85◦ × 1.85◦, corresponding
approximately to grids from 15× 15 km to 200× 200 km.
Each of these grid spacings allows an adequate sampling
of the number of grid points of SPHERA contained in the
box, ranging from approximately 46 grid points (for the
finest box of 15 km) to roughly 8,264 grid points (for the
coarsest box of 200 km). Figure 3 reports the dependency
of TS, POD, FAR and frequency bias scores to the upscaled
grid-spacing and on the daily precipitation intensity (with
thresholds ranging from 1 to 150 mm⋅day−1). The results
pertain to seasonal averages over summer (June–August,
JJA) and winter (December–February, DJF).

Two distinct effects contribute to a joint deteriora-
tion of the scores: increase of precipitation intensity and
refinement of the upscaled grid spacing. The decrease of
POD (Figure 3c,d) and TS (a,b) and the increase of FAR
(e,f) and frequency bias (g,h) for growing rainfall thresh-
olds reflects the rising difficulty in detecting occurred
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F I G U R E 3 Seasonal averages over the period 2015–2017 of dichotomous scores obtained from the maximum values of the upscaled
rainfall distributions within boxes of different sizes (indicated with different colours). (a,b) Threat score (TS), (c,d) probability of detection
(POD), (e,f) false alarm ratio (FAR) and (g,h) frequency bias (note the different scale on the y-axis), as functions of daily precipitation threshold,
(a,c,e,g) for the summer season (JJA) and (b,d,f,h) for the winter season (DJF) [Colour figure can be viewed at wileyonlinelibrary.com]

events. As precipitation intensifies, the number of obser-
vations correctly simulated reduces, more false detections
are produced and the most extreme and rare events are
overestimated. This positive frequency bias is reasonably
dependent on the inadequate spatial sampling of the sen-
sor networks to detect precipitation extremes. Indeed,
if the mean daily precipitation is considered (Figure 8,
right panel), the overestimation disappears from rainfalls
≥20 mm⋅day−1. This observation limitation also plausibly
explains the large number of false alarms detected, with
FAR ranging from 0.4 to 1.0 in JJA and 0.3 to 0.8 in DJF.

The performance degradation owing to the upscaled
grid spacing is expected due to the rising impact of
short-lived and localized events with low predictability.
These are responsible for the majority of spatio-temporal
double-penalty errors, particularly in JJA (Marsigli

et al., 2008). If the grid spacing is enlarged, the increased
rain-gauge quantity per box and the removal of numer-
ous small-scale occurrences affected by phase errors
produce a better performance (Weygandt et al., 2004).
However, at the same time, the simulations lose sharp-
ness due to the removal of actually occurred heavy rainfall
events as well (Roberts and Lean, 2008). The performance
improvement for coarser box sizes is enhanced in JJA
when convective rainfall is most likely. Figure 3 shows
a larger spread among different upscalings for all skill
scores in JJA than in DJF. POD in JJA shows the strongest
dependence on the grid size especially for intense rainfall
accumulations (≥25 mm⋅day−1, Figure 3c). For example,
in the case of 50 mm⋅day−1, POD ranges from approxi-
mately 0.4 (15 km box) to 0.9 (200 km box), while in DJF,
the spread never exceeds 0.2 points. This effect is most
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GIORDANI et al. 9

likely imputable to different precipitation predictability
during the two seasons: the detection of localized sum-
mer convective rainfalls is more challenging than the
widespread frontal-like winter counterparts (e.g. Crespi
et al., 2018). This seasonal dependency is also reflected
by the systematic lower risk of committing false alarms
in DJF, as expressed by the lower FAR scores (Figure 3f)
obtained for each threshold and grid size.

Finally, there is a further effect influencing the perfor-
mance of the simulations and connected to the upscaling
neighbourhood size, which is linked to the typical spa-
tial length of precipitation. This effect causes the opposite
behaviour in the performance on a seasonal basis, par-
ticularly visible for coarser boxes in terms of FAR and
frequency bias (black and purple lines in Figure 3). In DJF
the worst performance is obtained with the 200 km grid
box, while in JJA with the 25 km one. Indeed, even if the
risk of missing events is reduced with coarser grids due
to the more generous matching condition, the likelihood
of mixing different unrelated events falling within the
same box is higher. This is particularly detrimental for
the 200 km box case, likely because this spatial resolution
may exceed the characteristic length-scale of precipita-
tion: while in JJA, typical convective rainfall is associated
with horizontal scales on the order of a few kilometres, in
DJF, the horizontal extension of stratiform-like precipita-
tion may vary from tens to a few hundreds of kilometres
(Houze, 2014). This length-scale issue does not seem to
affect summer precipitation, most likely due to the higher
impact of double penalties in localizing convective show-
ers and the under-sampling of the observed state in JJA,
which mask this secondary effect.

The deviation between the normalized rainfall distri-
butions of SPHERA and Dewetra as a function of rainfall
intensity for different box sizes is also analysed (Figure 4).
The aim is to identify the spatial dimension that mini-
mizes the difference between the two distributions, with
particular emphasis on severe precipitation, to let the
reanalysis maintain its resolution, that is, provide predic-
tions able to correctly distinguish situations with distinctly
different frequencies of occurrence (Murphy, 1993; Lewis
et al., 2015). For weak to moderate precipitation (up to
50–55 mm⋅day−1), the grid size best minimizing the dif-
ference is the coarsest one (200 km). In comparison, the
others worsen almost linearly by reducing the box size.
A reversal trend is mostly evident for intense rainfalls
exceeding 60 mm⋅day−1. Indeed, the coarsest horizon-
tal grid spacings (200 and 100 km) are always associated
with the highest deterioration of the similarity between
SPHERA and Dewetra. This excessive upscaling causes the
removal of extreme rainfall occurrences, which are asso-
ciated with small-scale processes, inevitably smoothed
out at these grid spacings. Moving to finer upscalings, the

F I G U R E 4 Normalized absolute difference between the
number of precipitation events per daily threshold relative to the
rainfall distributions of SPHERA and Dewetra observations for the
period 2015–2017, for different horizontal resolutions of the
upscaled domain (in different colours) [Colour figure can be viewed
at wileyonlinelibrary.com]

differences in this rainfall range are not prominent, except
for the finest 15 km box always producing the most effec-
tive minimization. However, this grid spacing is excluded
from the present analysis (as well as the 25 km box), as one
of the main goals of this article is to perform a long-term
comparison between SPHERA and its driver ERA5. ERA5
has a native grid spacing of 31 km. Therefore, upscaling to
a 15 km grid (or 25 km grid), would result in a downscal-
ing and it would cause an under-population of the boxes
containing less than one native ERA5 point. Considering
the remaining box sizes (i.e. 35, 45 and 60 km), no decisive
improvements of one over the other emerge at any inten-
sity regime (Figures 3 and 4). However, boxes of 60 km
contain enough grid points of ERA5 for its consistent rep-
resentation (approximately four per box). For this reason,
the 60 km grid spacing is chosen to perform the reanaly-
sis evaluation in the next section. It should be noted that
for any other applications non-constrained by a compar-
ative analysis, finer grid boxes should be considered (e.g.
15–25 km) for the investigation of severe precipitation
events.

4 EVALUATION OF
PRECIPITATION

This section presents the performance verification of
SPHERA and ERA5 rainfall estimates against Dewetra
pluviometric data over 15 years (2003–2017). Section 4.1
compares daily spatially distributed rainfall fields when
focusing on severe precipitation events. In Section 4.2,
daily accumulated precipitation is the subject of the
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F I G U R E 5 (a–c) Observed average of the 95th percentile of daily precipitation distributions (mm) for different temporal aggregations
over the years 2003–2017: (a,d,g) annual, (b,e,h) summer (JJA) and (c,f,i) winter (DJF). Daily deviations (mm) from the observed spatial
distributions for (d–f) SPHERA and (g–i) ERA5. All three datasets are upscaled over a common grid of approximately 31 km horizontal grid
spacing [Colour figure can be viewed at wileyonlinelibrary.com]

fuzzy verification performed with the optimal upscal-
ing resolution of 60 km. This analysis extends to hourly
accumulations in Section 4.3. Finally, the mean diurnal
precipitation cycle during the summer season is analysed
in Section 4.4.

4.1 Spatial distribution

A fundamental feature to investigate is the reanalysis abil-
ity to represent the “correct climate” in terms of spatial

distribution of precipitation. The following reports the
analysis of the spatially distributed daily observed state
aggregated over 2003–2017, on the annual and seasonal
terms (JJA and DJF), and the relative deviations of the
reanalyses. In this context, the 95th percentile of the boxed
distributions is chosen for the spatial intercomparison in
order to focus on intense precipitation occurrences. Only
in this section, the precipitation fields are upscaled over
a common grid of 31 km spacing, roughly corresponding
to the ERA5 native grid. Indeed, the loss of detail result-
ing from the coarser optimal grid of 60 km (defined in
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GIORDANI et al. 11

Section 3 when aggregating the precipitation fields over
the whole domain) would be too much for this spatial
analysis.

Figure 5a–c report the observed 95th percentiles of
daily rainfall distribution. Italy’s wettest regions are vis-
ible from the annual plot: the northern Apennines and
the far-eastern Alps, with daily accumulations exceed-
ing 10 mm⋅day−1 (the reader is referred to Figure 1
for geographical references). The western Alps and the
south-central Apennines are other areas particularly prone
to precipitation, with daily rainfalls of 5–8 mm⋅day−1.
These precipitation patterns are mainly linked to the oro-
graphic enhancement of precipitation characterizing the
Italian region (Napoli et al., 2019), of which an emblem-
atic case-study is reported in Section 5.1. The drier regions,
presenting daily accumulations below 3 mm⋅day−1, are
found over the plains and hilly areas, especially over
the Po valley, the Sardinia and Sicily islands, and the
Apulian peninsula. The observed patterns are consistent
with several recent rainfall climatologies obtained with
higher-resolution datasets (Longobardi et al., 2016; Crespi
et al., 2018; Pavan et al., 2019) and reflect the impact of the
very complex Italian topography on the spatial behaviour
of precipitation. Therefore, the upscaling procedure does
not affect the observed precipitation patterns estimated
with Dewetra.

Considering reanalysis estimates on the annual term,
ERA5 (Figure 5g) overall presents a heterogeneous dry
bias, mostly non-systematic but peaked over the wettest
regions (i.e. primarily mountainous areas) and dampened
over the plains, with an average relative bias per box of
−1.1 mm⋅day−1. SPHERA also shows a heterogeneous dis-
tribution of the annual bias (Figure 5d), but mainly linked
with an overestimation of rainfall intensity, particularly
over the Po valley and in southern Italy, with an average
bias per box of 1.4 mm⋅day−1.

The distribution of the observed 95th percentiles
over JJA and DJF (Figure 5b,c) reveals the seasonality
of precipitation: summer rainfall is mainly enhanced
over the Alps, particularly over their far-eastern region,
presenting daily accumulations above 10 mm⋅day−1;
winter precipitation is characterized by even more oro-
graphic enhancement: rainfall peaks extend across
the entire Apennines with daily accumulations larger
than 13 and 10 mm⋅day−1 at their northern and south-
ern ends, respectively. These patterns are due to the
dominant mesoscale humid flows impinging over moun-
tainous ranges typical of the cold season (e.g. Krichak
et al., 2015).

Moving to reanalysis estimates, in JJA ERA5
(Figure 5h) shows a similar bias distribution to that of the
annual term with a mean bias per box of −1.7 mm⋅day−1.
SPHERA (panel e) presents a higher wet bias, marked

over the Po valley, southern Apennines and eastern Sicily,
with a daily average bias per box of 2.9 mm⋅day−1. Dur-
ing wintertime, ERA5 (panel i) notably underestimates
precipitation, especially over the cited mountainous wet
spots, with an average bias of −1.7 mm⋅day−1 per box.
Also, SPHERA in DJF (panel f) shows a dry bias over
part of the northern Italy orography (with an average
bias per box of 0.1 mm⋅day−1). This indicates a difficulty
in correctly representing dynamically driven orographic
precipitation in specific regions even for a CP model.
However, weaker and more spatially limited dry biases are
obtained compared to ERA5. Furthermore, ERA5 always
underestimates precipitation if the long-term average of
the 95th percentile distributions is considered, suggesting
a systematic inability to simulate severe rainfall events.
This is typical of low-resolution models that employ
convection-parametrizing schemes and lack a sufficient
level of detail in the representation of topography, which is
crucial especially over complex terrain. On the other hand,
the substantial overestimation committed by SPHERA in
summer should be interpreted as something other than
a systematic wet bias of the driving model. Suppose the
observed state is not sampled as well as the reanalysis (as
potentially could be the case for Dewetra as highlighted in
Sections 2.2 and 3, especially in mountainous regions). In
that case, an overestimation of the high-resolution rain-
fall simulations is likely when considering their extreme
values of the distribution, such as the 95th percentile.
This hypothesized under-sampling of the observed state
is supported by the analysis of the distribution for average
daily rainfall intensities in the next section: a systematic
overprediction of SPHERA for intense rainfall rates is not
found in that case. These results confirm and extend the
preliminary equivalent analysis over 2015–2016 reported
in Cerenzia et al. (2022).

4.2 Daily precipitation

The daily accumulated precipitation of the two reanaly-
ses is assessed through performance diagrams (Figure 6).
The performance diagram exploits the geometrical rela-
tionship of four dichotomous scores: the probability of
detection POD (on the y-axis), the false-alarm ratio FAR
(expressed on the x-axis as the SR = 1−FAR), the TS
(indicated in the diagrams with grey shading contouring),
and the frequency bias (shown by dashed diagonal lines,
see Appendix A for further details). In the diagrams, the
results of an accurate model would lie on the bisector line
describing a null frequency bias, and a perfect simulation
would lie on the top-right corner of the diagram (i.e. POD,
SR and TS = 1).
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F I G U R E 7 As Figure 6 but for seasonal aggregations over 2003 to 2017: MAM, JJA, SON and DJF (columns from left to right) when
maximum (upper row) and average (lower row) values over boxes of 60 km are considered [Colour figure can be viewed at
wileyonlinelibrary.com]

With respect to maximum precipitation (Figure 6, left
plot), ERA5 outperforms SPHERA in the range of weak
rainfall (1–10 mm⋅day−1), especially due to fewer false
alarms (i.e. higher SR score). As precipitation intensifies,
the SR score stays almost constant for ERA5 (roughly 0.7)
and is always higher than the SPHERA counterpart, which
gradually decreases from 0.7 to 0.2. Conversely, the hit
rate of ERA5 (i.e. POD score), with a difference of more
than 0.1 points for each consecutive threshold, decreases

more rapidly than for SPHERA, which stays above 0.7 up
to 25 mm⋅day−1. The result is a gradual increase in the
score gap between the reanalyses in moderate- to-heavy
precipitation (25–80 mm⋅day−1). This suggests on the one
hand a better ability of SPHERA to detect actually occurred
heavy rainfall at the expense of a larger number of false
detections. On the other hand, ERA5 shows a lower ability
to simulate an adequate number of events for increas-
ing rainfall intensity, but it keeps an almost constant
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GIORDANI et al. 13

skill to avoid false alarms, due to the smaller sample
of events simulated at increasing intensities. These out-
comes are in line with the tendency of ERA5 to produce
dry biases (as seen in Section 4.1) which are amplified
for intense precipitation, as detected from the decreas-
ing frequency bias from roughly 1.3 (1 mm⋅day−1) to
<0.3 (80 mm⋅day−1). Similarly, SPHERA overestimates the
number of events, with a frequency bias larger than 1
for the entire set of intensities, which is maximum (>2.0)
for 50 mm⋅day−1, in line with the weakly wet annual bias
found in Figure 5d.

The analysis of the distributions for average rainfall
intensities (Figure 6, right plot) confirms at first that the
oversampling detected for maxima counterparts and for
spatially distributed fields is not linked to a systematic wet
bias of the model. In this case, a substantial reduction of
the positive frequency bias of SPHERA is detected (always
<1.3), which turns negative for rainfall>15 mm⋅day−1 and
reaches a minimum of roughly 0.3 for 80 mm⋅day−1. This
indicates a better agreement with the number of observed
events (revealed by the lower deviation from the null fre-
quency bias line at all intensities). Also, ERA5 produces
generally higher skill scores considering the averages.
However, an increasing dry bias for intense accumula-
tions, larger than the SPHERA counterpart, is detected
starting from 15 mm⋅day−1 and reaches values <0.3 for
80 mm⋅day−1. This further proves the larger difficulty for
ERA5 in producing a sufficient number of events even
to match the average observed state. Both reanalyses
present similar TS scores, suggesting comparable skills
to represent the average daily precipitation for weak to
moderate rainfall. At the same time, the improvement of
SPHERA is evident for the heaviest accumulations consid-
ered.

Figure 7 reports the seasonal analysis of the perfor-
mance for maximum and average values in the boxes. The
main differences compared to the annual aggregations are
obtained in JJA and DJF, while March–May (MAM) and
September–November (SON) are in line with the annual
term performances (hence not discussed in the follow-
ing). A general detriment of the scores is evident in JJA
considering the maximum (upper row): ERA5 produces
more false alarms and fewer hits, with SR and POD scores
decreasing in the order of 0.1 points for most intensities.
A performance deterioration in JJA is also detected for
SPHERA in the form of a higher fraction of false detec-
tions (generally lower SR scores of 0.1 points than annual).
Nevertheless, the ability to detect observed events is pre-
served and slightly enhanced compared to the annual term
(POD scores systematically increased by roughly 0.1 points
for most thresholds). This causes an exacerbation of the
positive frequency bias at all intensities, which exceeds 4.0
for ≥50 mm⋅day−1.

As regards DJF, SPHERA performance shows a general
opposite behaviour compared to JJA (i.e. higher SR and
lower POD and frequency bias at all intensities), as well as
ERA5, even if less markedly (higher SR and lower POD).
These results highlight the different seasonal predictability
of precipitation. During summer, precipitation is mainly
localized, short-lived, and linked to intense convective
thunderstorms, making it typically more challenging to
simulate compared to winter. In wintertime, stratiform
rainfall dynamically driven by large-scale frontal activity
is more likely (Houze, 2014; Antolini et al., 2016). Inter-
estingly, the performance of SPHERA suggests the added
ability of the high-resolution simulations, particularly in
JJA when compared to ERA5, to reach heavy rainfall
intensities at the expense of a high number of unrequited
events (false alarms). As demonstrated previously, the lat-
ter is more likely a consequence of the under-sampled
observed state when considering extreme values (max-
ima) of precipitation rather than a deficit owing to the
COSMO model. Indeed, moving to seasonal daily averages
(Figure 7, lower row), a decisive reduction of the frequency
bias of SPHERA is detected for all seasons (in JJA confined
between 1.0 and 1.3 for the majority of intensities), sug-
gesting a good agreement with the mean observed precip-
itation state. For ERA5, similarly to the annual term, the
bias (generally wet for intensities ≤10 mm⋅day−1 and dry
above) is reduced for the averages, but it always remains
stronger than the SPHERA counterpart (i.e. larger devia-
tions from the 1:1 line at all intensities and seasons).

A complementary aspect in comparing simulated and
observed precipitation series are the rates of daily rain-
fall distribution intensities, reported as histograms in
Figure 8 for average and maximum values. Focusing on
maxima (left plot), in the range below 5 mm⋅day−1, ERA5
overestimates while SPHERA underestimates the number
of events. The trend is reversed for heavier intensities
(i.e. ≥10–20 mm⋅day−1), with SPHERA overpredicting
and ERA5 under-sampling Dewetra. The maximum
overestimation for SPHERA is detected in the range of
30–50 mm⋅day−1, decreasing then for higher thresholds
but consistently producing more events than observed.
The underestimation committed by ERA5 gets larger
with rainfall intensity, producing almost no events above
80 mm⋅day−1. This supports the inadequacy of coarse
and convection-parametrizing systems in representing
severe precipitation occurrences. Conversely, SPHERA
successfully simulates events at all rainfall intensities
considered, even for the heaviest precipitation ranges
(≥80–100 mm⋅day−1), confirming the added value of CP
models in this sense, as expected (e.g. Klasa et al., 2018).
As previously discussed, SPHERA overestimation of
moderate to heavy precipitation is more a throwback
of the upscaling aggregation based on maxima rather
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F I G U R E 8 Normalized frequency histograms of the distributions of daily rainfall occurrences over 2003–2017 for SPHERA (purple),
ERA5 (turquoise) and Dewetra observations (blue), when maximum (left panel) and average (right panel) values over boxes of 60 km are
considered. For a better visualization the average values distributions for the highest thresholds are highlighted in a black-framed subplot
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 9 As Figure 7 but for hourly-accumulated precipitation, verified against Dewetra, when maximum values over boxes of
60 km are considered. The results pertain to a set of hourly precipitation thresholds ranging from 0.5 to 20 mm⋅hr−1, reported with different
symbols [Colour figure can be viewed at wileyonlinelibrary.com]

than a systematic tendency of the reanalysis. If Dewetra
under-samples precipitation maxima, representatively
discrepancies may arise in dataset comparisons when con-
sidering 60 km boxes. In this case, the number of SPHERA
grid points falling within a box may be significantly larger
than the corresponding number of rain-gauges. This ben-
efits the reanalysis to the disadvantage of the sparser
pluviometric network when coming to detect precipita-
tion peaks. As a proof of this, the frequency distribution
analysis performed with the averages (Figure 8, right
plot) confirms the absence of the wet systematic bias in
SPHERA: both reanalyses better agree with the observa-
tions, with SPHERA outperforming ERA5 starting from
5–10 mm⋅day−1. Moreover, ERA5 underestimates the
number of rainfall events starting from 10–20 mm⋅day−1,
even if less strongly than the maxima counterpart. This
further confirms its increasing dry bias as precipitation
intensifies.

4.3 Hourly precipitation

The seasonal performance of the sub-daily (hourly)
time-scale of precipitation is assessed through

performance diagrams for maximum accumulations
aggregated from 2003 to 2017 (Figure 9, similar to
Figure 7). A systematic worsening of the scores is evident
compared to daily accumulation counterparts. As with
the daily performance, the added value of SPHERA over
its driver emerges particularly in the larger fraction of
hit events (starting from 2 mm⋅hr−1 for every season, but
in summer from 5 mm⋅hr−1), as indicated by the higher
POD, with gaps as large as 0.2 points more than ERA5.
Further, as in the daily analysis, ERA5 systematically
produces fewer false detections than SPHERA, as indi-
cated by the larger SR values obtained for every season
and threshold, but under-samples the number of hourly
rainfalls as the intensity increases. The main difference
with daily results is the strongly reduced overestimation
of the number of events produced by SPHERA compared
to the observations. Indeed, the frequency bias for hourly
rainfall maxima is always close to 1 for every intensity and
season: it is confined to between 0.8 and 1.3 in MAM and
SON, slightly dry in DJF (being arranged along the 0.8
line), and increasingly wet with rainfall intensity in JJA
moving from roughly 1.0 to 2.0.

Figure 10 reports histograms of the relative frequency
event distributions. The maximum hourly distributions
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F I G U R E 10 As Figure 8, left plot, but for hourly rainfall
occurrences [Colour figure can be viewed at wileyonlinelibrary.com]

reflect the behaviour detected for daily frequencies
(Figure 8, left plot). The overestimation committed
by ERA5 in the number of low-precipitation events
(<1 mm⋅hr−1) is more pronounced, with the lowest bin
populated by almost 80% of the entire sample of events,
which is about 20% more than observed. Starting from
1–2 mm⋅hr−1, ERA5 frequency underestimation wors-
ens as rainfall intensifies, producing an almost complete
lack of occurrences for precipitation thresholds greater
than 5–7 mm⋅hr−1. With respect to SPHERA, despite
the significant underestimation of roughly 10% in the
number of weak rainfalls (<1 mm⋅hr−1), for heavier accu-
mulations the number of events is always in agreement
with the observations, even in the range of severe events
(>20 mm⋅hr−1). An overestimation with a frequency devi-
ation roughly or below 2% is present, with the maximum
in the range of 10 to 20 mm⋅hr−1. However, this effect
is less pronounced than its daily counterpart in rela-
tive terms, indicating an improved skill in representing
precipitation maxima at high temporal resolution.

As previously mentioned, when considering the max-
imum area-aggregated rainfall distributions over 60 km
grids, important dynamical aspects of the simulations
may be removed from the analysis, which is even more
likely at hourly resolution. For this reason, it is worth
investigating the frequency of hourly precipitation at the
original resolutions of the datasets (i.e. 31 km for ERA5,
2.2 km for SPHERA, and scattered data points for plu-
viometers). It is worth highlighting the qualitative nature
of this comparison given the numerous limitations arising
from this approach (which were previously compensated
by using a fuzzy verification method), namely, the rep-
resentativeness limitations of the uneven distribution of
individual point observations, the non-fixed number of
rain-gauges in Dewetra over the years (increasing by a
factor of 4), and the different sample sizes in grid points
between the two reanalyses (as SPHERA is roughly 200

times denser than ERA5). The frequency distributions
at the respective original resolutions of the datasets are
reported in Figure 11. The results pertain to hourly sum-
mer rainfalls aggregated over 15 years when distinguish-
ing between weak to moderate (Figure 11, left plot) and
severe (right plot) rainfalls to visualize the less frequent
severe events better. Since NWPs frequently simulate sub-
stantial amounts of low rainfall occurrences, especially
when their fields are not spatially aggregated, only wet
hours (i.e. precipitation exceeding 0.1 mm⋅hr−1, similar
to Ban et al., 2014) are considered. The results confirm
and strengthen the findings of the upscaled dataset: the
substantial overestimation of weak rainfalls committed by
ERA5 is evident, as well as its inefficiency in simulating
heavier precipitation events, producing less than 1% of
its occurrences, versus the 11% of the observed, for pre-
cipitation amounts greater than 5 mm⋅hr−1. Additionally,
SPHERA event distribution suits the observed counter-
part well, without any systematic over- or underprediction.
Indeed, SPHERA deviation from the observed frequency
is always less than 5% in the range of weak to moderate
precipitation (0.1–5.0 mm⋅hr−1). Moving to higher intensi-
ties, SPHERA generally overestimates Dewetra, with devi-
ations in the frequency below 2%, resulting in a population
of occurrences in the 5–50 mm⋅hr−1 range equivalent to
14% of the total distribution, which is slightly larger than
the observed 11%.

4.4 Diurnal cycle

A further relevant feature to assess is the ability to
represent the diurnal cycle of summer precipitation. In
JJA, daily variations of convective activity strongly con-
trol weather dynamics over Italy. Hence, we expect an
enhanced description when employing CP simulations
(Fosser et al., 2015; Brisson et al., 2016). The diurnal
time series of hourly averaged rainfall during JJA for
SPHERA, ERA5 and Dewetra, aggregated over 2003–2017,
are reported in Figure 12. Land grid points only are
selected for the reanalyses and averaged over Italy. At the
same time, hourly unboxed rain-gauge data are aggregated
with the same premises described at the end of Section 4.3.
Only wet hours are considered also in this comparison.
The observed cycle is characterized by higher rainfall
intensities between 0900 and 1700 UTC, with the peak
at 1300 UTC, and weaker rainfall during the night and
early morning, with a second lower peak between 2300 and
0000 UTC. ERA5 is unable to simulate the observed pre-
cipitation rates, implying strong underestimations of the
overall intensity and amplitude variation as a natural con-
sequence of the coarse horizontal resolution (Bollmeyer
et al., 2015), while the timing of the precipitation peak
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F I G U R E 11 Relative frequency distributions of hourly rainfall occurrences for the summer months (JJA) aggregated over 2003 to 2017
for SPHERA (purple), ERA5 (turquoise) and Dewetra (blue). The distributions are obtained from the original unboxed horizontal resolutions
of the datasets, and are divided in two plots to better highlight less frequent heavy precipitation events [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 12 Mean diurnal cycle of hourly summer (JJA)
precipitation intensity averaged over Italy during 2003–2017, and
considering only wet hours of the day. The time series are calculated
from the datasets at their original resolutions [Colour figure can be
viewed at wileyonlinelibrary.com]

(1300 UTC) is well captured. The SPHERA diurnal cycle
is more in line with the observations, with an optimal
agreement during the rainiest hours of the day of the early
afternoon (from 1200 to 1700 UTC) and a slight under-
estimation of the intensity (always ≤1 mm⋅hr−1) for the
rest. SPHERA well replicates rainfall temporal evolution.
The main difference with the observed cycle is evident
in the morning from 0600 to 1100 UTC when observa-
tions exhibit higher precipitation intensities. No substan-
tial temporal shifts in the timing of the wettest and driest
hours of the day are found for both reanalyses.

5 CASE-STUDIES

Besides the global statistical assessment for quantifying
the overall ability of SPHERA and ERA5 to represent

precipitation, it is relevant to investigate their simulation
of specific meteorological conditions leading to extreme
rainfall. For this reason, this section analyses two relevant
case-studies of severe rainfall events in Italy: the precipita-
tion occurrence leading to the flood of the Secchia river in
January 2014 (Section 5.1), and the extreme precipitation
associated with multiple mesoscale convective systems
(MCS) over Sardinia in November 2013 (Section 5.2).

5.1 Flood of the Secchia river (17–19
January 2014)

From 17 to 19 January 2014, the passage of an upper-level
trough over north-central Italy produced moderate to very
intense rainfall over the whole Po river valley. A large
amount of rainfall fell over the Emilian catchments of the
Secchia and Panaro rivers, two right tributaries of the Po
river originating from the Apennines, thus leading to their
flood. This event caused one fatality, the evacuation of
approximately 10,000 people, and damage of roughly €500
million due to the failure of the Secchia river embankment
(D’Alpaos et al., 2014; Porcù and Aragão, 2019).

On the 17th, the low-level flow bringing maritime
moist air, forced by the favourable synoptic configura-
tion, impacted the northern Apennines and was forced
to uplift. The result was the formation of intense and
long-lasting orographic rainfall starting over the moun-
tains and extending on their leeward side over a large
sector of the southern Po valley. The associated precip-
itation event was active from the early morning of the
17th over the Apennine ridges, reaching heavy accumula-
tions in a few hours and intermittently persisting up to the
evening of the 19th, with a more widespread extension.

The accumulated precipitation in 72 hr simulated
by SPHERA and by ERA5 are compared to the ARCIS
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F I G U R E 13 Maps of 72 hr accumulated rainfall fields (0000 UTC 17 January to 2300 UTC 19 January 2014), for SPHERA (upper-left
panel), ERA5 (upper-right panel) over Italy, and ARCIS observative analysis (lower panel) over north-central Italy (the same sub-domain is
reported for the reanalyses maps on their respective lower-left corners). The grey solid dot represents the location of Civago where the ARPA
rain-gauge detected the maximum hourly amount of rainfall during the event (14.2 mm⋅hr−1) [Colour figure can be viewed at
wileyonlinelibrary.com]

analysis in Figure 13. The highest amounts of precipitation
are reached over the Apennine sectors, especially over
the Secchia river catchment (approximately around
44.3◦N, 10.5◦E). Here, the accumulations upstream
exceed 250 mm/72 hr, affecting the overall river embank-
ment stability and triggering the subsequent failure of
the embankment downstream. SPHERA simulates rain-
fall peaks reaching values as high as 300 mm/72 hr over
the river basin, in good agreement with the observed
magnitude. In comparison, the rainfall field simulated
by ERA5 does not exceed maximum accumulations of
150 mm/72 hr in the area. Furthermore, SPHERA spatial

distribution presents complex details as a consequence
also of the highly resolved topography in the area. As
a result, the localization of the most prominent rainfall
peaks is sharp and in approximate (but non-exact) agree-
ment with the respective observed pattern, with a tendency
for displacing the wettest spots towards the northeast. On
the other hand, the insufficient spatial detail of ERA5 pro-
duces a blunted, widespread and smoothed rainfall field
over the event area.

The observed maximum rainfall rates are recorded on
the late morning of the 17th by a few isolated moun-
tain rain-gauges: the absolute maximum is detected in
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Accumulated precipitation in Civago, Jan 16-20, 2014

OBS

SPHERA

ERA5

F I G U R E 14 Accumulated precipitation for the period 16–20
January 2014, observed (black line) and simulated by SPHERA
(purple line) and ERA5 (turquoise line) at the station of Civago. The
vertical blue dashed line reports the timing of the observed
hourly-cumulated precipitation peak, while the red dashed line
indicates the timing of the Secchia river embankment failure
downstream [Colour figure can be viewed at wileyonlinelibrary.com]

Civago (1,011 m a.s.l), located upstream in the Secchia
river catchment, with 14.2 mm⋅hr−1 over 1100 UTC. The
most widespread and long-lived phenomena occurred dur-
ing the evening and night of the 18th when almost the
entirety of pluviometers located in the Panaro and Sec-
chia rivers basins recorded more than 5 mm⋅hr−1 for at
least three consecutive hours (Porcù and Aragão, 2019).
Figure 14 reports the temporal evolution of the heavy accu-
mulation over Civago. A bilinear interpolation is applied
to the reanalyses to perform a point-to-point comparison
with pluviometric data. A total of 174.6 mm fell by the end
of the first day of the event (17th). SPHERA well represents
this steep accumulation trend by matching the observed
peak time (between 0900 and 1200 UTC) and simulating
189.1 mm by the end of the 17th (i.e. roughly 8% more
than observed). By the end of the third day, character-
ized by less intense and more spatially distributed rain-
fall, SPHERA underestimates the total accumulation by
24%, producing 318.9 mm versus the 419.0 mm observed.
The high-resolution simulation maintains a good match
with rainfall timing throughout the event (as evident
by the black and purple profiles in Figure 14, particu-
larly during the intermittent phase of precipitation on
19 January). Moving to ERA5, its simulated field largely

underestimates rainfall accumulation for the entire dura-
tion of the event. The underprediction is 113.8 mm (i.e.
65% less than observed) by the end of the 17th, increas-
ing to 305.3 mm (i.e. 73%) by the end of the 19th. ERA5
also delays rainfall timing throughout the 3 days, indicat-
ing a lower ability to predict the correct temporal sequence
during all the phases of the orographically driven event.

This kind of extreme precipitation event, generated by
the interaction with the orography of a strong and humid
confluent flow ahead of a polar cold front, is frequent in the
Mediterranean region during the winter season (Krichak
et al., 2015). Evidence is provided by the observed spatial
distribution in DJF (Figure 5c) and recent investigations
(e.g. Grazzini et al., 2020a, 2020b).

5.2 Cyclone Cleopatra and MCSs over
Sardinia (18 November 2013)

During the autumn season over the Mediterranean Sea, a
series of factors may favour the formation and organiza-
tion of convective activity, namely, the strong temperature
gradients between the warm subtropical air and the colder
northern air masses, the still-warm sea surface releas-
ing large amounts of moisture in the lower troposphere,
and atmospheric instabilities caused by the more frequent
changes in the baric configurations at these latitudes fol-
lowing the end of the warm season (Jansa et al., 2000, 2001;
Nieto et al., 2005; Caillaud et al., 2021).

In this framework, the extratropical cyclone Cleopa-
tra formed in November 2013, starting from a deep
low-pressure trough in the westerlies and evolving into an
upper-air cut-off low-pressure system centred in southern
Europe. The result was extreme rainfall causing extensive
damage, loss of lives, and record-breaking accumulations
(ARPAS, 2014). The dynamical evolution of Cleopatra,
and the interaction with the complex orography of Sar-
dinia led to the development on 18 November of multiple
stationary MCSs over the island producing extreme precip-
itation. These are visible from the daily accumulation esti-
mated through SRI data obtained by combining radar with
rain-gauge observations (Figure 15, right plot). The central
and left plots of Figure 15 report the respective daily accu-
mulated rainfall fields simulated by SPHERA and ERA5.
The ability of the high-resolution reanalysis to simulate
the convective band structures leading to severe rainfall
is evident. ERA5 produces a well-localized precipitation
field. However, its results are excessively smoothed, with
low spatial detail, presenting daily accumulations below
90 mm. The accumulated intensities of SPHERA show
lower underestimation than ERA5: the simulated values
reach up to 150 mm versus the >400 mm detected, which
can be expected when comparing reanalysis simulations
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estimated as surface rainfall intensity (SRI) from radar/rain-gauge data (lower row) [Colour figure can be viewed at wileyonlinelibrary.com]

to observational datasets in case of extreme convective
rainfall (Hu and Franzke, 2020).

To get better insights into the temporal evolution of
the event, a comparison between SPHERA accumulated
rainfall and radar SRI estimates at hourly temporal reso-
lution is reported (Figure 16). During the early morning
(at 0500 UTC) of the 18th (panel a), SRI fields reveal
the initiation of moderate and localized rainfalls exceed-
ing 12 mm⋅hr−1 in central-southern Sardinia. These are
associated with the formation of the first convective cells
starting to get organized along narrow bands aligned with
the low-level flow direction (i.e. northwest) and resulting
from the orographic lift of the advected subtropical air.
The radar-based imagery then shows the permanence and

development of the convective bands during the rest of
the morning, gradually producing more sustained rainfall
with values larger than 25 mm⋅hr−1 (panel b). Convective
precipitation significantly intensifies and extends starting
from the early afternoon (1400 UTC, panel c), owing to
the upscale growth of the MCSs, as a result of the gradual
aggregation of the isolated convective cells, with partic-
ular emphasis over central-eastern Sardinia. The peaked
extension and strengthening of the MCSs derive from the
uninterrupted orographic lift, coupled with the gradual
approach of the strong thermal and pressure gradients
linked with the arrival of the cyclonic front (not shown).
This configuration triggers a decisive increase in the con-
vective activity and organization, besides favouring strong
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stationarity and then regeneration of the convective cells.
The marked stationarity of the MCSs is visible from the
comparison of SRI fields at 0900 UTC (panel b) with
1400 UTC (panel c), showing no significant spatial shifts
of the heavy precipitation bands in 5 hr. The two most
intense band structures located in central-eastern Sar-
dinia are characterized by very similar geometries and
dimensions, with cross-sections in the range of 5 to
15 km, and presenting extreme spatial gradients in pre-
cipitation at their borders (approximately 200 mm/5 km),
as further proof of their sharpened stationarity (Niedda
et al., 2014). SPHERA successfully simulates the correct
timing of hourly accumulations throughout 18 Novem-
ber, producing a remarkable agreement with the observed
precipitation field (Figure 16c,g). Already from the early
morning, the initiation of isolated and moderate rain-
fall is satisfactorily simulated, forming along short bands
that gradually organize and extend to larger areas. From
1400 UTC, the simulated intensification and extension of
the MCSs associated with the cold-front passage is evi-
dent by the resulting heavier precipitation rates. How-
ever, SPHERA rainfall estimates are spatially shifted com-
pared to the observations: the former are located more
westward (by ∼20 km) and have their axis slightly tilted
northwestward compared to the more northward-oriented
radar-based structures. The cause is possibly a slightly dif-
ferent localization of the simulated surface low-pressure
minimum of the cyclone (not shown): being further south
and west than observed it causes a slight tilt in the
convective band axis orientation and a westward shift of
their localization, respectively.

6 DISCUSSION AND
CONCLUSION

Rainfall is one of the most critical meteorological quan-
tities to be estimated in NWPs and climate monitoring
contexts. Severe rainfall represents one of the most impor-
tant causes of extended damage and societal costs in
Europe (Rebora et al., 2013; Spekkers et al., 2017), hence
the improvement in its representation is crucial (Feng
et al., 2021). The assessment of the potential added value
in the representation of extreme rainfalls as simulated
by SPHERA, a new CP regional reanalysis over Italy, is
the subject of the present investigation. SPHERA cov-
ers 1995–2020 with hourly temporal frequency at 2.2 km
horizontal resolution on 65 vertical levels (0–22 km) and
seven soil levels (0–14.58 m). The validation of precipita-
tion simulated by SPHERA, and the comparison with its
driver ERA5, is performed against the national rain-gauge
network Dewetra for 2003–2017. The methodology con-
sists of a spatial-neighbourhood technique after assessing

the optimal scale size to operate the upscaling aggrega-
tion. An excessive loss of detail in the representation of
precipitation fields is detected, especially for heavy rain-
fall occurrences, when using grid boxes excessively wide
(i.e. 100 or 200 km), as expected (Marsigli et al., 2008),
while finer resolutions have proven to perform similarly
to each other. Hence, a grid spacing permitting an ade-
quate sampling of both SPHERA and ERA5 is chosen
(i.e. 60 km).

The statistical analysis of precipitation permits assess-
ing the added value of the CP system, particularly in
terms of precipitation extremes for which higher ben-
efits are expected. Concerning heavy-rainfall geograph-
ical distributions, ERA5 locally underestimates precipi-
tation intensity throughout the year, especially over the
mountainous wettest regions (with a bias as large as
−12 mm⋅day−1 in DJF). SPHERA shows wet biases up
to 12 mm⋅day−1 in JJA over the plains and dry biases
of −9 mm⋅day−1 in DJF. Moving to the analysis of
daily-accumulated rainfall, ERA5 better represents weak
precipitation intensities with generally higher skill scores
and weak wet biases. The benefits of the CP setting are evi-
dent for moderate and heavy accumulations in all seasons.
In these cases, SPHERA successfully simulates severe rain-
fall occurrences, mainly related to warm-season locally
driven convective events, which ERA5 strongly under-
represents. The CP enhancement in skill scores shows a
tendency to overpredict the number of events when con-
sidering daily distribution maxima. This is most likely
due to under-sampling of the observed state rather than
a systematic deficit of the model, as proved by the almost
null frequency bias obtained for daily average precip-
itation. In terms of hourly accumulation maxima, the
accordance with the observed frequency stays stronger for
SPHERA at all rainfall intensities. At the same time, ERA5
produces an insufficient number of events worsening with
accumulation intensity. A further proof of the added value
of SPHERA is the improved accordance with the observed
average daily cycle of summer precipitation, compared to
the consistent amplitude underestimation proper of ERA5.

Two case-studies are considered to assess the abil-
ity of SPHERA to represent extreme precipitation and to
further compare the reanalysis systems in describing spe-
cific severe-rainfall events. Both cases relate to extreme
accumulations over a few hours resulting from orographic
lifting and MCSs producing floods and extensive damage.
ERA5 simulates blunted and smooth rainfall fields for both
events, underpredicting the observed intense accumula-
tions by 73% (when looking at the rainiest location for
one of the events). SPHERA successfully represents the
precipitation fields with a higher level of detail in their spa-
tial distribution, hourly-frequency timing, and intensity
of extreme precipitation. Anyhow, an underestimation of
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24% is detected in the same location (simulating an accu-
mulated rainfall peak of 318 mm/72 hr versus the observed
419 mm/72 hr). This result is expected when considering
the simulation of heavy rainfall accumulations, even when
performed with very fine spatial grid spacings (e.g. Buzzi
et al. (2014) using 1.5 km CP simulations obtained an
underestimation of 38% for a severe-precipitation event
exceeding 500 mm/24 hr). The results suggest the potential
of the CP system to reach high precipitation rates. In com-
parison, the stronger underestimation of the coarser ERA5
is most likely linked to the convection parametrization
included in the driver model. In this case, smooth rainfall
fields and a decreasing agreement with the observed state
with increasing rainfall intensity is obtained, as expected
when tailing the analysis towards the extremes (Rivoire
et al., 2021; Bandhauer et al., 2022). The underestima-
tion detected with SPHERA may potentially be linked
to the spatial shifts in the localization of the rainiest
areas and is acceptable in the context of high-resolution
weather simulations. Indeed, these mismatches fall into
the double-penalty class of occurrences, for which it is
challenging to match the observations with absolute preci-
sion. The cause is the intrinsic chaotic behaviour control-
ling deep moist convection, which is responsible for the
low predictability of the exact localization of the associated
convective processes, justifying the use of fuzzy verifica-
tion techniques for quantifying the performance of their
simulations (Marsigli et al., 2021). This issue could be
relevant in downstream modelling applications that
require high spatial precision, such as in hydrological
modelling (e.g. Lobligeois et al., 2014). Possible strate-
gies to overcome spatial phase errors in high-resolution
simulations when dealing with localized rainfall are the
additional assimilation of radar observations. This can be
done by employing a latent-heat nudging scheme (Wahl
et al., 2017) or post-processing reanalysis data with optimal
interpolation techniques (Bonanno et al., 2019).

These results prove the added value of SPHERA for
describing medium-to-severe local precipitation events,
owing to several improvements compared to its global
driver. These are: the finer grid spacing allowing for
an enhanced physical and microphysical description of
the processes, primarily due to not needing deep con-
vection parametrization, the resulting higher level of
topography detailing allowing for a better representation
of atmosphere–land interactions, and the better adher-
ence to assimilated regional observations. Previous stud-
ies reported multiple benefits related to increased grid
resolutions in numerical simulations, allowing an ade-
quate representation of local dynamical features and forc-
ings leading to or intensifying precipitation events (Buzzi
et al., 2014; Cassola et al., 2015; Clark et al., 2016; Wahl
et al., 2017; Klasa et al., 2018; Cerenzia et al., 2020;

Capecchi, 2021). Furthermore, the results obtained are
in line with those of recently produced CP hindcasts
over Italy, sharing similar characteristics with SPHERA,
and obtained by downscaling ERA5 with the BOLAM/-
MOLOCH model (Capecchi et al., 2022) or COSMO
model (Raffa et al., 2021; Reder et al., 2022). In Capec-
chi et al. (2022), similar wet frequency biases in repro-
ducing the 90th percentiles of annual, daily and hourly
rainfalls are detected for MOLOCH simulations at 2.5
km grid spacing, as opposed to the dry biases detected
with the BOLAM run at 7 km. Further, from the anal-
ysis of two severe-precipitation events, a higher level
of detail in the spatial characterization and less devia-
tion from maximum intensities is maintained with the
CP hindcast, despite underestimating the most extreme
rainfall observations (by 64% in one case). As regards
the hindcast obtained by downscaling ERA5 at 2.2 km
over 20 European cities (Reder et al., 2022), enhance-
ments over its driver are obtained in terms of the spatial
patterns of annual precipitation and the relative annual
maxima, as well as the monthly and hourly cycles of
precipitation. In fact, ERA5 tends to simulate precipita-
tion fields that are too smooth to give an appropriate
representation of rainfall extremes, in agreement with
the results of the present article. A significant differ-
ence between SPHERA and the CP-reforecasts mentioned
above is the lack of the additional assimilation of regional
observations in the latter. The assimilation procedure in
the production phase of the dataset is known to substan-
tially enhance the representation of the simulated atmo-
spheric state (Bollmeyer et al., 2015; Bonanno et al., 2019).
In SPHERA, this is accomplished by including several con-
ventional observations on the near-surface (SYNOP and
SHIP) or upper-air (TEMP, PILOT and AIREP) through
a continuous nudging scheme, permitting a better adher-
ence of the past-weather simulations to the observed atmo-
spheric state. The same observations are also assimilated
in the global driver ERA5. However, the much finer grid
spacing at which they are ingested in SPHERA (2.2 km
vs. 31 km of ERA5) substantially impacts their represen-
tativeness. Furthermore, it is worth noting that neither
reanalysis assimilates precipitation observations.

Concerning the observational data considered as the
reference state, a crucial aspect emerging is the critical
dependency of the performance of SPHERA and ERA5 on
the quality of rain-gauge measurements. In fact, as high-
lighted several times in the article, sparse pluviometric
data such as those of Dewetra, despite the enhanced spatial
density over the years, may be affected by various represen-
tativity issues, namely: measurement errors, spatial inho-
mogeneities due to lower station coverage in some areas
(i.e. especially in southern Italy or in mountainous regions,
where additionally slightly different sensor positioning
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may cause significant underestimations in the recorded
data: Crespi et al., 2018), and the non-constant number of
the sensors during the years examined which increased by
roughly 400% (from 1,500 in 2003 to 6,200 in 2017). For
these reasons, the results should be interpreted with cau-
tion, as the reference state is far from ideal. A possible way
to partly overcome spatial inhomogeneity issues may be
to consider multiple observation datasets, especially in the
form of high-resolution gridded analyses such as GRIPHO
(Fantini, 2019) or ARCIS (Pavan et al., 2019) over Italy. The
combined use of these datasets could enhance the uncer-
tainty quantification in describing the actual atmospheric
state. Anyhow, the data interpolation required to construct
these gridded datasets may be an additional source of error
due to the resulting intrinsic smoothing of the rainfall
fields, which constitutes a major limit, particularly for the
representation of extreme precipitation.

The encouraging enhancements revealed by simulat-
ing heavy rainfall and convection with CP settings still
leave room for improvement. Even if reduced, relevant
uncertainties in the simulations are still present at these
scales. A major one is the inability to explicitly resolve
shallow convection at the CP scales (Khairoutdinov and
Randall, 2006), which may also be detrimental in the simu-
lation of deep convection given the intrinsic bond between
these two processes (Teixeira et al., 2008). Consequently,
CP simulations are highly model-dependent, posing the
problem of the robustness of the results. A way to over-
come this issue is through multi-model ensemble-based
approaches with which it would be possible to “advance
parameterizations of unresolved physics and to assess the
full potential of CP models” (Prein et al., 2015). In this
context, several recent European efforts demonstrated the
potential that multi-model CP regional climate simula-
tions have for numerous aspects: better understanding
the response of convection extremes to human-induced
climate change and providing critical added value to
decision-makers due to the enhanced confidence in sim-
ulating convection extremes (Coppola et al., 2020), more
realistic representation of heavy precipitation with a sig-
nificant reduction of the hourly summer bias and a reduc-
tion of their temporal uncertainty (Ban et al., 2021), and
improved representation of fine-scale details of seasonal,
daily and hourly heavy rainfall (Pichelli et al., 2021).
In light of this, we believe that the combination of the
efforts leading to the recent development of similar CP
reanalysis/hindcast datasets over Italy (such as SPHERA
or Capecchi et al. (2022) and Reder et al., 2022) is of
paramount importance. Hence, the proposal is to jointly
develop the first Italian multi-model high-resolution
reanalysis/hindcast ensemble. With this tool, we expect to
better assess the uncertainty of past climate, with a par-
ticular focus on high-impact convective events. Further,

it would be possible to quantify the role of data assimila-
tion in the production of SPHERA given the lack of this
component in its similar datasets.

To conclude from a broader perspective, numerous
European achievements have been recently made to
improve our understanding of hydro-meteorological haz-
ards, assess their risk, and mitigate their effects through
disaster-risk reduction strategies (Shah et al., 2020).
Among them, nature-based solutions play a central
role. Nature-based solutions, conversely to traditionally
engineered risk-reduction strategies, are designed to be
long-lasting, cost-effective, and environmentally sustain-
able (Sahani et al., 2019). Several European projects aim
at the investigation and enhancement of nature-based
solutions, such as OPERANDUM (OPEn-air laboRAtories
for Nature baseD solUtions to Manage hydro-meteo risks
Mapping: Debele et al., 2020), PHUSICOS (“According
to nature” in Greek: Baills et al., 2021), or RECONECT
(Regenerating ECOsystems with Nature-based solutions
for hydro-meteorological risk rEduCTion: Ruangpan
et al., 2020). The effectiveness of nature-based solutions
can be improved with a finer knowledge of the small-scale
heterogeneities characterizing the spatio-temporal mete-
orological configurations (Qiu et al., 2019). This is
possible through CP simulations able to better describe
high-impact weather events, such as severe precipitation
and wind gusts associated with deep convection activity
(Weisman et al., 1997). Finally, applications in climate
monitoring can also benefit from high-resolution datasets,
which can improve the understanding of climate change
impacts on a regional basis, help identify the mecha-
nisms accountable for local climatic features, and add
information on the climatology of severe weather-related
phenomena.
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APPENDIX A - SKILL SCORES

This section summarizes the statistical methods used to
assess the performance of the reanalysis systems. For
a more detailed description, the reader is referred to
Wilks (2019). These methods calculate verification indices

for categorical forecasts, that is, forecasts distinguishing
only between events and non-events (yes/no forecasts)
related to the occurrence of exceedance of certain precipi-
tation thresholds. For each threshold, a 2× 2 contingency
table (see Table A1) is built from the joint distributions
of forecasts (i.e. reanalysis, in our case) and observations,
determining the frequency of forecast/observation pairs
falling within each of the four possible categories (a, b, c
and d in Table A1).

From the results of the contingency tables, it is possible
to calculate a variety of scalar attributes assessing different
aspects of the simulations under examination. The follow-
ing reports the indices adopted in the present work using
the terminology defined in Table A1:

• POD, or hit rate: describes the fraction of observed “yes”
that has been correctly forecasted, ranges between 0 (i.e.
worst possible forecast: not even one observed event
has been forecasted) and 1 (i.e. perfect forecast: all the
observed events have been correctly simulated). It is
defined as

POD = a
a + c

• FAR: describes the fraction of the simulated “yes”
events that actually did not occur, ranges between
0 (i.e. perfect forecast: the simulations did produce
not even one false detection) and 1 (i.e. worst possi-
ble forecast: all the simulations produced false event
detections). It can be expressed as the SR through
the relation SR = 1−FAR, which is alternatively used
(e.g. in the abscissa of the performance diagram). It is
defined as

FAR = b
a + b

• TS or Critical Success Index (CSI): measures the fraction
of observed and/or forecast events that were correctly
predicted, ranges between 0 (i.e. worst possible forecast:
not even one forecast was correctly simulated) and 1
(i.e. perfect forecast: all the forecasts were correctly pre-
dicted without missing any observed event or producing
any false alarm). TS can be expressed as a nonlinear
combination of POD and FAR, and this property is
exploited in the performance diagram where POD is
plotted against SR. It is defined as

TS = a
a + b + c

=
( 1

POD
+ 1

1 − FAR
− 1

)−1

• Frequency Bias (BIAS): evaluates the deviation of
the simulated from the observed frequency of event
occurrences, and it is defined as their ratio. With the
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T A B L E A1 2× 2 contingency table representing the
relationship between forecast/observation pairs for the
dichotomous non-probabilistic verification related to the
occurrence of an event

Observed

Yes No

Forecast Yes a b a+ b

Hits False alarms Forecast yes

No c d c+ d

Misses Correct negatives Forecast no

a+ c b+ d a+ b+ c+ d

Observed yes Observed no Total

frequency bias, it is possible to evaluate the tendency of
the forecasting system to underestimate (BIAS< 1) or
overestimate (BIAS> 1) the number of observed events.
It ranges from 0 to infinity, and the score for the perfect

forecast is 1 (i.e. equal frequency of occurrence between
forecasts and observations). It is defined as

BIAS = a + b
a + c

• A way to summarize all four indices is with the per-
formance diagram (e.g. Figure 6), which exploits the
geometrical relationships between the scalar attributes,
permitting a more comprehensive evaluation of the
performance. A good forecast would lie in the top-right
corner of the diagram, where POD, SR, TS and BIAS
approach unity. At the same time, deviations in a par-
ticular direction would indicate relative differences in
POD and SR and, thus, in TS and BIAS. The variability
in the scores from sampling is estimated with a boot-
strap resampling technique of 1,000 new data samples
and shown in the diagram as “cross-hairs”. The reader
is referred to Roebber (2009) for a detailed description
of the performance diagram.
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