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ABSTRACT: Understanding frictional phenomena is a fascinating fundamental problem
with huge potential impact on energy saving. Such an understanding requires monitoring
what happens at the sliding buried interface, which is almost inaccessible by experiments.
Simulations represent powerful tools in this context, yet a methodological step forward is
needed to fully capture the multiscale nature of the frictional phenomena. Here, we
present a multiscale approach based on linked ab initio and Green’s function molecular
dynamics, which is above the state-of-the-art techniques used in computational tribology
as it allows for a realistic description of both the interfacial chemistry and energy
dissipation due to bulk phonons in nonequilibrium conditions. By considering a
technologically relevant system composed of two diamond surfaces with different degrees
of passivation, we show that the presented method can be used not only for monitoring
in real-time tribolochemical phenomena such as the tribologically induced surface graphitization and passivation effects but also for
estimating realistic friction coefficients. This opens the way to in silico experiments of tribology to test materials to reduce friction
prior to that in real labs.

I. INTRODUCTION
It is estimated that nearly one-third of the energy produced by
fossil fuels to power vehicles is spent to overcome friction.1

Improved tribology technologies could dramatically reduce
fuel consumption and CO2 emissions. However, with respect
to other technologies based on materials, tribology is
remarkably less advanced. The reason resides in the complexity
and variety of the phenomena that occur at the sliding buried
interface, which is difficult to monitor in real time by
experiments. Simulations have a great potential to advance
tribology, particularly those based on quantum mechanics,
which is important for an accurate description of the chemical
processes in conditions of enhanced reactivity. However, ab
initio simulations as well as most of the atomistic methods
nowadays used in tribology do not account for the energy
dissipation by phonons.

At the atomistic level, frictional forces appear during the
relative motion of two surfaces in contact because their
interaction energy changes as a function of the relative lateral
position, giving rise to a corrugated potential energy surface
(PES). The energy for climbing the PES hills, provided by the
external force, is partially lost in nonadiabatic hill descents via
phonon excitation. It is clear from this simplified description of
the frictional slip that the amount of dissipated energy is
governed by two main factors: the PES corrugation and the
phonon propagation into the bulks in contact. The PES
corrugation is determined by the electronic properties of the
interface,2 while phonon excitation and propagation depend on
the elastic properties of the infinite bulks. The latter also
determines how the applied mechanical stresses are transferred

to the sliding interface. In silico experiments able to provide a
quantitative estimate of the kinetic friction coefficient should
then rely on a multiscale approach that includes both the
electronic degrees of freedom at the interface and the
vibrational degrees of freedom in the semi-infinite bulks.

Such a multiscale scheme is highly desirable also to
accurately describe the activation mechanisms of tribochemical
reactions, chemical processes involving environmental or
lubricant molecules confined at the sliding buried interface.
The rate of these processes is highly accelerated with respect to
reactions thermally activated at the open surface in static
conditions.3,4 For example, thin films known as “tribofilms” are
synthesized in situ by mechanical rubbing additive molecules
confined within micro-asperities contacts. These films are
critical in preventing the cold sealing of nanoasperities and
reducing the macroscopic friction and wear resistance of
operating machinery parts. Mechanosynthesis, which exploits
impact forces to efficiently produce functional compounds and
medicines without the use of solvents5,6 is another important
example where the control of the stress-assisted reactions is
highly desirable.
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Quantum mechanics (QM)-based molecular dynamics
(MD) simulations can uncover elementary mechanisms of
tribochemical/mechanochemical processes.4,7 Indeed, they
have provided useful insight into several tribological
phenomena such as the effects of humidity on the lubricity
of carbon-based coatings,8,9 two-dimensional (2D) materials
like graphene, and transition-metal dichalcogenides.9−11 More-
over, they allowed monitoring in real time the first stages of
tribofilm formation from commercial additives12−14 or hydro-
carbon molecules.15 However, these simulations cannot be
used to quantify the kinetic friction coefficient because the
limited thickness of the slabs which is typically used to model
the solids in contact is too thin to contain the wavelength of
the dissipated phonons. Indeed, several studies have reported
that the energy dissipation associated with phonons, such as
thermal conductivity and friction, are critically dependent on
the size of the simulated systems.16−19 The phonon-energy
dissipation occurs when a sliding solid resonates with low-
frequency and long-wavelength modes of the counter solid.20

To describe such dissipative phonon modes in the simulations,
one should directly involve the many solid atoms for long
wavelengths and their slow dynamics, which cannot be
approximated by naive methods such as velocity-proportional
damping terms attached to the slab model.17,18

Green’s function (GF) molecular dynamics simulations and
the related theory have been used to unleash the limitation of
the limited system size.17−26 This approach projects the
dynamical response of all of the degrees of freedom of the
infinite solid atoms into a Green’s function, which can excite
phonons of any long wavelengths that propagate toward the
infinite bulk system without reflection. In other words, the
phonon dissipation is implemented in a slab system, even
though only the finite degrees of freedom are actually
calculated. Convolutions of the Green’s function with applied
forces represent effective forces of the surface atoms that take
the infinite solid atoms into account in the dynamics. However,
the calculation of the convolution is a critical computational
bottleneck for the use of GF MD. A solution for such a
problem has been recently proposed for general surfaces,20

based on the elegant analytical solution of the Green’s function
using a fast convolution method.27−30 Therefore, the GF MD
method can now be applied to large-scale simulations of
realistic systems previously considered too computationally
demanding. However, this framework is based on classical
force fields, where the electronic degrees of freedom necessary
to accurately describe the surface−surface interaction and the
tribochemical processes are not considered.

To overcome this limitation, we propose a new multiscale
approach that combines the strengths of the QM MD and GF
MD. This is realized by a hybrid method that links the
quantum-mechanical and GF molecular-mechanical parts of
the system.31 The hybrid QMGF MD method can be used to
obtain accurate quantitative estimates of the friction forces
taking both interface chemistry and phonon dissipation into
account. This can open the way to a novel understanding of
tribological phenomena and allows for the execution of
accurate tribochemistry experiments in silico.

The manuscript is organized as follows: Section II presents
the theoretical framework (Sections II.I and II.II) and the
computational implementation (Sections II.III−II.VI) of the
GF MD method. An example of application is provided in
Section III, focusing on the tribological properties of diamond
as a function of surface hydrogenation and showing that the

hybrid QMGF MD method is able to provide a quantitative
estimation of the kinetic friction coefficients in agreement with
experiments. Finally, the conclusions of this work are given in
Section IV.

II. METHODS
Here we describe the theoretical method and the numerical
strategies implemented in the developed multiscale code. We
start by reviewing the GF MD methodology shown in our
previous work20 and then include details on the fast
convolution and thermo-barostats. Finally, the hybrid add-
remove method is presented, along with numerical strategies
for stabilizing the dynamics in QMGF MD simulations.
II.I. Green’s Function of a One-Dimensional Chain.We

begin with a semi-infinite one-dimensional chain as a simple
example, which assists the readers in understanding the GF
MD for general surfaces presented later. A chain composed of
harmonic oscillators is considered, and the atoms are identical
and connected with monotonic bonds modeled with springs of
constant K. The equations of motion are

= + =

= < <+

m
t

u t K u u f t i

m
t

u t K u u u i

d
d

( ) ( ) ( ) 1

d
d

( ) (2 ) 1i i i i

2

2 1 1 2 1

2

2 1 1

where m and ui are the mass and displacement of the ith atom,
respectively. The external force f1 is applied only on the edge
atom i = 1. The displacement of the edge atom is
mathematically written as the convolution form of the Green’s
function G32 with the force as

=u t G t f( ) ( ) ( )d
t

1
0 1 (1)

The Laplace transformation of eq 1 is

=u z G z f z( ) ( ) ( )1 1 (2)

where z is a coordinate in the complex space. It should be
noted that G(z) is numerically more important than G(t) in
GF MD with respect to both the fast convolution and the
thermo-barostats methods explained later.

An atom, labeled by i = 0, is then coupled on top of the edge
atom i = 1. This new atom becomes a surface atom under an
external force, and its equation of motion after the Laplace
transformation is

= +mz u z K u z u z f z( ) ( ( ) ( )) ( )2
0 0 1 (3)

where f is an external force on the new edge atom i = 0.
Because f1 in eq 2 becomes counteracting force of the first term
on the right-hand side of eq 3, eq 2 becomes

=u z KG z u z u z( ) ( )( ( ) ( ))1 0 1 (4)

By inserting eq 4 into eq 3 to eliminate u1, we obtain

i
k
jjjj

y
{
zzzz= +

+
u z mz K

KG z
f z( )

1 ( )
( )0

2
1

(5)

An important argument is that this addition of the i = 0 atom
to a semi-infinite system in this way does not essentially change
the original system due to its infinity. This invariant feature,
called semi-infinite periodicity, simplifies the derivation of the
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Green’s function. Namely, because the periodicity tells that eq
2 is equivalent to eq 5, we can derive

i
k
jjjj

y
{
zzzz= +

+
G z mz K

KG z
( )

1 ( )
2

1

(6)

eq 6 is readily solved as

i
k
jjjj

y
{
zzzz= + +G z

K
K

mz
( )

1
2

1 1
4

2

Derivation of G(z) without using the semi-infinite periodicity
is more complicated as shown in ref 18. Semi-infinite
periodicity is a key to generalize the method applicable to
any surface system.
II.II. Green’s Function of a General Surface. The

strategy to derive the Green’s function of a general three-
dimensional semi-infinite solid is the same as the one-
dimensional chain. Let us consider a general crystalline surface
as shown in Figure 1. We define a surface layer that is a set of

unit cells laterally aligned in the periodic boundary conditions.
Each layer is labeled with an index starting from the surface i =
1, 2, ···∞. This concatenation of the layers in the surface
normal direction constitutes the semi-infinite solid. We write
the equation of motion for the system as

i
k
jjjj

y
{
zzzz+ =M

t
D t tu fd

d
( ) ( )

2

2 1
(7)

where M is an atomic-mass diagonal matrix. The vector u
represents the atomic displacements of the entire system,
where u = (u1, u2, ···)T and ui is the displacement vector of the
atoms in the ith layer. The external force vector f1 is applied
only to the surface layer i = 1. The D matrix is referred to as an
internal-force matrix that represents elastic constants of bonds

for all of the atoms. Vectors, matrices, and scalars are indicated
in bold, uppercase, and lowercase letters, respectively. We
normalize eq 7 by the mass using an N = M−1/2 operator.

i
k
jjjj

y
{
zzzz+ =

t
D t tu fd

d
( ) ( )

2

2 1
(8)

where we define D̃ = N D N, ũ = N−1 u and f1̃ = N f1.
A standard approach to include the periodic boundaries is

the discrete Fourier transformation. A set of surface lattice
vectors R// points to the origins of the lateral positions of the
constituent unit cells in the layer (see Figure 1, top). The
discrete Fourier transformations of arbitrary vector x and
matrix X of the layer are

= ·

= ·

× ·

n

X X

n

x k k R x R

k k k R R R

k R

( ) exp( i ) ( )/

( , ) exp( i ) ( , )

exp(i )/

R

R R

// // // //

// //
,

// // // //

// //

//

// //

where k// is the surface reciprocal vector of R// and n is the
number of unit cells in the layer. We use a matrix notation
X(k//) when the matrix is diagonal with the k// basis.

According to Bloch’s theorem, the internal-force matrix D is
diagonal in the k// basis due to the inherent periodicity of the
system. In the initial conditions u(t = 0) = u̇(t = 0) = 0, eq 8
becomes

=

= +

z G z z

G z z D

u k k f k

k k

( , ) ( , ) ( , )

( , ) ( ( ))

// // 1 //

//
2

//
1

(9)

after the discrete Fourier and Laplace transformations.
Recalling the external force vector f1̃ is applied only on the
surface layer i = 1, ũ1 is

=z G z zu k k f k( , ) ( , ) ( , )1 // 11 // 1 // (10)

where Gii′ is the corresponding element of G in the layer
indices i and i′. In the R// basis, eq 10 becomes

=z G z zu R R R f R( , ) ( , ) ( , )
R

1 // 11 // // 1 //

// (11)

An additional layer i = 0 is piled up on the surface system by
connection with the i = 1 layer. Before applying the semi-
infinite periodicity, we decompose the internal-force matrix D̃
into an intralayer term L that represents the bonds within the
layer, and interlayer terms D̃low ⊕ D̃low′ and D̃up ⊕D̃up′ ,
representing the bonds to the lower and upper layers,
respectively (see Figure 1). Namely, the matrix representation
of D̃ in the layer index is

Figure 1. Schematic image of the semi-infinite surface system. The
supercell consists of unit cells, and it repeats periodically along the
surface lateral direction and infinitely along the direction normal to
the surface. The layers are labeled by indices i that increase as going to
the bulk direction. The colored bonds indicate interlayer terms D̃up
and D̃low of the i = 2 layer; these quantities are used in Section II.II.
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As in the previous subsection, we first write the equation of
motion of the new layer

=

+

z z L z

D z

D z

z

u R R R u R

u R

R R u R

f R

( , ) ( ) ( , )

( , )

( ) ( , )

( , )

R

R

2
0 // // // 0 //

low 0 //

low // // 1 //

//

//

//

(12)

The external force f ̃ is applied only on the i = 0 layer. Then,
giving that f1̃ is a counteracting elastic force between ũ0 and ũ1,
eq 11 becomes

i

k

jjjjjjj
y

{

zzzzzzz

=

× +

z G z

D z D

z

u R R R

u R R R

u R

( , ) ( , )

( , ) ( )

( , )

R

R

1 // 11 // //

up 1 // up // //

0 //

//

//

(13)

The Fourier transformations of eqs 12 and 13 yield

= +

+

z z L D z

D z z

u k k u k

k u k f k

( , ) ( ( ) ) ( , )

( ) ( , ) ( , )

2
0 // // low 0 //

low // 1 // // (14)

= × +z G z D z D

z

u R k u k k

u k

( , ) ( , ) ( ( , ) ( )

( , ))

1 // 11 // up 1 // up //

0 // (15)

Inserting eq 15 into eq 14 to erase ũ1, we obtain

= + + *z z L D z zu k k k f k( , ) ( ( ) ( , )) ( , )0 //
2

// //
1

// (16)

where D̃* is an effective interlayer matrix defined by

* = +

×

D D D G z D

G z D

k k

k k

( )(1 ( , ) )

( , ) ( )

low low // 11 // up
1

11 // up //

Finally, the semi-infinite periodicity promises that eqs 10
and 16 are equivalent because the new layer should respond to
external forces in the entirely same manner as the original
surface. We obtain an equation for the Green’s function as

= + + *G z z L D Gk k( , ) ( ( ) ( ))11 //
2

// 11
1

(17)

The matrices L and D̃ are numerically estimated by phonon
calculations of the bulk system based on ab initio calculations.
Eq 17 is solved by conventional Newton−Raphson algorithms.
II.III. Green’s Function Molecular Dynamics. The three-

dimensional displacements of the semi-infinite surface layer
atoms are described by a linear combination as

+u up g (18)

where up, ug ∈ RN×3 are a particular solution and general
solution32 of the equation of motion, respectively, and N is the
number of the surface atoms in the unit cell. The solution up
represents trajectories driven by an external force f applied on
t h e s u r f a c e l a y e r , a t i n i t i a l c o n d i t i o n s

= = = =t tu u( 0) 0, ( 0) 0
tp

d
d p .

The general solution ug, on the other hand, is that without
external force but in arbitrary initial conditions

= =t tu u( 0), ( 0)
tg

d
d g . Notably, ug can represent the thermo-

stat and barostat of the system when their statistic features are
related to the Green’s function.

This subsection provides numerical recipes on how to
compute up and ug.
II.III.I. Particular Solution and Convolution. By using the

Green’s function in eq 17, the equation of motion of up can be
written as

=M
t

t tu k f kd
d

( , ) ( , )
2

2 p // GF // (19)

=t A tf k k f k( , ) ( , ) ( , )d
t

GF //
0

// // (20)

where the Laplace transformed A is defined as A(z, k//) = z2

N−1 G11(z, k//)N and f is an applied force on the surface layer.
The reduced force fGF has a convolution form, which becomes
a computational bottleneck if discrete integral algorithms are
used. The integral range grows as time t increases and the
entire history of the force trajectory should be saved in
memory. Indeed, the simulation time and memory allocation
are proportional to O(t2) and O(t), respectively.

A fast convolution based on modified Talbot’s inverse
Laplace transformation (mTILT)27−30 reduces this notorious
computational costs into O(tlog(t)) for the simulation time
and O(log(t)) for memory allocation. The conventional
inverse Laplace transformation of an arbitrary function X(z)
is defined by

=
+

X t X z z( )
1

2 i
( )e d

c

c
zt

i

i

where the constant c is a real number larger than zero. This
integral path is called Bromwich contour. The idea of mTILT
is that the Bromwich contour is bent in such a way as to
encircle singular points of X(z) on the imaginary axis, as shown
in Figure 2. Coordinates of the singular points of the Green’s
function are identified by a line search of G11(z = iω′, k//),
where ω′ is a real number variable. The mTILT divides the
time range [0, T] into a set of time ranges Il as follows

= [ ] = [ ] =I h I B h T T B h0, , , , (2 1)l
l

l l
l

0
1 (21)

where h is a time step and l = 1, 2, ···, L. The integer L satisfies
(2BL − 1) h ≥ T and B is an arbitrary integer greater than 1.
The integral path used in Il is defined as
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= + +z ( ) i ( cot( ) i )l
l l l

where the geometry parameters are μl = μ0/Tl, μ0 = 8, νl = ν0(1
+ ωl/β), ν0 = 0.6, and β = π μl ν0/2.

For example, Figure 2 illustrates the shapes of the paths zl.
The widths of l = 0 and l = 1 paths are large enough to enclose
all of the three singular points. As l increases, the width of the
path μlνlπ/2 decreases because μl decreases. The number of l =
2 paths, in this example, becomes three, and each path encloses
each of the singular points.

In this manner, the mTILT designs the integral paths to
secure high numerical accuracy of the inverse Laplace
transformation, depending on the time interval Il. Namely,
when t ∈ Il, the inverse Laplace transformation is

=

+ =

=

X t X z
z

N
X z

z

X z e

( )
1

2 i
( ( ))e

d
d

d

1
2i( 1)

( ( ))e
d ( )

d

( )

l z t
l

j N

N
l

j
z t

l
j

j N

N

j
l

j
l z t

( )

( )

l

l
j

j
l

(22)

where a trapezoidal rule in the integral range [−π, π] is used
with discretization θj = j π/N + 1, j = −(N + 1), ···, N + 1. We
defined = +z N/2i( 1)j

l
j
ld

d
and zjl = zl(θj). For notation

simplicity, eq 22, which represents the single path embracing
all of the singularity, will be used in the following. In the case
of the plural paths as l = 2 in Figure 2, contributions calculated
by eq 22 are merely summed up.

Then, the mTILT is applied to the convolution task in eq
20. A range of the simulation time [0,T] is divided according
to eq 21 in the convolution routine. Namely, when
[ ]t a t b I, l, the convolution is approximated as

=

A t

A z b a z

k f k

y k

( , ) ( , )d

( )e ( , , , )

a

b

j N

N

j
l

j
l z t b

j
l

// //

( )
//

j
l

(23)

where y(b, a, z,k//) = ∫ a
b ez(b−τ) f(τ,k//)dτ. Here, we omit k//

variable unless the context needs it explicitly. The quantity y(b,
a, z) is known to be a solution of the following differential
equation at t = b

= + =
t

t a z t a z t a a zy zy f y
d
d

( , , ) ( , , ) ( ), ( , , ) 0

(24)

We then approximate y by time-discretized f(tk). The time
interval [a, b] is split into a sequence of partial intervals [a + tk,
a + tk+1], where tk = k × h and k = 0, ···, n = (b − a)/h.

In t ∈ [a + tk, a + tk+1] ⊂ Il, eq 24 is expressed as

= +

+ =
t

t a z z t a z t

a t a z
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We apply a linear approximation f(a + tk + hθ) ∼ θfk+1 + (1 −
θ)fk, where fk = f(a + tk). As a result, the approximated solution
yk′ can be obtained via a recursive expression with respect to
the index k
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Since the mathematical components have been prepared, we
now describe the fast convolution integral. Denoting t = tn+1,
we divide the range of convolution into two regions as
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The modified Talbot path of I0 calculates the first term as
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Figure 2. Schematic of integral paths of the mTILT. The paths
labeled by index l are used in the time range Il in eq 21. The
parameter σl indicates a center of the contour in the imaginary axis,
which is set with respect to imaginary parts of the singular points. The
ωl is assigned to the distance of the imaginary parts between the
contour center σl and the farthest singular point. The width of the l
path is the distance of the imaginary parts between σl and a cross
section of the contour with the imaginary axis, which is equivalent to
μl νl π/2.
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The second term of eq 26 is decomposed into contributions of
the intervals Il=1,2,···,L−1, where L is the minimum integer that
satisfies tn+1 < 2BLh. We define τ0 = tn, τL = 0, and τl = qlBL h if l
≠ 0 nor L. An integer ql ≥ 1 is determined so as to satisfy

[ ] = ···+t B h B h l L, (2 1) , 1, 2, , 1n l
l l

1

The time range is divided as [0, tn] = ∪l=0[τl, τl−1]. Therefore,
by using the approximations in eqs 23 and 25, we derive
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In short, the convolution term is calculated by the sum of eqs
27 and 28, along with eq 25 which is used for efficient
calculation of the term y′. Then, because the reduced force is
obtained, the motion equation eq 19 is numerically solved to
simulate the trajectory. A simple example of specific steps to
show the y′ updating is given in the Supporting Information.
II.III.II. General Solution and Thermo-Barostats. We

consider the general solution ug in eq 18. Let us use u instead
of ug because of notation simplicity. The mass-normalized
equation of motion for the whole system in the k// space is
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where ũ = (ũ1, ũ2, ···)T in the layer index representation. The
Laplace transformation of eq 29 yields

+ = +z D z zk u k v k u k( ( )) ( , ) (0, ) (0, )2
// // // //

Using eq 9, we can describe the general solution in the Green’s
function framework, as

= +z G z zu k k v k u k( , ) ( , )( (0, ) (0, ))// // // // (30)

The initial condition includes all of the displacements and
velocities in the semi-infinite system. Obviously, there is an
infinitely large number of possible configurations of the initial
conditions. A reasonable policy to select a physically
meaningful one is to consider a thermostat. The semi-infinite
system is assumed to be located at a temperature T, and the
constituent atoms move according to the thermal fluctuation.
Let this general solution be denoted by ũT. We modify eq 30
by using notations S(z) ≡ zG(z) and vT̃(z, k//) ≡ z ũT(z, k//),
and apply the inverse Laplace transformation.

= +t S t zv k k v k u k( , ) ( , )( (0, ) (0, ))T T T// // // // (31)

Here, we use the law of equipartition of energy
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T T

; // ; // B ,

; // ; //

where ξ refers to the components of the atomic coordinates (x,
y, z) and * is the complex conjugate. The bracket represents

the ensemble averaging operator. By applying the equipartition
law, eq 31 becomes

* =v t v k TS tk k k( , ) (0, ) ( , )T T; // ; // B , // (32)

that is called the fluctuation-dissipation theorem. This relation
tells that an auto-correlation of the general solution of the
velocity should be equivalent to the Green’s function.

Another useful general solution represents normal and shear
stresses. A semi-infinite system is located at 0 K temperature
under a uniform stress applied to the surface f(t, k//) =
−δkd//,0fs. The velocity solution of this system is

=t Sv k f k( , ) ( , )ds

t

k 0// ,
0

11 ////

where δ is the Kronecker delta. As time t goes, the semi-infinite
system deforms by the applied stress. In the limit of t → ∞, the
deformation eventually stops at a configuration that balances
the applied stress and elastic force, namely, ṽ(t → ∞, k//) = 0.
At this stage, the elastic energy stored by the deformation
produces a general solution vS̃(k//) that satisfies
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= = +
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we obtain

= =S zv k f k v( ) ( 0, )S s k 0 k 0// 11 // , ,// // (33)

Interestingly, this equation indicates that the applied stress is
proportional to the constant velocity term. Note that a general
solution from initial conditions of constant velocity, which is
ũ(0, k//) = 0, ṽ(0, k//) = v δkd//,0 is equivalent to eq 33. Namely,
the constant shear stress becomes the same as the initial
condition in which we start the dynamics by giving the
constant velocity to the semi-infinite solid system.

In short, by adding dũg/dt = vT̃ + ṽS to the trajectory of the
surface layer, we can control the temperature, normal stress,
and sliding velocity of the semi-infinite system.
II.III.III. Numerical Treatment of Thermostat. We show a

numerical recipe to generate random velocity which holds the
fluctuation-dissipation theorem in eq 32. An algorithm
proposed by Berkowitz33 is used. By assuming that ṽT;ξ(t,
k//) is periodic in an enough long period P, the Fourier series
expansion yields

= +
=

v t a t b tk( , ) ( cos( ) sin( ))T
n

n n n n; //
1

, ,
(34)

where ωn = 2πn/P. The random variables aξ,n and bξ,n are
assumed to be independent. By inserting eq 34 on the left-
hand side of eq 32, it becomes

*
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(35)

We extend the domain t ≥ 0 of Sξ,ξ′(t, k//) to ∞ ≥ t ≥ −∞ by
using Sξ,ξ′(|t|, k//). The right-hand side of eq 32 is modified as
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Because of the assumption that P is enough large, we can use
t h e c o s i n e t r a n s f o r m a t i o n
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Inserting eqs 35 and 36 into eq 32, we obtain relations of the
random variables required by the fluctuation-dissipation
theorem, as
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because randomness of the ṽT;ξ(t, k//), the ensemble average of
the magnitudes of aξ,n and bξ,n are equivalent: ⟨aξ,n aξ′,n* ⟩= ⟨bξ, n
bξ′, n* ⟩.

Then, we construct a covariance matrix Σ to generate the
random variables a and b.
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This matrix is the Hermite matrix, given [ ] = [ ]*S S, , . A
stochastic vector x = (A1,n, B1,n, ···, Aξ,n, Bξ,n, ···) that satisfies eq
37 can be generated by considering a multivariable Gauss
distribution with the covariance matrix Σ.
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where the number of elements of x is 2D. We define a matrix U
that diagonalizes Σ and its eigenvalue matrix λ. The variable x†

Σ−1 x is transformed as
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where y = U x. Inserting eq 39 into eq 38, the Gauss
distribution becomes
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Equation 40 indicates that is expressed by the products of
independent Gaussians that have no correlation between the
variables. Therefore, Box−Muller method can be used to
generate stochastic variables regulated by the Gauss distribu-
tion. The variable yi is calculated by

=y 2 log exp(2 i )i i 1 2

where θ1 and θ2 are uniform random variables ranging from 0.0
to 1.0. Then, converting x = U−1y, we obtain the thermal
velocity terms ṽT;ξ(t, k//) via eq 34. In this study, we use P =
219h.
II.IV. Coupling the QM and GF Systems. II.IV.I. Add-

Remove Method. To couple two systems of different scales,
their junction should be bridged smoothly.31,34−36 This study
uses an add-remove method, which is one of the hybrid
schemes for solids.31 Hydrogens are often used to cap the
boundaries of a QM system to stabilize the unsaturated edge
atoms, while mechanical contributions such as forces from the
artificial cap atoms are eliminated because they should not be
present in the junction.31,36 Figure 3 shows an outline of the

method in the diamond slab, where Hcap and Clink denote the
cap hydrogens and linked carbons, respectively. A surface
carbon generated by GF MD is indicated by CGF.

The add-remove method works as follows:
1. Hcap−Clink bonds are removed by subtracting the

corresponding classical force fields.
2. The QM and GF systems are connected with a classical

Clink−CGF bond.
3. The positions of Hcap are located along the projection of

the straight line connecting Clink and CGF. The bond
length of Hcap−Clink is fixed at its equilibrium distance.

Figure 3. Schematic representation of the add-remove method in a
diamond surface of the QMGF system. The force FMM indicates a
classical force field of the corresponding bond.
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4. The forces are corrected due to the constraint of the
Hcap position.

We describe the details of points 3 and 4. The constrained
position of the cap hydrogen rcap are

= +

=
| |

rr r u

u
r r
r r

cap link eq link GF

link GF
GF link

GF link (41)

where rlink and rGF are the positions of Clink and CGF,
respectively. The symbol req indicates the length of bond Hcap−
Clink fixed at its equilibrium distance. Due to the rcap constraint,
the forces should be corrected. We consider a Hamiltonian of
the whole system including contributions of the add-
remove method.

= + + r r r r( , ) ( , )QM GF add link GF remove link cap

where QM and GF indicate the original Hamiltonians of the
QM and semi-infinite harmonic oscillator systems, respectively
(see Section III for a description of the system). The addition
and removal operations in Figure 3 are represented by add
and remove, which come from the classical interactions of
Clink−CGF and Hcap−Clink, respectively. Given the constrained
rcap(rlink, rGF) in eq 41, the forces acting on CGF and Clink atoms
are
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where I is the unit matrix. Note that u (u)T indicates the
dyadic product. The first terms on the right-hand sides of eqs
42 and 43 consist of interaction forces obtained by GF MD in
eq 20 and QM MD simulations along with the add-remove
classical force terms, respectively. The second terms in eqs 42
and 43 come from the constraint of eq 41. These force terms
become zero if the classical force of Hcap−Clink completely
agrees with the QM bond. However, because the classical
model cannot reproduce the quantum method perfectly, these
constraint-force corrections should be included to keep the
energy conservation law.
II.IV.II. Refresh Strategy. Simulations of sliding friction

typically require several hundred thousand steps. As shown in
eq 20, the convolution of the GF MD increases its integral time
range as time evolves. This fact induces an accumulation of the
integral errors in such a long simulation, leading to inaccurate
dynamics and overall instability of the GF MD simulation. This
subsection provides a remedy for this issue.

Given that the error comes from the extension of the integral
region, an idea would be to reset the convolution before the

error cannot be ignored anymore. Figure 4 presents an outline
of this treatment, which we call ”refresh”. Two clocks t and tGF

are prepared for QM and GF MD systems, respectively. The
two clocks advance exactly in the same manner at the start of
the QMGF MD simulation. Once they arrive at a user-defined
trefresh, at which the GF MD numerical error is considered
critical, the positions rGF(trefresh) are saved as anchors in the
memory. At this point, the t clock stops, but only the tGF clock
is reset to zero to make the integral range of the convolution
zero. The positions rGF are connected to the anchored
positions with specific springs to be arranged to their initial
positions with respect to rlink. When we start the tGF clock, but
still keep the t clock stopped, the springs pull the CGF in such a
way that rGF returns to the anchored positions as a result of the
relaxation. After a certain relaxation time Δtrelax, the springs are
removed and the t clock starts to run together with tGF.

By iterating this refresh every time tGF = trefresh, we can
perform long and stable GF MD simulations. This treatment,
however, provides artificial effects to Clink when the t clock
restarts because the velocities of CGF are lost as a consequence
of the relaxation. Nonetheless, because Clink are the junction
atoms of the hybrid system in the QM bulk region (see Figure
5a), this error can be regarded as a perturbation that does not
affect surface phenomena if the QM slab model consists of
several atomic layers.
II.V. Computational Details. The internal-force matrix D

is calculated by static ab initio calculations of the diamond
bulk, based on density functional theory (DFT) and a DFT
linear-response approach to phonons calculation,38 performed
with the pw.x and ph.x solvers from the Quantum Espresso
package.37,39,40 The Perdew−Burke−Ernzerhof generalized
gradient approximation is used for the exchange-correlation
functional.41 Electronic wave functions are expanded on a
plane-wave basis set with a cutoff energy of 25 Ry, and ionic
species are described by ultra-soft pseudopotentials.42 The
matrix is approximated so that it only contains elements related
to the nearest-neighbor interactions. The off-diagonal elements
of the directional indices are also eliminated for the sake of
numerical simplicity.

For the add-remove method, the classical force field of the
Clink−CGF bond is set at the value of the corresponding
element of the internal-force matrix. The Clink−Hcap spring
constant is estimated from ab initio static calculations
performed on a fully H-terminated 2 × 1 (111) diamond
slab of 12 atomic layers. The estimated spring constant of the
surface normal direction is 0.2575 Ht/bohr, while for the
surface lateral direction is 0.0365 Ht/bohr. The stable bond
length of Clink−Hcap is req = 2.1043 bohr.

We implemented the QMGF MD hybrid method into the
Car-Parrinello solver cp.x. The time development of cp.x is

Figure 4. Schematic of the refresh treatment process. The dotted line
indicates a spring that is used for the relaxation step presented in the
main text.
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solved by the Verlet method, which does not use the velocities
of atoms explicitly. On the other hand, the GF MD uses the
general solutions to impose the temperature and stress by
adding the velocity corrections vT and vS. In order to merge the
velocity correction into the QM MD algorithm, we used the
leap-frog method that explicitly leverages the velocity term but
is compatible to the Verlet method, as follows
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where pGF, vGF, and rGF are momentum, velocity, and position
vectors of the GF MD atoms, respectively. The time step is set
to h = 0.1 fs, and the reduced force fGF is calculated by eq 20.
The parameters of mTILT are B = 11 and N = 60, which is
equivalent to the 121 integral points in the contour. The
singular points of the Green’s function are searched by
evaluating its first and second derivatives on the imaginary axis.
In the refresh treatment, we use trefresh = 50,000 h, the anchor
spring constant is 0.05 Ht/bohr for all of the x, y, and z
directions, and the relax time is 2000 h. Temperature is set to
300 K by the thermostat of the GF MD method.

The QM ions are thermalized by applying a Nose−́Hoover
thermostat with a frequency of 80 Thz and imposing an
average electronic kinetic energy of 0.25 atomic units on the
electron degrees of freedom. The electronic mass and the time
step of the molecular dynamics are selected to be 100 and 4
atomic units, respectively. At the beginning of our dynamic
simulations, the CP solver is employed to obtain the ground
state energy of the electronic wave functions with the steepest
descent algorithm. Subsequently, the hybrid QMGF MD code

is used to carry out the dynamic simulation. The computa-
tional parameters adopted for the CP scheme have been
carefully selected to achieve good accordance between the
temperatures of the QM and GF atoms during the dynamics of
the system under study.
II.VI. Summary of the QMGF Method. A pictorial

representation of the hybrid QMGF MD scheme and its
application to a prototypical tribochemistry system is offered in
Figure 5. The chemically active part of the system consists of
two surfaces in contact and some molecules eventually
confined between them (Figure 5a). The inclusion of the
electronic degrees of freedom is necessary to capture quantum
effects, such as the Pauli repulsion at the short distances
imposed by the applied load and the enhanced chemical
reactivity of confined species, which deeply affect the
tribological behavior. The two semi-infinite bulks are described
by a collection of an infinite number of harmonic oscillators of
first-principles-derived spring constants. Their effect is fully
taken into account by the surface atoms indicated in yellow.
The basic idea of GF MD is, in fact, that all of the internal
modes of an elastic solid can be integrated out and substituted
by effective interactions.24,43 In this way, only the trajectories
of the quantum atoms and the surface atoms treated by the GF
MD are needed, and no other bulk atoms are needed to be
included in the simulation. The workflow of the QMGF MD
method is shown in Figure 5b. The model for the bulk crystal
is constructed, and static first-principles calculations are used
to obtain the force matrix, which is used to calculate the
Green’s function. The QM and GF systems are finally coupled
via an add-remove scheme.31

III. RESULTS FOR DIAMOND INTERFACES
We employed our QMGF MD solver to study the sliding
interface between two diamond crystals and quantitatively
estimate the friction coefficient considering different concen-
trations of H atoms on the two mated surfaces. We focused our

Figure 5. Representation of a frictional interface described by the QMGF MD hybrid scheme. The GF MD atoms at the boundary of the QM
region are colored in yellow, and the semi-infinite bulks are represented as coupled harmonic oscillators (a). The workflow of the developed
QMGF MD program by linking an open-source ab initio code37 to the in-house developed GF MD code (b).
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attention on the C(111) surface, the most accessible cleavage
plane of diamond, and modeled the diamond-diamond
interface by adopting a supercell with (4 × 2) in-plane size,
containing two-faced slabs, each constituted of three bilayers of
carbon atoms. The slabs are externally passivated by hydrogen
atoms and the GF atoms are linked to these capping atoms, as
described in the Section II. The interfacial region, where the
two surfaces are faced, contains hydrogen atoms in different
concentrations and randomly distributed. In Figure 6, a lateral
view of all of the considered systems after 10 ps of sliding is
reported.

We performed molecular dynamics simulations at a
temperature of 300 K with an external load of 5 GPa for a
time interval of ∼50 ps. To generate the sliding motion, we
applied shear stresses of 1 GPa along the x direction by
applying external lateral forces in opposite directions on the
GF MD atoms of each slab. As described in Section II.III.II,
the surface slabs slide against each other at constant velocity if
there is no friction force, because the condition of the constant
shear stress is equivalent to a situation where we start the
friction test by imposing a relative velocity on the semi-infinite
solids.
III.I. Effects of Interfacial Adhesion on Kinetic

Friction. Three values of the H-coverage, θ, turned out to
be high enough to enable the sliding motion under the effects
of the applied lateral forces. Instead, the other coverages were
too low to prevent chemical bonds from forming across the
interface, which impeded the lateral displacement.

The results in Table 1 highlight the effect of surface
passivation on kinetic friction. A decrease in hydrogen

coverage always results in a friction increase with a
corresponding reduction in sliding velocity and average slab
separation, also shown in Figure 7a. This behavior can be

explained in terms of the chemical reactivity of the facing
diamond surfaces. When H atoms are removed from the
diamond surface, the terminal C atoms expose dangling bonds,
which are very reactive. The dangling bonds of two surfaces in
contact interact and cause a significant increase in the adhesive
friction of the system. The calculated friction coefficients are in
agreement with diamond-on-diamond experiments in an air
environment, where μk ranges between 0.01 and 0.1.44−46 This
extremely low friction has been detected for different surfaces
of diamonds, e.g., the (100),45,47−49 (110)47 and also for
nanocrystalline diamond films and diamond-like carbon
(DLC) employed as coatings in technological applications.46,50

Since our simulations are representative of a single asperity
contact, the most relevant data to compare with is the friction
coefficient of 0.05 measured for a diamond tip sliding on the
(111) diamond surface, which was obtained by dividing the
measured friction force by the applied load,49 as the
coefficients reported in Table 1. The study of the dependence
of the friction force on load through the QMGF MD method
will be the subject of further investigations.

Figure 6. Lateral view of the diamond-on-diamond systems after 10 ps of sliding motion. The surface energy increases with the number of
unsaturated carbon atoms, producing higher adhesion and smaller separation. When hydrogen is completely removed, a partial graphitization of the
interface can be recognized, and the interfacial separation becomes similar to the interlayer distance of graphite (3.3 Å).

Table 1. Results of the QMGF MD Simulationsa20

Quantities derived from the sliding dynamics

θ ⟨dC⟩ ⟨vx⟩ ⟨Fx
k/A⟩ μk

100% 4.04 51 0.15 0.03
75% 3.72 51 0.21 0.05
50% 3.25 48 0.27 0.06

aFor each hydrogen coverage, θ, the averages of the surface separation
⟨dC⟩ (Å), sliding velocity ⟨vx⟩ (m/s), kinetic friction force per unit
area ⟨Fx

k/A⟩ (GPa), and the kinetic friction coefficient μk are
calculated. ⟨ Fx

k ⟩ is calculated as the time average of the interfacial
forces acting on the GF atoms along the x direction. These are the
forces appearing in the convolution integral in eq 20. The kinetic
friction coefficient is calculated as the ratio between ⟨Fx

k⟩ and the
applied load on the GF atoms.

Figure 7. Interfacial separation for the 100, 75, and 50% passivated
systems during the QM MD (a) and QMGF MD (b) simulation of
sliding. The surface separation is calculated by considering the z
coordinates of the hydrogen atoms.
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In particular, for a diamond tip sliding on the (111)
diamond face, the friction coefficient obtained as the ratio of
the measured friction force and the applied load is 0.05,49

which is almost constant along any possible sliding direction
and independent from the applied load. Since our system may
be representative of a his experimental result are in agreement
with the values extracted from our simulations. It should be
kept in mind that the considered interfaces are commensurate,
and the magnitude of calculated friction coefficients can
change for the incommensurate case.51 However, we do not
expect that the trend observed by changing the degree of
interface passivation will change. The choice of considering
commensurate surfaces can be justified considering that our
system can represent a nano-asperity-contact, such as an AFM
tip, where the tip atoms are expected to conform to the
substrate because of the small area of contact, as shown by
simulations for silicon clusters and indirectly demonstrated by
the typical stick-and-slip behavior measured in FFM experi-
ments independently from the chosen tip/substrate pairs.52

The critical role of surface passivation by hydrogen or by
environmental molecules, such as water molecules, for
achieving low friction coefficients has been highlighted by
different experimental works, both for diamond and DLC
films.53−55 Static first-principles calculations have quantified
this effect on the ideal interfacial shear strength9,56−58 and ab
initio MD simulations allowed us to monitor the tribochemical
processes that lead to the diamond surface passivation by water
during sliding.4 As a further step, we are now able to assess
kinetic friction coefficients using QMGF MD simulations
thanks to the capability to provide proper control of
temperature, mechanical stresses, and energy dissipation in
nonequilibrium conditions.

We further reduce the H coverage by considering a
passivation of 25% and an H-free interface. In the former
case, the sliding motion occurs only in the first stages of the
simulations but then the slabs interlock due to the formation of
chemical bonds across the interface, which are not broken by
the applied lateral force. On the contrary, in the clean interface,
the motion occurs with no interlocking. In Figure 6, a snapshot
of the system acquired during the simulation reveals that a
graphitization of the surfaces is taking place due to a partial
rehybridization of the carbon surface bonds from sp3 to sp2.
This determines the formation of interfacial graphene layers,
which become almost detached from the diamond slabs.

The graphitization mechanism of carbon films induced by
sliding has been observed experimentally,59−61 and by MD
simulations,9,62 and it was related to the ultralow friction
coefficient of diamond. The realistic simulations here
performed clarify that the condition to achieve an ultralow
friction coefficient is to make the surface−surface interaction
change from chemical to physical. This condition can be
realized either by increasing the level of passivation above a
limiting value where the Pauli repulsion makes the surface
separation high enough to inhibit the formation of bonds
across the interface or by decreasing the passivation below a
threshold value, where the surface graphitization takes place.

To evaluate the effects of the elastic properties of the semi-
infinite bulks on the sliding dynamics and friction coefficients,
we compare the results of QMGF MD with those of QM MD,
obtained by decoupling the atomistic slabs from the bath of
harmonic oscillators. Figure 7 shows the vertical separations of
the diamond surfaces during the QM MD (a) and QMGF MD
(b) simulations, where the same initial relative position of the

two surfaces, external load, and shear are considered. In the
absence of a proper description of the inertia and elasticity of
the semi-infinite bulks through the GF MD, we observe a
marked bumping of the surfaces. The bumping oscillations
fade away quickly in the case of complete superficial
passivation while they persist for 75 and 50% cases. While
the average values of the surface separations are similar for the
two kinds of simulations, the lack of contact between the
surfaces after each bouncing event produces large system
accelerations in the QM MD simulations and makes any
quantitative estimate of frictional parameters absolutely not
meaningful. This would have been even more evident if a
model of the interface including roughness was used.

As a final point regarding the method, this is essential for
capturing the response of a semi-infinite bulk along the
direction normal to the interface. However, the computational
cost required by ab initio simulations is not feasible for
noncommensurate systems where large cells of simulations
along longitudinal directions are required.

IV. CONCLUSIONS
Classical tribology was developed in the context of mechanical
engineering, where friction forces are predicted on the basis of
analytical models of contact mechanics. With the advent of
nanotribology, it became possible to probe the tribological
behavior of a single nano-asperity and, thanks to the increased
power of supercomputers, reproduce it with fully atomistic
models. It was then highlighted the importance of taking into
account the atomic-scale roughness of the surfaces in
contact.63 Then, the need to go beyond the atomistic
description and consider also the electrons at the nano-
asperity contacts emerged in the context of tribochemistry.
Tight-binding MD and then more accurate, but computation-
ally expensive, ab initio MD were introduced in the field of
computational tribology to overcome the limited reliability of
force fields in describing stress-assisted reactions (a compre-
hensive review on computational tribochemistry can be found
here7).

All of the above-described approaches suffer from the
limitation of using slabs of finite thickness, thus the energy
introduced in the system through the application of external
forces is “artificially” removed by thermostats that mimic the
effects of the thermal bath consisting in the real systems of the
infinite degrees of freedom of the bulk. This approximation
makes any estimation of energy dissipation nonsense and
prevents a full understanding of the interplay of adhesive and
phononic contribution to fiction. To overcome these
limitations, we developed a multiscale method, the QMGF
method, that links ab initio to Green’s function MD.

We applied it to calculate the kinetic friction coefficient of
two semi-infinite diamond bulks in contact, obtaining results in
close agreement with experiments. We found that the friction
coefficient, friction mechanisms, and interface morphology
strongly depend on the degree of passivation of the diamond
surfaces. We observe a superlubric regime at high H coverages,
while below a threshold coverage, covalent bonds are
established across the interface that causes the surface
interlocking. This regime persists until the concentration of
adsorbates becomes low enough to allow for a shear-induced
change of hybridization of the surface carbon atoms from sp3

to sp2. Thanks to surface graphitization, the sliding motion is
recovered. Our results indicate that this phenomenon can
occur only when passivating species are almost absent from the
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interface; indeed, we observed graphitization for a clean
diamond interface.

The above results point to the great potentiality of the
QMGF method to provide highly accurate insights into
interface phenomena in nonequilibrium conditions. This
method may open the way to the investigation of other
multiscale phenomena, where the infinite number of the bulk
degrees of freedom, usually neglected in ab initio MD, is key in
determining the system response to an external stimulus.
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