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1  | INTRODUC TION

In its most profound essence, resilience is at the core of life and is in-
terpreted as the harmonic assemblage of the biochemical processes 

that are aimed at maintaining the identity, integrity, and autonomy of 
individual organisms against the perturbations induced by both inter-
nal and external environments. Developmental changes that occur 
during fetal growth and postnatal development are fast, massive, tightly 
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Abstract
The	global	population	of	individuals	over	the	age	of	65	is	growing	at	an	unprecedented	
rate	and	is	expected	to	reach	1.6	billion	by	2050.	Most	older	individuals	are	affected	
by multiple chronic diseases, leading to complex drug treatments and increased risk 
of physical and cognitive disability. Improving or preserving the health and quality 
of life of these individuals is challenging due to a lack of well-established clinical 
guidelines. Physicians are often forced to engage in cycles of “trial and error” that 
are centered on palliative treatment of symptoms rather than the root cause, often 
resulting in dubious outcomes. Recently, geroscience challenged this view, proposing 
that the underlying biological mechanisms of aging are central to the global increase 
in susceptibility to disease and disability that occurs with aging. In fact, strong cor-
relations have recently been revealed between health dimensions and phenotypes 
that are typical of aging, especially with autophagy, mitochondrial function, cellular 
senescence,	and	DNA	methylation.	Current	research	focuses	on	measuring	the	pace	
of aging to identify individuals who are “aging faster” to test and develop interven-
tions that could prevent or delay the progression of multimorbidity and disability with 
aging. Understanding how the underlying biological mechanisms of aging connect to 
and impact longitudinal changes in health trajectories offers a unique opportunity 
to identify resilience mechanisms, their dynamic changes, and their impact on stress 
responses. Harnessing how to evoke and control resilience mechanisms in individuals 
with successful aging could lead to writing a new chapter in human medicine.
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predetermined, and stereotyped, probably because they are driven by 
a redundant and self-correcting genetic “software.” This period of de-
velopment is followed by a time of relative stability, where changes in 
physical and cognitive function are small and only detectable by very 
sensitive tools or challenging tests. During this “middle” period, most in-
dividuals in the population are free of diseases (Blekhman et al., 2008; 
Olshansky,	2016).	However,	underneath	this	apparent	stability	there	are	
several compensatory and homeostatic mechanisms hidden that con-
stantly operate to preserve biochemical balance and prevent phenotypic 
derangements, as well as functional decline. Early in life, these mecha-
nisms are highly effective and provide a robust homeostasis, but begin 
to fade later in life, and unrepaired damage accumulates beyond the 
functional	threshold	(Figure	1).	The	extreme	variability	by	which	these	
mechanisms maintain a stable homeostasis explains why the variance of 
aging phenotypes expands over time, even at extreme old age despite 
the leveling force of selective mortality. Understanding the nature of 
these “resilience mechanisms” (homeostatic mechanisms, in green in 
Figure	1)	and	“accumulated	damages”	(entropic	forces,	in	red	in	Figure	
1),	as	well	as	finding	methods	to	assess	them	in	humans,	is	a	very	active	
area	of	investigation.	For	example,	while	the	condition	of	“frailty”	in	older	
persons is often defined as a “reduction of physiological compensation,” 
almost all criteria currently proposed are based on measures of dam-
age. Damage only emerges clinically when compensatory mechanisms 
are	exhausted	(Ferrucci	&	Fabbri,	2018).	As	shown	in	Figure	1,	physical	
decline, cognitive decline, and frailty may result from two interrelated 
mechanisms, one inducing and the other preventing damage, which may 
act	separately	or	jointly.	We	postulate	that	the	interaction	between	dam-
age and repair could explain why some individuals are aging “faster” and 
studying them jointly may point to the mechanisms of accelerated aging.

Studies	 in	 animal	 models	 have	 begun	 to	 reveal	 the	 nature	 of	
these mechanisms, and some assays for humans have been de-
veloped.	 Although	 many	 of	 these	 unique	 or	 composite	 measures	
generally track chronological age with a predictable schedule, the 
biology of their compensatory and homeostatic nature is only par-
tially explained and their relevance for health is limited to observa-
tional	studies	(Hilmer	&	Le	Couteur,	2016;	Kirkland,	Tchkonia,	Zhu,	
Niedernhofer,	 &	 Robbins,	 2017;	 Moreno-Villanueva	 et	 al.,	 2015;	
Newman	 et	 al.,	 2016;	 Niedernhofer,	 Kirkland,	 &	 Ladiges,	 2017;	
Richardson	et	al.,	2015;	Robbins	&	Niedernhofer,	2017).

In the next part of this manuscript, we will try to summarize what 
measures	of	aging	biology	are	currently	available.	We	are	 inspired	by	
two recent articles that outlined the “hallmarks” and the “pillars” of aging 
(López-Otín,	Blasco,	Partridge,	Serrano,	&	Kroemer,	2013;	Sierra,	2016),	
but we purposely limit this description to those measures that can be 
obtained in humans and we point to their validity, limitations, and poten-
tial	for	further	development.	For	most	biomarkers,	whether	they	reflect	
damage, compensation, or a combination of the two remains unknown.

1.1 | Genomic instability

The	 accumulation	 of	DNA	damage	 (somatic	mutations)	with	 age	
has been proposed as the primary cause of aging because of its 

effects on the fidelity of proteins and the regulation of gene ex-
pression.	 While	 mutational	 load	 plays	 a	 role	 in	 carcinogenesis,	
solid evidence that the accumulation of somatic mutations dur-
ing normal aging is associated with the phenotypes of aging is 
lacking.	 Studies	 that	 compare	 single-cell	 and	 multicellular	 DNA	
high-fidelity sequences and studies that systematically screen for 
mutation in single cells that are clonally expanded are underway. 
Spontaneous	somatic	mutations	accumulate	in	human	B	lympho-
cytes, and it has been suggested that they may contribute to func-
tional	decline	of	B	lymphocytes	in	the	elderly	(Zhang	et	al.,	2019).	
Similarly,	 a	 slight	 accumulation	 of	 DNA	 somatic	 mutations	 with	
aging has been demonstrated in skeletal muscle satellite cells from 
human	biopsies	 (Franco	et	al.,	2018),	while	Bae	et	al.	 sequenced	
DNA	 from	 single	neurons	 and	demonstrated	 that	 somatic	muta-
tions accumulate with aging from 4 months to 82 years of age (Bae 
et	al.,	2017;	Lodato	et	al.,	2017).	The	functional	relevance	of	these	
mutations is unknown.

While	several	biochemical	and	cell-based	tests	of	DNA	repair	ca-
pacity have been developed and shown to be reasonably objective and 
reliable,	quantification	of	DNA	repair	capacity	in	humans	remains	un-
satisfactory	 (Berwick	&	Vineis,	2005;	Trzeciak	et	al.,	2008;	Trzeciak,	
Barnes,	&	Evans,	2008).	The	few	tests	described	in	the	literature	have	
not been applied to large populations and lack independent validation 
(El-Zein	et	al.,	2010;	Fang,	Neutzner,	Turtschi,	Flammer,	&	Mozaffarieh,	
2015;	Hamann	&	Hartwig,	2014;	Holton,	Ebenstein,	&	Gassman,	2018;	
Nagel	et	al.,	2014;	Reddy	et	al.,	2016).	Moreover,	there	is	no	consensus	
on gold standard assays and most methods require large amounts of 
freshly collected pure cell types, and these only address repair capacity 
of	a	 subset	of	 specific	 lesions.	For	example,	 the	comet	assay,	which	
quantifies	alkaline-labile	sites	and/or	specific	DNA	strand	breaks,	has	
been used for years, but the reliability and validity of its results have 
been questioned, partly due to extreme sensitivity to experimental 
conditions	(Collins,	2014;	Saha	et	al.,	2008).	In	addition,	some	assays	
require repair of an exogenous substrate, but the substrate design has 
been	proven	challenging	 (Latimer	&	Kelly,	2014;	Reddy	et	 al.,	 2016;	
Shen,	Fox,	Ahn,	&	Loeb,	2014).	DNA	somatic	mutations	accumulation	
and	loss	of	efficiency	of	DNA	repair	mechanisms	are	likely	important	
drivers of biological aging. However, reliable and valid assays for their 
quantification should be developed before they can be used in human 
research and in clinical applications.

1.2 | Telomere length

Telomeres are tract of tandem repeats of the six-nucleotide unit se-
quence	 (TTAGGG)	 that	 protect	 chromosome	 ends	 from	 eliciting	 a	
DNA	damage	response.	During	DNA	replication,	the	DNA	polymer-
ases	are	unable	to	fully	recreate	the	end	of	the	telomeric	DNA	and	
telomeres shorten during each cell division, which ultimately leads 
to	replicative	senescence	in	vitro	(Allsopp	et	al.,	1992;	Greider,	1998;	
Herbig,	Jobling,	Chen,	Chen,	&	Sedivy,	2004).	The	enzyme	telomer-
ase	can	 replenish	 the	 lost	 telomeric	DNA,	a	mechanism	that	plays	
a fundamental role in cancer growth, but there is no evidence that 
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telomerase is a resilience mechanism for aging. Telomeres have been 
proposed to serve as a “molecular clock,” and short telomeres have 
been hypothesized to contribute to the aging process (Greider, 2010; 
Saretzki,	2018;	Vera,	Bernardes	de	Jesus,	Foronda,	Flores,	&	Blasco,	
2012;	 Whittemore,	 Vera,	 Martinez-Nevado,	 Sanpera,	 &	 Blasco,	
2019).	 A	 13-year	 prospective	 study	 in	 the	 Baltimore	 Longitudinal	
Study	of	Aging	reported	that	indeed,	average	telomere	length	short-
ens with aging, but the direction and magnitude of change are differ-
ent in different circulating cells and extremely heterogeneous across 
individuals, with a substantial percentage of individuals showing 
average lengthening. Interestingly, significant amounts of telomere 
shortening were explained by decreased telomerase activity in the 
cells that express this enzyme, suggesting that measuring telom-
erase	activity	 in	human	cells	may	be	 informative	 (Lin	et	al.,	2015).	
Several	reports	indicate	that	short	telomeres	may	be	associated	with	
central	obesity	(García-Calzón	et	al.,	2013;	Mundstock	et	al.,	2015),	
lifetime	accumulation	of	stress	(Epel	et	al.,	2004;	Osler,	Bendix,	Rask,	

&	Rod,	2016;	Puterman	et	al.,	2016),	increased	risk	of	cardiovascu-
lar	events	(Baragetti	et	al.,	2016;	Hammadah	et	al.,	2017),	reduced	
immune	 response	 to	 influenza	 vaccination	 (Najarro	 et	 al.,	 2015),	
mortality	 (Batsis	 et	 al.,	 2017;	Goglin	 et	 al.,	 2016;	Heidinger	 et	 al.,	
2012),	and	several	adverse	health	outcomes	(Lin	et	al.,	2015;	Lorenzi	
et	al.,	2018;	Lustig	et	al.,	2017;	Sanders	&	Newman,	2013).	Genetic	
mutations associated with short telomeres have been shown to 
cause dyskeratosis congenita, pulmonary fibrosis, and several other 
severe medical conditions that are grouped under the definition of 
“telomere	syndrome”	 (El-Chemaly	et	al.,	2018;	Ungar	et	al.,	2018).	
Different methods are available to measure telomere length in circu-
lating cells, including restriction fragment analysis and fluorescence 
in	situ	hybridization.	Observational	studies	using	these	techniques	
have reported contrasting results, and longitudinal studies have re-
vealed erratic changes over time, possibly due to large measurement 
error (Berglund et al., 2016; Bischoff et al., 2006; Eerola et al., 2010; 
Lin	et	al.,	2016;	Müezzinler,	Zaineddin,	&	Brenner,	2013;	Solomon	et	

F I G U R E  1  Normal	aging	(a)	and	different	pathways	to	accelerated	aging	(b	and	c).	A.	Robust	resilience	at	a	young	age	fully	compensates	
damage.	Over	time,	damage	accumulates	that	is	not	fully	compensated	by	resilience.	Toward	the	end	of	life,	resiliency	is	overwhelmed,	and	
new	stresses	cause	fast,	unopposed	damage	accumulation	that	leads	to	frailty	and	eventually	to	death.	Accelerated	aging	may	occur	either	
because	of	faster	rates	of	damage	accumulation	(b)	or	because	of	rapid	shrinking	and	eventual	collapse	of	resilience	(c).	Note	that	even	in	the	
state	of	robustness,	damage	can	be	already	abnormally	high	(b)	and	resilience	already	abnormally	low	(c)
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al.,	2014).	Work	is	underway	to	establish	an	optimal	“gold	standard”	
assay	 for	 epidemiological	 studies	 (Behrens	 et	 al.,	 2017;	Montpetit	
et	al.,	2014).	At	this	stage,	 there	 is	not	enough	evidence	 in	the	 lit-
erature to consider measuring telomere shortening as a biological 
mechanism of aging or telomere length as a biomarker of biological 
aging. In general, the clinical relevance of measuring telomere length 
is unclear.

1.3 | Cellular senescence

Cellular senescence is a stress response mechanism characterized 
by replication arrest and complex changes in morphology, chro-
matin organization, secretome, and expression of typical protein 
biomarkers	(Muñoz-Espín	&	Serrano,	2014;	Rodier	&	Campisi,	2011).	
Conditions that trigger senescence include genomic instability, ex-
treme telomere shortening, metabolic and proteostatic stress, re-
active	oxidative	species	 (ROS),	oncogene	activation,	mitochondrial	
dysfunction, epigenetic changes, and other mechanisms that have 
not	been	fully	clarified	(Childs,	Durik,	Baker,	&	van	Deursen,	2015;	
Childs	et	al.,	2017;	López-Otín	et	al.,	2013).	In	general,	these	condi-
tions trigger a response that activates the tumor suppressor genes 
p53,	p16Ink4a, and p21 that utilize different pathways to induce cell 
cycle	arrest	(Hall	et	al.,	2017;	Liu	et	al.,	2009).	Most	studies	indicate	
that senescence-induced replication arrest acts as a tumor suppres-
sion mechanism, but other physiological roles are emerging, includ-
ing	 fetal	 organ	 development,	 wound	 healing,	 and	 aging	 (Baker	 &	
Petersen,	2018;	Pratsinis,	Mavrogonatou,	&	Kletsas,	2018;	Wiley	&	
Campisi,	2016;	Zhang,	Chen,	Liu,	Chen,	&	Liu,	2014).	Irrespective	of	
the nature of the senescence trigger, senescent cells develop a “se-
nescence-associated	secretory	phenotype”	(SASP)	and	secrete	pro-
inflammatory cytokines and chemokines, growth factors, and matrix 
proteases	(Andriani	et	al.,	2016;	Coppé,	Desprez,	Krtolica,	&	Campisi,	
2010;	 Strzyz,	 2016).	Notably,	 senescent	 cells	 become	 resistant	 to	
apoptosis and may persist in tissues for many years unless they are 
removed by the immune system, therefore interfering with tissue 
repair	 and	 regeneration	 (Kirkland	 &	 Tchkonia,	 2017).	 It	 has	 been	
proposed that the accumulation of senescent cells and the negative 
effects	of	SASP	proteins	on	 intercellular	matrix	and	on	progenitor	
cells cause tissue degeneration and dysfunction, which may be a pri-
mary cause of aging and specific age-related degenerative diseases, 
such as osteoarthritis, pulmonary fibrosis, atherosclerosis, diabetes, 
and	Alzheimer's	disease	(Baker	&	Petersen,	2018;	Bhat	et	al.,	2012;	
Boccardi,	 Pelini,	 Ercolani,	 Ruggiero,	&	Mecocci,	 2015;	Diekman	 et	
al.,	2018;	Palmer	et	al.,	2015;	Waters	et	al.,	2018).	A	 recent	study	
demonstrated that the number of cells expressing p16Ink4a in biopsy 
specimens of intramuscular fat was independently correlated with 
lower muscle strength and worse walking performance (Justice et 
al.,	2018).	Although	there	is	clear	evidence	that	the	burden	of	senes-
cence increases with aging in human CD4+ lymphocytes, kidney epi-
thelia, and skin, the quantification of senescence in vivo is complex 
because, in spite of the defined set of core features, heterogene-
ous forms of senescence develop according to different triggers and 

tissues	(Koppelstaetter	et	al.,	2008;	Liu	et	al.,	2009;	Waaijer	et	al.,	
2012).	Importantly,	none	of	the	characteristic	biomarkers	described	
above,	 including	 p53,	 p21,	 senescence-associated	 β-galactosidase, 
and	SASP	factors,	are	specific	to	senescence,	and	p16Ink4a is not al-
ways	present	(Biran	et	al.,	2017;	Haferkamp	et	al.,	2009;	Laberge	et	
al.,	 2012;	Noren	Hooten	&	Evans,	 2017;	Rodier	&	Campisi,	 2011).	
Attempts	 to	quantify	 senescent	cell	 accumulation	 in	humans	 from	
blood	biomarkers	assume	that	the	SASP	proteins	dispersed	in	tissues	
spill	over	into	circulation	and	may	be	detected	there.	Although	none	
of these proteins are specific, jointly they could potentially identify 
a unique pattern that tracks the global burden of senescence across 
tissues or perhaps even show some specificity for their tissues of ori-
gin	(Tanaka	et	al.,	2018).	The	quantification	of	senescence	in	biopsies	
from	different	human	tissues	is	an	active	area	of	research.	Overall,	
quantification of senescence burden in humans is informative to-
ward assessing biological aging, and measures based on cellular se-
nescence are likely to enter soon into clinical research and practice.

1.4 | Epigenetics

The term epigenetics encompasses the ensemble of mechanisms 
that modulate gene expression programs that adapt to environmen-
tal cues and define stable phenotypic characteristics from differen-
tiated	cell	types	(e.g.,	an	adipocyte	rather	than	a	neuron).	The	three	
major	epigenetic	operators	are	DNA	methylation,	histone	modifica-
tion,	 and	 noncoding	RNA.	Among	 these	 three,	 a	 growing	 body	of	
literature	emphasizes	the	role	of	DNA	methylation	in	aging	and	age-
related	chronic	diseases	in	humans	(Gensous	et	al.,	2017;	Levine	et	
al.,	2018).	In	part,	this	is	because	DNA	methylation	is	easily	assessed	
in circulating cells and is relatively stable over time. In contrast, 
measuring histone posttranslational modification and noncoding 
RNA	 in	 humans	 is	 expensive,	 time-consuming,	 not	 fully	 standard-
ized, and amenable to rapid changes over relatively short time pe-
riods. In addition, while studies have related histone modifications 
and	microRNA	 to	 cell	 senescence	 and	 diseases	 in	 animal	 models,	
whether these epigenetic mechanisms are drivers of biological aging 
in	humans	is	uncertain	(Bu,	Wedel,	Cavinato,	&	Jansen-Dürr,	2017;	
Neault,	 Couteau,	 Bonneau,	 De	 Guire,	 &	 Mallette,	 2017;	 Panda,	
Abdelmohsen,	 &	 Gorospe,	 2017;	 Sidler,	 Kovalchuk,	 &	 Kovalchuk,	
2017).	Biochemically,	DNA	methylation	 is	the	addition	of	a	methyl	
group	to	the	5th	carbon	of	the	pyrimidine	ring	of	a	cytosine	(C)	base	
juxtaposed	to	guanine	(G)	through	a	phosphate	(p)	bond	(CpG),	thus	
forming	a	5-methylcytosine	(5mC).	The	presence	of	5mC,	especially	
at a promoter site, is generally believed to suppress gene transcrip-
tion by blocking transcription factors from binding to promoter 
sequences, but accumulating evidence suggests that many other 
mechanisms are at play, including the control of transcriptional splic-
ing	(Avin,	Umbricht,	&	Zeiger,	2016;	Lev	Maor,	Yearim,	&	Ast,	2015;	
Young	et	al.,	2005).	DNA	methylation	is	easily	assessed	in	blood	cells	
and tissues using microarrays, pyrosequencing, and whole-genome 
bisulfite	sequencing	methods.	As	each	CpG	site	can	be	differentially	
methylated in different cells, the site-specific percent methylation of 
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each CpG across the genome can be quantified. The percentage of 
5hC	at	specific	CpG	sites	can	be	used	to	derive	an	“epigenetic	clock”	
that tracks closely with chronological aging (Hannum et al., 2013; 
Horvath,	2013).	Their	discovery	has	been	confirmed	by	many	studies	
across tissues, individuals, and populations, in addition to examining 
gestational	age,	and	in	longitudinal	analyses	(Horvath,	2013;	Knight	
et	al.,	2016;	Maierhofer	et	al.,	2017;	Quach	et	al.,	2017;	Sehl,	Henry,	
Storniolo,	Ganz,	&	Horvath,	2017).	These	findings	demonstrate	that	
some of the biological changes that occur with aging are not purely 
stochastic, but rather follow a predefined pattern that is constant 
across individuals and populations. Theoretically, the discrepancy 
between chronological and epigenetic clocks identifies individuals 
who are biologically older or younger than their chronological age. 
Consistent with this notion, “epigenetically older” individuals have 
a higher risk of developing several age-related diseases and prema-
ture mortality for all causes and cardiovascular diseases (Chen et al., 
2016;	Marioni	et	al.,	2015).	In	some	studies,	older	epigenetic	age	has	
been associated with biomarkers of inflammation, as well as physi-
cal	and	cognitive	function	(Degerman	et	al.,	2017;	Gale	et	al.,	2018;	
Levine	et	al.,	2018;	Ligthart	et	al.,	2016;	Marioni	et	al.,	2015;	Quach	
et	al.,	2017;	Spiegel,	Sewal,	&	Rapp,	2014).	Unsurprisingly,	the	effect	
size	for	these	associations	is	relatively	small.	As	the	CpG	methylation	
sites included in epigenetic clock were selected based on chrono-
logical age, “discarded” CpG sites that deviate from chronological 
age are probably relevant in identifying accelerated or decelerated 
aging. In addition, most of the selection process of the relevant CpG 
sites has been cross-sectional, which could be profoundly biased 
by secular trends. More recently, a second generation of epigenetic 
clocks	was	developed	that	uses	a	“phenotypic	age”	(PhenoAge)	index	
for reference and/or is tuned to cardiovascular risk factors, includ-
ing	smoking	(GrimAge),	and	is	strongly	predictive	of	mortality	and	a	
cadre of age-related adverse health outcomes, including disability 
and	dementia	(Levine	et	al.,	2018;	Lu	et	al.,	2019).

A	 recent	 literature	 suggests	 that	 hydroxymethylcytosine	
(5hmC),	 an	 oxidized	 form	of	 5-methylcytosine	 (5mC)	 produced	 by	
Fe-dependent	dioxygenases	named	TETs	(ten–eleven	translocation)	
during	demethylation,	is	a	novel	DNA	epigenetic	modulator	with	bio-
logical	roles	different	from	5mC	(Tahiliani	et	al.,	2009).	This	view	has	
been reinforced by the discovery of proteins showing a binding pref-
erence	for	5hmC	rather	than	5mC	(Mellen,	Ayata,	Dewell,	Kriaucionis,	
&	Heintz,	2012).	Traditional	bisulfite-based	assays	for	DNA	methyl-
ation	cannot	distinguish	5mC	 from	5hmC,	but	new	methods	were	
recently developed for the regional detection and quantification of 
5hmC	(Szwagierczak,	Bultman,	Schmidt,	Spada,	&	Leonhardt	2010;	
Terragni,	Bitinaite,	Zheng,	&	Pradhan,	2012).	Differently	from	5mC,	
abundance	of	5hmC	is	highly	variable	across	tissues,	from	less	than	
0.5%	in	the	blood	(Godderis	et	al.,	2015)	to	close	to	13%	in	the	brain	
(Wen	et	 al.,	 2014)	where	 it	 is	particularly	high	 in	mature	neurons.	
Although	 the	 role	 of	 5hmC	 has	 not	 definitively	 been	 established,	
contrary	to	5mC	that	is	thought	to	inhibit	gene	expression,	5hmC	is	
enriched in coding regions of actively transcribed genes and some 
studies have shown positive correlations with expression levels 
(Branco,	Ficz,	&	Reik,	2012;	Colquitt,	Allen,	Barnea,	&	Lomvardas,	

2013;	Yu	et	 al.,	 2012).	There	 is	 evidence	 that	hydroxymethylation	
increases with aging in several brain regions, including the hippo-
campus,	while	declining	 in	peripheral	mononuclear	cells	 (Szulwach	
et	al.,	2011,	Valentini	et	al.,	2016).	Brain	hydroxymethylation	has	also	
been associated with age-related neurodegenerative diseases such 
as	Alzheimer's	disease	(Zhao	et	al.,	2017).	Whether	information	on	
hydroxymethylation and TET proteins in circulating cells or other tis-
sues provides information on biological aging is unknown and is an 
active area of research.

The development of epigenetic clocks is based on an agnostic 
statistical approach because biological mechanisms driving the clock 
are	unknown.	When	these	mechanisms	are	clarified,	 tools	could	be	
developed that would be even more useful for clinical applications. 
Also,	the	extent	to	which	age-related	epigenetic	changes	can	be	con-
sidered evidence of damage or compensation remains unclear. Based 
on developmental theories, during the prenatal and early-life periods, 
epigenetic mechanisms refine the genetic program to be optimally re-
sponsive	to	present	and	future	environmental	challenges.	For	exam-
ple, massive epigenetic changes occur when food is scarce, and these 
changes may remain even when food becomes available later on, 
contributing to diabetes and metabolic syndrome (Bygren et al., 2014; 
Jiménez-Chillarón	et	al.,	2012;	Jimenez-Chillaron	et	al.,	2006;	Lorite	
Mingot,	Gesteiro,	Bastida,	&	Sánchez-Muniz,	2017).	The	theory of de-
velopmental origins of health and disease hypothesizes that these early 
changes may be adaptive at the time they develop but may become 
maladaptive	 in	 later	 life,	 causing	 chronic	diseases	 (Barker,	Osmond,	
Winter,	Margetts,	&	Simmonds,	1989;	Ben-Shlomo,	Cooper,	&	Kuh,	
2016;	Pembrey,	Saffery,	&	Bygren,	2014;	Wadhwa,	Buss,	Entringer,	
&	 Swanson,	 2009).	 The	 phasic	 approach	 to	 this	 theory	 can	 be	 ex-
tended to the continuum of the lifespan, and epigenetic changes may 
be considered as a cluster of predefined adaptive mechanisms that 
are implemented to counteract the effects of other typical biological 
changes that occur with aging. The essential elements of this theory 
are	summarized	in	Figure	2.	Research	regarding	the	epigenetic	clock	
clearly demonstrates that methylation in some specific CpG sites is 
reset at birth, as witnessed by the “zero” epigenetic age of cord blood 
(Knight	et	al.,	2016).	During	aging,	there	is	continuous	epigenetic	tun-
ing of the predefined gene expression in response to environmental 
stress. This adaptive response, which likely occurs hundreds of times 
over the life course, may be fully adaptive or lead to negative conse-
quences in subsequent years. Thus, in agreement with the theory of 
developmental origins of health and disease, over the life course phys-
iological responses to stress are affected by all previous adaptations 
to stress already encountered, and the readout of this status is an 
epigenetic	signature	(Ben-Shlomo	et	al.,	2016).	Thus,	“epigenetic	ac-
celeration” would mark adaptive epigenetic changes that occur with 
aging earlier than average because of early imbalances between dam-
aging and resiliency mechanisms. Interestingly, since methylation can 
be modified, interventions that “slow down” aging, thereby reducing 
the need for compensatory mechanisms, would also result in younger 
epigenetic	age.	Overall,	DNA	methylation	is	emerging	as	one	of	the	
most robust biomarkers of “biological aging” and represents a promis-
ing area for research that may be translated soon into clinical practice.
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1.5 | Mitochondrial function

Mitochondria are organelles found in all human cells, and their pri-
mary role is energy production through oxidative phosphorylation. 
They	are	also	involved	in	signaling	by	producing	ROS,	as	well	as	by	
regulating cellular metabolism, apoptosis-programmed cell death, 
and other functions that are biologically important but cannot be 
reliably	measured	 in	vivo	 in	humans	 (Gonzalez-Freire	et	al.,	2015).	
The mitochondrial theory of aging proposes that accumulation of 
damage	to	mitochondria	and	mitochondrial	DNA	(mtDNA)	 induces	
aging by reducing energy availability and increasing production of 
ROS	that	damage	macromolecules	 (Harman,	1956,	1972,	2003).	 In	
humans, mitochondrial metabolic function is often studied in vitro 
in skeletal muscle by respirometry in permeabilized muscle fibers 
obtained through biopsies, as well as in vivo by phosphorous mag-
netic resonance spectroscopy (P31	MRS)	(Lanza	&	Nair,	2010).	Using	
both methods, it has been demonstrated that the degree of oxidative 

phosphorylation declines with aging in humans in the heart, skel-
etal muscle, and other tissues (Coen et al., 2012; Consolini, Ragone, 
Bonazzola,	&	Colareda,	2017;	Fabbri	et	al.,	2016;	Gonzalez-Freire	et	
al.,	2018;	Holloway	et	al.,	2018).	Reduced	mitochondrial	function	is	
associated with mobility decline in older persons, while the effect 
is	mediated	by	a	 reduction	of	muscle	 strength	 (Zane	et	 al.,	 2017).	
Currently, there are no measures of mitochondrial function in hu-
mans that are fully satisfactory. P31	MRS	is	noninvasive	and	reliable	
but is too expensive for large population studies, and this method 
only measures global skeletal muscle oxidative phosphorylation, 
which depends not only on the intrinsic mitochondrial function but 
also on the capacity of circulatory and microcirculatory system to 
deliver to mitochondria adequate amount of oxygen and oxidative 
substrates. Muscle biopsies are invasive but safe and allow for a 
variety of measurements—including direct mitochondrial respira-
tion—as well as a wide range of biochemical assays that target dif-
ferent components of the energetic and biogenesis machinery, and 

F I G U R E  2  Epigenetic	model	of	continuous	transcriptional	tuning	leading	to	the	aging	phenotype.	Long-term	adaptation	within	the	
lifespan requires epigenetic modulation of the transcriptional machinery. Environmental clues are read by specific biosensors and encoded 
into epigenetic changes that modulate transcriptional subroutines. The new epigenetic landscape is meant to be adaptive but may fail its 
purpose and become maladaptive in either the short or long term. Ineffective adaptation/compensation negatively impacts the rate of 
biological aging and, in turn, phenotypic and functional aging. In the scheme, we show only three cycles of epigenetic adaptation, at any 
point in time; the epigenetic landscape results from the sum of hundreds or even thousands of adaptive cycles that occur throughout life; 
and some more relevant than others. Importantly, very little is known about how environmental stresses are sensed and encoded into 
epigenetic changes
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the quantification of characterization of morphological changes 
using	microscopy	imaging	techniques	(Coggan,	1995;	Hughes	et	al.,	
2015).	Many	of	these	indexes	have	been	associated	with	aging	and	
increased	risk	of	chronic	conditions	(Consolini	et	al.,	2017;	Gonzalez-
Freire	et	al.,	2018).	Several	assays	are	available	for	measuring	ROS	
generation, antioxidant defense, and oxidative damage to macro-
molecules	 in	 blood,	 cells,	 and	 tissues	 (Dikalov	 &	 Harrison,	 2014;	
Starkov,	2010).	The	significance	of	these	oxidative	stress	biomark-
ers for aging is uncertain, as in many cases they have been stud-
ies in specific medical conditions and not in the context of aging 
studies	 (Al	Shahrani,	Heales,	Hargreaves,	&	Orford,	2017;	Hayashi	
&	Cortopassi,	2015;	Weber	et	al.,	2017).	Studies	 that	use	multiple	
mitochondrial biomarkers have revealed only a slight intercorrela-
tion between the markers and aging, suggesting that they tap into 
different	biological	dimensions	(Lara	et	al.,	2015;	Larsen	et	al.,	2012;	
Marrocco,	 Altieri,	 &	 Peluso,	 2017;	 Xia,	 Chen,	McDermott,	 &	Han,	
2017).	Recent	data	support	the	hypothesis	that	mtDNA	copy	num-
ber and degree of heteroplasmy—assessed in human blood cells and 
in tissue biopsies—provide information on mitochondrial physiology 
that is relevant for aging and age-related diseases (McDermott et al., 
2018;	Moore	et	al.,	2017;	Zhang,	Wang,	Ye,	Picard,	&	Gu,	2017).	Both	
measurements can be utilized via PCR methods or, more recently, by 
derivation	 from	genome	 sequencing	data	 (Ding	 et	 al.,	 2015).	High	
mtDNA	copy	number	is	considered	to	be	a	proxy	measure	of	mito-
chondrial	volume/function,	and	high	mtDNA	copy	number	in	blood	
is associated with better health and survival among older persons, 
but the direction of this association may be reversed in certain con-
ditions,	 such	 as	 diabetes	 (Mengel-From	 et	 al.,	 2014;	Moore	 et	 al.,	
2017).	Humans	have	detectable	levels	of	mtDNA-acquired	point	mu-
tations in circulating cells and whole blood and, notably, the burden 
of mutations increase with aging even when measured in inducible 
pluripotent	 stem	cells	 (Kang	et	 al.,	 2016;	Qian	et	 al.,	 2017).	Many	
of these mutations are haploinsufficient or recessive and, when 
they reach a critical threshold of accumulation, can contribute to 
declining	health	in	late	life	(Larsson,	2010;	Wachsmuth,	Hübner,	Li,	
Madea,	&	Stoneking,	2016).	Measures	of	mitochondrial	physiology	
and function are powerful biomarkers of biological aging. However, 
they require extremely careful standardization. In particular, blood 
measurements may be affected by changes in circulating cells and 
high	levels	of	mtDNA	copy	number	can	also	indicate	chronic	tissue	
hypoxia	(Eirin	et	al.,	2016).

1.6 | Proteostasis

The repair, recycling, and elimination of damaged macromolecules/
organelles have emerged as key processes in maintaining cell integ-
rity	and	function	(Cuervo	et	al.,	2005;	Cuervo,	Wong,	&	Martinez-
Vicente,	 2010).	 These	 complex	 goals	 are	 accomplished	 through	
different mechanisms, such as chaperon-dependent and chaperon-
independent autophagy, as well as protein biogenesis, folding, traf-
ficking,	and	degradation	(including	proteasomal	degradation;	Kaushik	
&	Cuervo,	2018;	Morimoto	&	Cuervo,	2014;	Wong	&	Cuervo,	2010).	

In animal models, autophagy and proteostasis become dysfunctional 
with aging. Rapamycin is an immunosuppressor that extends mam-
malian	 lifespans	 by	 inhibiting	 mTOR	 and	 stimulating	 autophagy.	
Genetic variants within core autophagy genes have been identi-
fied that contribute to human diseases, including hereditary spastic 
paraparesis,	Parkinson's	disease,	and	lysosomal	storage	disorders	(Li	
et	al.,	2017;	Settembre,	Fraldi,	Rubinsztein,	&	Ballabio,	2008;	Wang	
et	al.,	2017).	Beyond	hereditary	disease,	evidence	is	emerging	that	
autophagy becomes defective with aging and contributes to immu-
nosenescence	(Cuervo	&	Macian,	2014;	Zhang,	Puleston,	&	Simon,	
2016).	Accordingly,	pretreatment	with	rapamycin	analogs	that	inhibit	
TORC1	enhances	immune	function	and	reduces	infections	in	the	el-
derly	(Mannick	et	al.,	2014;	Shavlakadze	et	al.,	2018).	Whether	rapa-
mycin or rapamycin analogs have potential for improving healthspan 
and lifespan in humans is unclear, and their potential side effects 
are of significant concern. Rapamycin analogs that selectively target 
TORC1,	which	 should	 have	 less	 side	 effects,	 have	 been	 proposed	
for	treatment	of	diseases	of	aging	(Arriola	Apelo	&	Lamming,	2016;	
Bjedov	et	al.,	2010;	Chi	et	al.,	2015;	El-Chemaly	et	al.,	2017;	Miller	
et	al.,	2010).

Other	 compounds	 that	modulate	 autophagy	 have	 shown	 an-
ti-aging properties, including the polyamine spermidine, the natu-
ral polyphenol resveratrol, and the gut bacterial product urolithin 
A.	Tissue	levels	of	spermidine	decline	with	age	in	model	organisms	
and in humans, although they are unusually high in healthy nona/
centenarians (Eisenberg et al., 2009; Gupta et al., 2013; Pucciarelli 
et	 al.,	 2012).	 Spermidine	 administration	 increases	 lifespan	 and	
healthspan of multicellular model organisms, at least in part 
though	TORC1	inhibition	and	enhancement	of	autophagy.	Indeed,	
blockage of autophagy removes most positive effects of spermi-
dine	 (Madeo,	 Eisenberg,	 Pietrocola,	 &	 Kroemer,	 2018).	 Several	
lines of research suggest that resveratrol enhances autophagy 
and, through this mechanism, protects against multiple age-re-
lated chronic diseases and increases longevity in mice on a high-
fat	diet	(Agarwal	&	Baur,	2011).	Mechanisms	by	which	resveratrol	
induces autophagy are still not fully elucidated but certainly in-
volve	both	mTOR	inhibition	and	histone	deacetylation	through	the	
AMPK/SIRT1	 signaling	 pathway	 (Lee	 et	 al.,	 2008).	 Interestingly,	
the combination of spermidine and resveratrol shows synergistic 
effects	on	autophagy	induction	(Morselli	et	al.,	2011).

Urolithin	A	 is	 a	metabolite	 produced	 by	 gut	microbiota	 from	
compounds	found	 in	many	fruits	and	vegetables.	Urolithin	A	has	
been shown to induce mitophagy in cell cultures, increase longev-
ity in nematodes, and prevent age-related muscle impairment in 
mouse	models	 (Ryu	et	al.,	2016).	Administration	of	urolithin	A	 in	
healthy, sedentary elderly individuals is followed by changes in 
muscle mitochondrial gene expression that are suggestive of im-
proved	mitochondrial	and	cellular	health	(Andreux	et	al.,	2019).

Developing	assays	for	autophagy	in	humans	is	challenging.	Static	
measures of autophagosome accumulation based on quantification 
of	LC3,	an	antigen	that	is	only	present	in	autophagosomes,	are	rela-
tively simple, yet notoriously unreliable. In contrast, measures that 
track the dynamic flux of the autophagic process, by quantifying 
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accumulation of autophagosome cargo upon inhibition of lysosomal 
proteolysis, are more reliable and the only suitable assay to discrim-
inate whether increase abundance of autophagosomes is due to in-
crease	biogenesis	or	to	reduced	clearance	(Klionsky,	2014;	Yoshii	&	
Mizushima,	2017).	Recent	studies	suggest	that	adequate	quantifica-
tion of autophagy requires multiple approaches, most of which are 
expensive, labor-intensive, and low-throughput. Thus far, only a few 
studies provide evidence that autophagy becomes dysfunctional 
with aging, and a recent study shows that autophagy appears to be 
better maintained in members of families with extended longevity 
and positively correlates with improved T-cell function (Raz et al., 
2017).	Similarly,	no	high-throughput	method	is	available	for	assess-
ing proteostasis. Recently, a new measure has been developed that 
uses tetraphenylethene, a fluorescent dye, to label the free cysteine 
thiols that are normally hidden in the core of properly folded globular 
proteins	and	are	uncovered	by	misfolding	(Chen	et	al.,	2017).	Also,	
using prolonged starvation in human volunteers, Pietrocola et al. 
developed a method to assess autophagy in circulating leukocytes. 
They could detect enhanced autophagic flux in human neutrophils 
cultured in the presence or absence of leupeptin (Pietrocola et al., 
2017).	Although	these	methods	are	promising,	further	development	
and validation in human cells is needed before these assays can be 
used	in	clinical	studies.	Overall,	mechanisms	that	handle	repair,	re-
cycling, and eliminating damaged macromolecules/organelles could 
act as strong biomarkers of biological aging and would be extremely 
useful in clinical application, but better assessment methods need to 
be developed.

1.7 | Stem cell exhaustion, deregulated nutrient 
sensing, and altered intercellular communication

These three “hallmarks of aging” have been combined in this sec-
tion because their impact on age-related diseases, healthspan, and 
longevity	 in	humans	has	not	been	sufficiently	 characterized.	Stem	
cell exhaustion has been postulated to play a primary role in aging 
as it interferes with self-renewal of differentiated cells in tissues 
and	organs,	slowly	curtailing	function	(Ren,	Ocampo,	Liu,	&	Izpisua	
Belmonte,	2017).	Small	cross-sectional	studies	have	provided	some	
evidence that hematopoietic stem cells in humans accumulate 
DNA	 damage,	 possibly	 leading	 to	 reduced	 proliferative	 potential	
(Beerman,	 2017;	 de	Haan	&	 Lazare,	 2017).	 Studying	 the	 effect	 of	
aging on stem cells in humans is difficult. Hematopoietic stem cells, 
satellite cells, and epidermal stem cells represent the only easily 
accessible material, but their isolation is still problematic and only 
yields	 small	 quantities	 (Ahmadbeigi	 et	 al.,	 2013;	 Hinken	 &	 Billin,	
2018;	Lavker	&	Sun,	2000;	Liu,	Cheung,	Charville,	&	Rando,	2015;	
Moestrup,	 Andersen,	 &	 Jensen,	 2017;	 Rossi,	 Challen,	 Sirin,	 Lin,	 &	
Goodell,	2011).	Overall,	despite	the	great	enthusiasm	for	using	stem	
cells to treat many age-related disease, data on changes with human 
aging in stem cell numbers, characteristics, and replication potential 
are	still	limited	(Dexheimer,	Mueller,	Braatz,	&	Richter,	2011;	Eichler	
et	al.,	2017;	Fan	et	al.,	2010;	Golpanian	et	al.,	2017,	2016;	Hare	et	al.,	

2012;	Jim	et	al.,	2016;	Li,	Chen,	Han,	&	Fu,	2010;	Pang	et	al.,	2011;	
Rigotti	 et	 al.,	 2016;	 Tompkins	 et	 al.,	 2017;	 Volarevic	 et	 al.,	 2011,	
2018;	Zhang	et	al.,	2011).	Understanding	whether	changes	in	stem	
cells biology are important for aging remains an important and prom-
ising question, and research in this field is warranted.

Nutrient sensing in humans is important for aging and longevity 
based on the extraordinary effectiveness of caloric restriction in in-
creasing longevity and healthspan in animal models, including mam-
mals	(Anderson,	Le	Couteur,	&	de	Cabo,	2017).	Whether	this	concept	
can be transformed into empirical measures in humans remains to be 
elucidated.	Similarly,	the	concept	of	“intercellular	communication”	is	
so generic as to encompass almost any known physiological mecha-
nism. This concept will be revisited when discussing “inflammation,” 
which may be a special case of “intercellular communication” that 
is dysregulated with aging and predicts several adverse health out-
comes	in	humans,	as	well	as	multimorbidity	(Bektas,	Schurman,	Sen,	
&	Ferrucci,	2018;	Fabbri	et	al.,	2014;	Friedman,	Christ,	&	Mroczek,	
2015;	Sanada	et	al.,	2018).

2  | CONNEC TING THE BIOLOGY 
OF AGING WITH AGE-A SSOCIATED 
MULTIMORBIDIT Y

Based on information in the section above, developing a proxy meas-
ure of biological aging for humans still requires work but is a very 
dynamic and promising area of investigation with strong potential 
for	translation.	Some	of	the	measures	described—namely	mitochon-
drial	 function,	 DNA	 methylation,	 and,	 to	 a	 lesser	 extent,	 cellular	
senescence and autophagy—are ready to be implemented based on 
several epidemiological studies, although refinements are always 
possible	 (Capri	 et	 al.,	 2015;	 Choi	 et	 al.,	 2016;	 Cohen,	Morissette-
Thomas,	Ferrucci,	&	Fried,	2016;	Jylhävä,	Pedersen,	&	Hägg,	2017;	
Jylhävä	et	al.,	2014;	Kananen	et	al.,	2016;	Kent	&	Fitzgerald,	2016;	
Kim	&	Jazwinski,	2015;	Levine	et	al.,	2018;	Li	et	al.,	2018;	Marioni	
et	al.,	2019;	Marttila	et	al.,	2015;	Putin	et	al.,	2017;	Sillanpää	et	al.,	
2018).	Measures	of	telomere	length	are	hampered	by	noise	and	wide	
longitudinal variations that cannot be explained by health events and 
at	this	stage	are	not	useful	for	measuring	biological	age	(Arai	et	al.,	
2015;	 Jodczyk,	 Fergusson,	 Horwood,	 Pearson,	 &	 Kennedy,	 2014;	
Tomaska	&	Nosek,	2009).	New	methods	are	being	developed,	some	
of	which	are	focused	on	detecting	the	DNA	damage	response	(a	typi-
cal	marker	of	critical	telomere	shortening)	may	yield	better	results	
(Choi,	Kim,	Kim,	Kemp,	&	Sancar,	2015;	Hewitt	et	al.,	2012;	Rossiello	
et	 al.,	 2017).	 Senescence	 has	 been	 studied	 successfully	 in	 T	 lym-
phocytes, skin, and intramuscular fat, and high-throughput meth-
ods	will	be	available	soon	(Evangelou	et	al.,	2016;	Lozano-Torres	et	
al.,	2017).	 In	addition,	specific	patterns	of	circulating	proteins	may	
exist	that	indirectly	estimate	the	burden	of	senescence	(Angelini	et	
al.,	2017;	Hoffman,	Lyu,	Pletcher,	&	Promislow,	2017;	Kadota	et	al.,	
2018;	Menni	 et	 al.,	 2014;	 Tanaka	 et	 al.,	 2018;	 Yousefzadeh	 et	 al.,	
2017).	Similarly,	measures	of	autophagy	are	routinely	used	in	mam-
malian	studies	and	should	be	applicable	to	humans	(Klionsky,	2014;	



     |  9 of 21FERRUCCI Et al.

Klionsky,	Cuervo,	&	Seglen,	2007;	Menzies,	Moreau,	Puri,	Renna,	&	
Rubinsztein,	2012).	For	 the	other	hallmarks,	 the	development	of	a	
reliable and valid test is less advanced and will take time.

Multiple lines of evidence suggest that the measures listed above 
are associated with the severity of multimorbidity but, except for 
the epigenetic clock, this association has not yet been clearly estab-
lished.	 Logically,	none	of	 the	measures	described	above	 represent	
an exhaustive measure of biological aging and, therefore, new ag-
gregate measures are needed that leverage differences and comple-
mentarities of the various biomarkers. To accomplish these goals, 
the hallmarks of aging should be assessed in a group of individuals 
that is reasonably sized and enough dispersed across the lifespan to 
represent the variability of biological age in the general population. 
Initially, it will be important to evaluate the intercorrelation between 
these measures, as there is currently evidence that the hallmarks of 
aging	are	interconnected	(Figure	3).	Each	numbered	arrow	in	the	left	
portion	of	Figure	3	refers	to	a	piece	of	evidence	that	failure	of	a	certain	
mechanism leads to impairment in others, a notion that is strength-
ened by emerging evidence in recent literature, although most is de-
rived	 from	animal	 studies	 (Acosta	et	al.,	2013;	Chang	et	al.,	2015;	
Childs,	Li,	&	van	Deursen,	2018;	García-Prat	et	al.,	2016;	Gonzales-
Ebsen,	Gregersen,	&	Olsen,	2017;	Hall	et	al.,	2017;	Herranz	&	Gil,	
2018;	Kang	et	al.,	2015;	Ligthart	et	al.,	2016;	Mills,	Kelly,	&	O'Neill,	
2017;	 Moreno-Blas,	 Gorostieta-Salas,	 &	 Castro-Obregón,	 2018;	
Netea-Maier,	Plantinga,	Veerdonk,	Smit,	&	Netea,	2015;	Wiley	et	al.,	
2016).	Clarity	is	needed	in	determining	if	the	hallmarks	of	aging	are	
multifaceted expressions of the same core process or if they evolved 
independently, as interventions would either have to target each 
single mechanism or could address one mechanism with synergistic 
benefits	on	the	others.	A	simple	cross-sectional	correlation	may	not	
be optimal, as different manifestations of biological aging may occur 
according to different time schedules, some mechanism preceding 
others	(Ferrucci,	Levine,	Kuo,	&	Simonsick,	2018).	Thus,	these	mea-
sures needed to be examined using exploratory “lagged analysis” in a 
longitudinal perspective. Interestingly, all of the “hallmarks of aging” 
cited above directly or indirectly cause an inflammatory state, sug-
gesting that the pro-inflammatory state observed in many older per-
sons	may	reflect	the	burden	of	biological	aging	(Ferrucci	et	al.,	2005;	
Franceschi	&	Campisi,	2014;	Fulop	et	al.,	2018).	Consistent	with	this	
hypothesis,	inflammation	measured	by	circulating	levels	of	IL-6	is	the	
only known cross-sectional and longitudinal predictor of multimor-
bidity and one of the strongest predictors of incident mobility loss 
and	disability	in	activities	of	daily	living	(Fabbri	et	al.,	2014;	Ferrucci	
et	al.,	1999,	2002).	Mobility	 loss,	disability,	and	mortality	could	be	
used as reference outcomes to calibrate an index of biological aging 
as a weighted aggregated, predictive measure. However, while the 
“functional” outcomes are critical for quality of life in the elderly, 
they occur late in life and fail to capture the initial changes of bio-
logical	aging	at	younger	ages.	Focusing	on	multimorbidity	is	a	very	
promising approach, especially as the pace of biological aging and 
the development of subclinical pathologies are the primary forces 
behind	increased	susceptibility	to	disease	(Fabbri	et	al.,	2014).	The	
rate of aging translates into different patterns of multimorbidity due 

to specific combinations of genetic susceptibility and environmental 
stress	(Figure	3).	Finally,	as	aging	is	a	dynamic	construct,	the	strength	
of any index of biological aging should be validated longitudinally by 
demonstrating that the accelerated progression of “biological aging” 
is paralleled by an accelerated deterioration in the phenotypic and 
functional dimensions of aging.

3  | THE TR ANSL ATIONAL VALUE OF 
A SSESSING BIOLOGIC AL AGING

Substantial	investment	is	necessary	to	develop	an	estimator	of	bio-
logical aging that is robust, precise, reliable, and sensitive to change. 
Thus, a fair question is whether such a titanic project is worth the 
effort	and	cost.	The	answer	is	YES,	without	hesitation.	Developing	
an index of biological aging is perhaps the most critical milestone 
required to advance the field of aging research and, especially, to 
bring relieve from the burden of multimorbidity and disability in an 
expanding aging population. Ideally, these measures would be ob-
tained by running tests using blood samples without performing a bi-
opsy,	preferably	quickly	and	at	low	cost.	An	index	of	biological	aging	
could be used to empirically address the geroscience hypothesis: “Is 
biological aging is the cause of the global susceptibility to disease 
with aging.” Data collected longitudinally—ideally in a life course epi-
demiological study—could then be used to test if individuals that ac-
cumulate coexisting diseases faster than in the general population 
also	have	accelerated	biological	aging.	Similarly,	these	data	could	be	
used to test if individuals who are biologically “older,” independent of 
chronological age, are at a higher risk of developing different medical 
or functional conditions that do not share physiological mechanisms. 
Once	validated,	the	fundamental	basis	of	biological	aging	can	be	used	
to probe deeper into questions related to the mechanisms of aging, 
such	 as	 the	 following:	 Are	 there	 genetic	 traits	 that	 are	 associated	
with	faster	or	slower	biological	aging?	Are	there	“hallmarks”	that	are	
better at capturing biological aging at different stages of life?

These questions have immense relevance for geriatric medicine. 
Despite the rising emphasis on prevention, most current medical care 
is dedicated to diagnosing and managing diseases that are already 
symptomatic, which does not address the underlying issues related 
to geriatric health conditions. By understanding the intrinsic mech-
anisms of biological aging, including damage and resilience, medical 
professional will be able to best orient and prescribe therapeutic 
choices. These mechanisms are summarized in Table 1 according to 
the current state of knowledge. The first column lists measures of 
damage for each one of the hallmarks of aging, the second lists the 
compensatory measures that we would like to have available, and 
the third lists the compensatory measures that are currently avail-
able. Clearly, the current ability to measure biological compensa-
tions and resilience is very limited, although most are vital to human 
health. In fact, it has been proposed that chronic diseases, especially 
those that emerge in old age, may be cross-classified based on their 
dependence on the force of the “noxa patogena” and the robustness 
of resilience.
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The approach described above is not too farfetched from our 
experience. Hopefully, we all take good care of our cars before they 
break or malfunction; we make sure that the water an oil levels are 
ok, that the brake pads are not consumed, that the pressure in the 
tires	is	according	to	factory	recommendations.	We	carefully	follow	
maintenance schedule because we want to maximize the healthy life 
of	our	cars	and	avoid	expensive	repairs	and	replacements.	Shouldn't	
we pay the same attention to our bodies? In the field of geriatrics, 
the situation is even more extreme and often patients come to the 
clinic when they are already affected by multiple diseases, have lost 
their autonomy, and have economic and social constrains. In other 
words, they come to observation when all the mechanisms of com-
pensation and resilience are exhausted. Despite these odds, geriatri-
cians sometime make miracles, but certainly not often enough. The 
possibility of measuring biological aging swaps this perspective and 
allows the assessment of health status at a time when our physiology 
is still resilient, there are still no symptoms, and interventions are 
more likely to be effective.

A	robust	biomarker	of	biological	aging	would	have	benefits	be-
yond the early identification of persons who age “faster” than oth-
ers.	 First,	 the	 genetic,	 environmental,	 and	 behavioral	 risk	 factors	
associated with accelerated aging could be identified. Then, longi-
tudinal studies could be utilized to identify specific time points at 
which the trajectories of aging change and relate to those other 

health-related triggers, such as the exposure to pollution associated 
with	moving	 to	 a	 different	 city.	 As	 biological	 aging	 is	 the	 primary	
cause of resilience loss, measuring damage and compensation may 
help in determining between interventions with potentially serious 
side	effects.	Longitudinally,	a	marker	of	aging	could	be	used	to	track	
if interventions with similar efficacy toward a specific target affect 
the “speed of aging” differently, which may impact accelerated de-
clines in health. This approach could be used to both refine choices in 
alternative therapies and develop new medications in order to avoid 
damage accumulation or curtail compensatory mechanisms. Clinical 
trials then can be designed to specifically target the speed of aging, 
the underlying causes of multimorbidity, or both as the primary out-
comes of interest. The list of interventions is almost limitless, even 
without considering the many other applications that are currently 
unknown and will only become evident as the field progresses.

4  | MULTIMORBIDIT Y AND THE ART OF 
GERIATRICIANS

A	primary	focus	in	geriatric	medical	is	the	management	of	patients	
affected by multiple coexisting, chronic diseases, as well as physi-
cal and cognitive impairments. Indeed, geriatric patients typically 
have a long list of diagnoses, prescriptions, impairments, social 

F I G U R E  3   The hallmarks of aging are specific biological mechanisms that drive the rate of biological aging. Emerging research reveals 
that these different mechanisms are strongly interconnected and, therefore, impairment in one mechanism involves the others. In the 
figure, the octagon and lines within represent evidence for connections between the different mechanisms. The evidence reported is 
not	exhaustive	of	the	literature	connecting	the	hallmarks.	According	to	the	geroscience hypothesis, failure in this network of homeostatic 
mechanisms affects the pace of aging and, in turn, causes a growing susceptibility to diseases. The specific combination of coexisting 
diseases that occur in each individual depends on their genetic background, as well as exposure to environmental and behavioral risk factors. 
The resulting multimorbidity is a major cause of disability. Notably, if the number of coexisting diseases is a major proxy biomarker of the 
pace of aging, it is unsurprising that the number of diseases rather than specific combination is the strongest risk factor for disability
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problems, and financial constraints, often presenting a medical 
dilemma with no clear solution. Most clinical guidelines focus on 
one disease and, in only exceptional and recent cases, on diseases 
that	belong	to	the	same	organ	system	(Jani	et	al.,	2017;	Moreno,	
Mangione,	Kimbro,	&	Vaisberg,	2013;	Spaak,	2017).	This	is	in	spite	
of the fact that co-occurrence of two or more chronic diseases is 
the	most	prevalent	medical	condition	in	persons	65	or	older	(Cesari,	
Pérez-Zepeda,	 &	 Marzetti,	 2017;	 Fabbri	 et	 al.,	 2015;	 Guiding	
Principles	 for	 the	Care	 of	Older	Adults	with	Multimorbidity:	 An	

Approach	 for	Clinicians,	2012;	Tisminetzky	et	 al.,	 2017;	Vetrano	
et	 al.,	 2017).	 Daily,	 geriatricians	 are	 faced	 with	 overwhelming	
complexity, requiring powerful tools: an exhaustive knowledge 
of medicine and physiology, the ability to evaluate from a list of 
diseases to choose from possible therapies, and a strong focus on 
quality of life and on patient preferences. Unfortunately, they are 
limited with little undersatnding of the biological basis for aging. If 
multimorbidity is a stochastic assemblage of separate pathologies, 
the resulting number of syndromes exceeds any serious attempt at 

TA B L E  1   Biomarkers of “damage” and “compensation” for the different hallmarks of aging

Hallmark Damage
Resilience (compensation) 
response Measures

Genomic instability •	 Somatic	mutations	(including	in	stem	
cells)

• Inappropriate clonal expansion
•	 DNA	modifications	(8-oxoG,	gam-
maH2AX,	etc.)

•	 DNA	repair	mechanisms
• Cellular checkpoint responses 

(e.g., cell cycle arrest, senes-
cence,	apoptosis)

• Integrity of replication fidelity 
mechanisms

•	 Antioxidant	mechanisms

•	 Single-cell/clonal	NGS
•	 Tests	of	DNA	repair	mechanisms
•	 Measures	of	DNA	modifications

Telomere shortening • Telomere dysfunction in mitotic cells, 
stem cells, and germline cells

• Telomerase
• Cellular checkpoint responses

• Telomere length
•	 Markers	of	DNA	damage	

response
• Telomerase activity

Cellular senescence •	 Arrested	cell	proliferation
•	 SASP,	chronic	inflammation

• Immune clearance of senes-
cent cells

•	 SASP	suppression	by	mTOR	
signaling

• Prevention of irreversible 
senescence

•	 Senescent	markers	in	blood	and	
tissue

•	 SASP	proteins	in	blood	and	
tissue

Epigenetic changes • Inappropriate increase or decrease in 
DNA	methylation	at	specific	sites

• Inappropriate increase or decrease in 
specific histone modifications

• Maladaptive epigenetic changes

• Epigenetic maintenance 
system

• Mechanism of epigenomic 
reprogramming

•	 Adaptive	changes	in	epigenetic	
markers

•	 Suppression	of	negative	and	
enhancement of positive tran-
scriptional programs

• Methylation
• Histone acetylation

Mitochondrial 
dysfunction

• Impaired respiration/ox/phosph
• Ineffective mitochondrial biogenesis
• Ineffective mitochondrial recycling
• Mitochondrial disorganization
•	 ROS-mediated	oxidative	damage

• Mitochondrial biogenesis
• Mitochondrial remodeling (fis-
sion/fusion	cycles),	mitophagy

•	 Maintained	mtDNA	replication	
fidelity

•	 Antioxidant	defenses

• Mitochondrial volume/number/
shape

• Mito respiration
• P31 MRI spectroscopy
• Markers of biogenesis
•	 mtDNA	copy	number	and	

haplotypes

Decreased autophagy, 
proteostasis

• Increased damaged/misfolded 
proteins

• Decreased protein function
• Permanence of unrecycled proteins/

organelles
• Cell death due to increased autophagy

•	 Activity	of	macro-,	micro-,	
and chaperone-mediated 
autophagy-related proteins

• Enhanced signaling pathways 
(e.g.,	mTOR	signaling)	that	
regulate levels of autophagy

•	 Autophagy	markers	and	flux	(+	
TEM)

• Chaperon proteins

Stem	cell	exhaustion • Reduced stem cell number
• Decreased proliferative capacity
• Decreased differentiation capacity

• Reprogramming?
•	 Quiescence	maintenance

• Proliferative capacity in vitro
• Resistance to stress

Note: The second column lists measures of damage, some of which are already feasible in humans, while others are only theoretically feasible. The 
third column lists measures of resilience that would be theoretically desirable, while the fourth column lists measures that are currently feasible. 
Importantly, regarding many of the available measures, understanding if they reflect damage or compensation requires further investigation.
Abbreviations:	NGS,	new-generation	sequencing;	SASP,	senescence-associated	secretory	phenotype;	TEM,	transmission	electron	microscopy.
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classification, which is an essential prerequisite for tailored inter-
ventions. Thus, caring for older patients becomes a cyclic process, 
involving a sequence of trials and errors that are driven by a mix-
ture of knowledge, experience, and intuition.

5  | MULTIMORBIDIT Y A S AN E XPRESSION 
OF BIOLOGIC AL AGING

The emerging field of geroscience presents a hopeful approach to 
multimorbidity, which aims to understand the relationship between 
biological aging and age-related diseases at the molecular level. 
The traditional approach to studying of aging is rooted in a clear-
cut distinction between aging and diseases, while the geroscience 
paradigm intimately connects the molecular mechanisms of aging 
with the rising susceptibility to diseases. This may explain why the 
number of coexistent chronic diseases tends to increase geometri-
cally	with	aging	in	both	men	and	women	(Fabbri	et	al.,	2015;	GBD,	
2016	Disease,	&	Injury	Incidence	&	Prevalence	Collaborators,	2016;	
Guiding	Principles	for	the	Care	of	Older	Adults	with	Multimorbidity:	
An	Approach	for	Clinicians,	2012;	He	et	al.,	2018;	Melis,	Marengoni,	
Angleman,	&	Fratiglioni,	2014;	Niccoli	&	Partridge,	2012;	Rae	et	al.,	
2010;	Rocca	et	al.,	2014;	St	Sauver	et	al.,	2015).	This	conceptual	shift	
on the origin of age-related multimorbidity opens new, previously 
unexplored opportunities for research and clinical care in older per-
sons. Importantly, if the core mechanisms of aging can be identified, 
they could be targeted for interventions aimed at preventing mul-
timorbidity and disability, while also improving the quality of life in 
old age.

To explain the development of this new science, the concep-
tual paradigm of geroscience needs to be fully explored. Time 
is the most “robust” and “precise” metric of aging; however, the 
chronological dimension presents intrinsic problems due to the 
magnitude of anatomical and physiological changes that occur 
with	aging	in	a	single	time	unit	(e.g.,	one	year),	which	can	be	quite	
heterogeneous.

6  | CONCLUDING REMARKS

Progress in research is not linear. Periods characterized by rates of 
incremental knowledge are interlaced with “eureka” moments as 
milestone discoveries suddenly open new possibilities that thrust re-
search	and	knowledge	to	a	higher	level.	Galileo's	use	of	the	telescope	
to	explore	the	stars,	Kary	Mullis's	description	of	polymerase	chain	
reaction,	and	Edwin	Hubble's	demonstration	that	the	universe	is	ex-
panding are just few examples of these moments. The field of aging 
research	is	living	one	of	those	magical	moments.	Finding	a	reference	
metric for the rate of biological aging is key to understanding the 
molecular nature of the aging process. Defining and validating this 
metric in humans opens the door to a new kind of medicine that will 
overcome the limitation of current disease definitions, approaching 

health in a global perspective and bringing life course preventative 
measures to the center of attention.
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