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We review applications of string theory to cosmology, from primordial times to the
present-day accelerated expansion. Starting with a brief overview of cosmology and
string compactifications, we discuss in detail moduli stabilisation, inflation in string
theory, the impact of string theory on post-inflationary dynamics (reheating, moduli
domination, kination), dark energy (the cosmological constant from a string landscape
and models of quintessence) and various alternative scenarios (string/brane gases, the
pre big-bang scenario, rolling tachyons, ekpyrotic/cyclic cosmologies, bubbles of nothing,
S-brane and holographic cosmologies). The state of the art in string constructions is
described in each topic and, where relevant, connections to swampland conjectures are
made. The possibilities for novel particles and excitations (axions, moduli, cosmic strings,
branes, solitons, oscillons and boson stars) are emphasised. Implications for the physics
of the CMB, gravitational waves, dark matter and dark radiation are discussed along with
potential observational signatures.
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1. Introduction

We are living in a golden age for cosmology. The exquisite precision with which the power spectrum of density
erturbations of the cosmic microwave background (CMB) has been measured over the past 25 years is simply spectacular.
he surprising discovery of the accelerated expansion of the universe in the present epoch, also around 25 years ago, has
iven rise to arguably the biggest puzzle in physics: dark energy. This, combined with ever improving observations of the
arge-scale structure of the universe and the compelling evidence for the existence of dark matter, has made cosmology
precision science dominated by big data at all scales. The standard model of cosmology, �CDM, has only a handful
f parameters but provides an accurate match to most observations. A successful scenario, inflation, has emerged as the
tandard description of early universe cosmology that addresses the main puzzles of the Big Bang model (flatness, horizon,
onopole problems) and, most importantly, provides the seed for the density perturbations imprinted in the CMB. Its

heoretical predictions fit remarkably well with observations.
However, unlike the Standard Model of particle physics, which is a well defined theory with concrete predictions,

he standard model of cosmology, including inflation, is not based on an underlying theory. This is a fundamental issue
iven that early universe cosmology involves temperatures and energy scales which are higher than those probed in our
aboratories. At these scales, we do not have a complete theory. Furthermore, in contrast to particle physics, gravity cannot
e neglected when addressing questions in cosmology. Therefore, in order to address the physics of the early universe,
e need to have a well defined theory of gravity which also includes all other interactions. There are also puzzles at
he longest wavelengths. Formulating quantum mechanics in an accelerating spacetime (such as the present universe) is
ubtle as it is tied to various conceptual issues of quantum gravity. Over more than 35 years, string theory has emerged as
he most promising candidate for providing a consistent quantum theory combining gravity with all other particles and
nteractions. Yet, string theory still lacks concrete predictions that can be tested experimentally with today’s technology
nd needs to be developed further so that it can be confronted with potential observations in the not too distant future.
stablishing the connections between string theory and cosmology is therefore one of primary importance for fundamental
hysics.
Not surprisingly, there have been many attempts to extract information from string theory regarding its potential

osmological implications. This is not an easy task as our understanding of string theory is still incomplete. It is not yet
ossible to answer questions tied to the Big Bang singularity in the context of string theory. Nevertheless, there are many
osmological questions that can be addressed by string theory. In particular, deriving models of cosmological inflation
rom string theory is a difficult but achievable task, as is the physics from the end of inflation to the present epoch which
overs a range of energies and temperatures many orders of magnitude and may, in a logarithmic scale, correspond to up
o half of the expansion of the universe. In addition, string theory can lead to various exotic phases in the (early) universe
r consistency conditions that have distinct implications for cosmology. These alternatives are the least understood but
ome of the most exciting directions to explore in string cosmology.
String cosmology is a natural meeting point for many disciplines. String theory has a large number of degrees of

reedom in addition to those associated with the Standard Model and gravity. Many of these can be light and of direct
elevance for cosmology. Of particular importance are moduli – the fields that control the shape and size of the extra
dimensions, thereby setting the magnitude of couplings in the 4-dimensional effective field theory. Moduli are also ideal
3
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andidates for inflatons and often acquire non-trivial time dependence in post-inflationary string cosmology leading to
ifferences from the standard cosmological timeline. In the present epoch, all moduli must be pinned to their minima or
e very slowly rolling. Thus, whether it be the early universe or the present epoch, understanding the potential energy
unctional for moduli fields and their dynamics is central to string cosmology. Therefore, string cosmology requires a
eep knowledge of string compactifications (dimensional reduction and derivation of low energy effective actions that
rise from string theory) – this involves many aspects of modern mathematics. The study of alternatives often requires
nderstanding string theory in novel regimes and has the potential to provide an answer to the question: What is string
heory? Furthermore, addressing questions such as the dimensionality of spacetime and, as most theorists believe, how
pacetime itself may emerge from a fundamental theory, may lie in the domain of string cosmology.
Finally, from the point of view of a pragmatic cosmologist, string theory can be thought of as a black box which

ontinually generates interesting models and scenarios. These have served as a useful driver for both theory and
bservational targets in cosmology. String cosmology thus brings together many areas and its study is not only central to
ur understanding of fundamental physics but also for advances in these areas.
This review aims to give a concise overview of the state of the art in the subject. It is structured as follows.

ection 2 provides a brief review of cosmology. After quickly going through Freedman–Lemaitre–Robertson–Walker
FLRW) cosmology and the history of the universe in the standard model of cosmology, we describe the physics of inflation.
e discuss how inflation provides a theory for generating inhomogeneities in the universe, thereby allowing it to connect

o precision observational cosmology. We also introduce quintessence — the possibility that the acceleration of the present
niverse is due to a slowly rolling scalar field.
Section 3 deals with string compactifications and moduli fields. After providing a general overview of moduli, we

iscuss moduli stabilisation in various string theories. A summary of various scenarios to obtain de Sitter space (as a
odel of the universe in the present epoch) is provided, emphasising the general achievements and challenges.
Section 4 is on inflation in string theory. Here, we begin by describing why it is necessary to embed models of inflation

nto theories of quantum gravity and the challenges for inflation in string theory. We present a list of well-established
tring theoretic models of inflation classified according to the form of their potential. We also give a ‘‘report card’’ in the
orm of a table which shows how each of these models fares when confronted with observations.

Section 5 is on the post-inflationary epoch between the end of inflation and the start of the Hot Big Bang. We start by
iscussing reheating in the context of string cosmology and identify the cosmological moduli problem, which is a generic
utcome of string cosmology. We go on to describe modifications of the standard cosmological timeline (such as epochs
f moduli domination and kination) which are natural in string cosmology. Opportunities and challenges in the context
f dark matter and dark radiation are summarised and concrete sources of inhomogeneities and gravitational waves are
dentified, such as oscillons.

Section 6 is on dark energy (the present day constituent of the energy budget of the universe that is driving
cceleration) in string theory. It is divided into two main parts — dark energy arising from a cosmological constant term (a
e Sitter solution) and dynamical dark energy (quintessence). In the first part, after describing the cosmological constant
roblem we discuss how the string landscape (an enormously large number of string vacua with finely spaced values of the
osmological constant) offers a potential, if controversial, solution to the problem. In the second part, interesting avenues
o construct models of quintessence in string theory are discussed and the associated challenges are outlined.

Section 7 deals with alternatives to the standard cosmology. We discuss string gas cosmology, the ekpyrotic/cyclic
niverse, rolling tachyon cosmology, pre-Big Bang cosmology, S-branes, holographic models and models including creation
r decay to nothing. This section also discusses the swampland approach, which aims at determining consistency
onditions (and their physical implications) that an effective field theory must satisfy so that it can be embedded in
tring theory or any theory of quantum gravity. We conclude in Section 8.

. Cosmology

The dynamics of our universe is described by Einstein equations in the presence of matter. The Friedmann–Lemaitre–
obertson–Walker (FLRW) metric describing the evolution of the Universe is based upon the assumption of homogeneity
nd isotropy, which is approximately true on large scales. These assumptions determine the metric up to an arbitrary
unction of time, a(t), the scale factor, which measures the time evolution of the Universe, and a discrete parameter
= −1; 0; 1, which determines the 3-dimensional curvature of the Universe, namely whether it is respectively open, flat
r closed.
Small deviations from homogeneity at early epochs played a very important role in the dynamical history of our

niverse. Small initial density perturbations grew via gravitational instability into the structures that we observe today
n the universe. The temperature anisotropies observed in the Cosmic Microwave Background (CMB) are believed to have
riginated from quantum fluctuations generated during an inflationary stage in the early universe, which we review in
ection 2.3. In this section we review the main features of the homogeneous and isotropic cosmology necessary for the
ubsequent sections. For dedicated accounts of the standard �CDM cosmology and the growth of cosmic structure, we
lso refer the reader to e.g. [1–4]. More technical summaries of recent progress and challenges can be found in [5–7].
The FLRW metric can be written as:

ds2 = −dt2 + a(t)
�
dr2 + f 2k (r)

�
d�2 + sin2 � d�2�� ; (1)
4
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fk(r) =

( sin r if k = +1;
r if k = 0;

sinh r if k = −1:

he dynamics associated with the scale factor a(t) is determined by Einstein’s equations:

G�� ≡ R�� −
1
2
g��R = 8� G4 T�� ; (2)

provided the matter content encoded in the energy–momentum tensor T�� is specified. Let us consider an ideal perfect
fluid as the source of the energy momentum tensor. In this case we have:

T�� = diag .−�; p; p; p/ ; (3)

where � and p are the energy density and pressure of the fluid, respectively.
Einstein’s equations for the metric (1) and energy–momentum tensor (3) give the two independent equations:

H2
=

8�G4

3
� −

k
a2
; (4)

ä
a

= −
4�G4

3
.� + 3 p/ ; (5)

here H is the Hubble parameter (function), defined as

H ≡
ȧ
a
: (6)

The energy momentum tensor is conserved by virtue of the Bianchi identities, ∇�T�� = 0, leading to the continuity
quation

�̇ + 3H(� + p) = 0 ; (7)

which can be derived also from Einstein’s equations above, (4), (5). Notice already that Eq. (5) implies that in order to
have accelerated expansion, that is ä > 0, the energy density and pressure must be such that

(� + 3p) < 0 : (8)

One can write Eq. (4) in the form


(t) − 1 =
k

(aH)2
; (9)

where we defined the dimensionless density parameter


(t) ≡
�(t)
�c(t)

; �c(t) ≡
3H2(t)
8�G4

; (10)

ith �c the critical density. From here we can see that the matter distribution determines the spatial geometry of our
niverse:


 > 1 or � > �c ⇒ k = +1 ;

 = 1 or � = �c ⇒ k = 0 ;


 < 1 or � < �c ⇒ k = −1 : (11a)

Observations indicate that the current universe is very close to a spatially flat geometry [8]. This is actually a natural
result from inflation in the early universe (see below). Hence, in this section we consider a flat universe (k = 0, 
 ≃ 1).
But we will keep an open mind regarding the spatial curvature when we discuss string constructions.

2.1. Evolution of the universe filled with a perfect fluid

Let us now consider the evolution of the universe filled with a barotropic perfect fluid with an equation of state of the
form
5
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Table 1
Scale factor and energy density behaviour for matter, radiation, kinetic energy and vacuum dominated
universes for k = 0.
Stress energy ! Energy density Scale factor a(t)

Matter ! = 0 �m ∼ a−3 a(t) ∼ t2=3

Radiation ! = 1=3 �r ∼ a−4 a(t) ∼ t1=2

Kinetic energy ! = 1 �KE ∼ a−6 a(t) ∼ t1=3

Vacuum (�) ! = −1 �� ∼
�

8�G4
a(t) ∼ exp(

√
�=3 t)

p = ! � ; (12)

here ! is a constant when the perfect fluid corresponds to matter, radiation, and vacuum domination (see Table 1).
Using the equation of state we can solve Einstein’s equations to obtain (for ! ̸= −1)

H =
2

3(1 + !)(t − t0)
; (13)

a(t) ∝ (t − t0)
2

3(1+!) ; (14)
� ∝ a−3(1+!) : (15)

or ! = −1, we see from Eq. (7) that the energy density is constant. In this case, the Hubble rate (4) is also constant and
o the evolution for the scale factor is:

a ∝ eHt ; (16)

hich is a de Sitter universe. We show in Table 1 the behaviour of � and a(t) for typical equations of state. Using the
quation of state in Eq. (5), we see that an accelerated expansion occurs whenever

! < −1=3 : (17)

n order to explain the current acceleration of the universe, we require an energy density, ‘dark energy’, with equation of
tate satisfying Eq. (17).
The different equations of state satisfied by radiation, matter and dark energy (see Table 1) imply that their relative

bundances differed in the past universe, since their energy densities evolve very differently as the universe expands.
The current measurements of the present-day Hubble scale, H0, tell us the present value of the total energy density

T =
P

i �i, of the universe. The present value of the Hubble parameter is measured to be1 H0 = 100 h0 km s−1Mpc−1,
hich gives, via (5) with k = 0,

�tot ∼ �c =
3

8�G4
H2

0 ∼ 10−27 kg=m3 : (18)

he Friedman Eq. (5) can then be rewritten as:X
i


i = 1 ; (19)

ith 
i (see Eq. (10)) the present-day fraction of energy density contributed by each fluid component and with i running
ver all components. At present, there is good evidence for the following four components of the cosmic fluid:

(a) Radiation, with equation of state parameter ! = 1=3 and whose energy density is dominated by CMB photons. The
total energy density of radiation today is a small fraction of the present total energy density with 
r ≃ 10−4.

(b) Baryons, with equation of state parameter ! = 0, corresponding to ordinary matter (i.e. nucleons, atoms), whose
fraction is 
B ≃ 0:04.

(c) Dark Matter, also governed by an equation of state parameter ! = 0, whose fraction is observationally determined
to be 
DM ≃ 0:27. Since both baryons and matter have the same equation of state, they can be put together to
give the total matter density fraction as 
m = 
B +
DM ≃ 0:31.

(d) Dark Energy, with equation of state parameter ! = −1. Over the last two decades, the evidence for the current
accelerated expansion of the universe has accumulated, giving the largest contribution to the total energy density,

� ≃ 0:69.

1 The constant h ≈ 0:73 accounts for the uncertainty in H .
0 0

6
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Fig. 1. Energy density evolution for radiation �r , non-relativistic matter �m , (constant) dark energy �� and the total energy density, �T as a function
f the scale factor in Planck units with a0 = 1 today.

Using the present day values, we can write the Hubble parameter more generally as:

H2
=

8�G
3
�T = 3H2

0 
m e−3N
+ 3H2

0 
r e−4N
+ 3H2

0 
� ; (20)

here we introduced the number of e-foldings, N ≡ ln a, and a0 = 1 today. Because each term varies so differently with
time, the history of the universe can be decomposed into different epochs during which one or another term dominates
the expansion and so controls the overall change in �T , as we show in Fig. 1

2.2. Major events

The Hot Big Bang model for cosmology assumes that the universe was initially a hot soup of elementary particles
at a very high temperature. In broad terms, the subsequent evolution describes the cooling of this hot soup as the
universe expands. Indeed, conservation of entropy (for relativistic particles with a constant number of species) implies
that temperature falls as

T (t) = T0

�
a0
a(t)

�
; (21)

nd can be used as an alternative to time to parameterise the history of the universe. There are two main consequences
f such an expansion and cooling:

1. Reaction rates in dilute systems are generically proportional to the number of participants per unit volume, because
the reactants must be able to find one another before they are able to react. Since particle densities fall as the
universal volume grows, reaction rates also fall. Thus interactions between particles freeze out when the interaction
rate drops below the expansion rate. This implies that one of the main trends of cosmology is that, as the universe
ages, thermal and chemical reactions fall out of equilibrium.

2. A consequence of the previous point is the appearance of bound states of particles as the universe ages. Although
the reactions forming bound states can always occur, at the earliest epochs temperatures are high enough to ensure
that collisions very efficiently destroy these bound states, leaving very few to survive in equilibrium conditions. As
the temperature drops, the inter-particle collisions become less violent and eventually the reactions of formation
can dominate to leave a population of primordial relic bound states. Moreover, in an expanding universe, broken
symmetries in the laws of physics may be restored at high energies. At very early epochs, phase transitions are
also expected to play an important role in the cosmic evolution, but as yet there is no direct evidence that such
transitions took place.

The main events constituting the history of our universe can be summarised as follows (see Table 2 and Fig. 2).

• At t ∼ 10−43 s (1019 GeV), we are near the Planck scale, where we expect quantum gravity effects, such as those of
string theory, to dominate and general relativity not to be valid. One of the fundamental issues of spacetime structure
at the Planckian scale is the question of cosmic singularities. It is expected that these problems will be addressed in
the, as yet not definitively known, non-perturbative quantum gravity theory.
7
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c

Fig. 2. A schematic representation of the different epochs and their temperatures within the history of the universe in the standard �CDM
osmological model.

Table 2
Brief history of our universe. Temperature units can be transformed to Kelvin using the conversion factor 1 GeV =

1:16 × 1013 K.
Temperature Time Particle physics Cosmological event

1019 GeV 10−43 s Quantum Gravity Gravitons decouple?

1019 GeV - 102GeV 10−43 s - 10−12 s Grand Unification? Desert?
String theory? Extra
dimensions?

Inflation? Topological
defects? Baryogenesis?

102 GeV 10−12 s Electroweak Breaking Baryogenesis?

0.3 GeV 10−5 s QCD scale Quark–Hadron transition

10 − 0:1 MeV 10−2 – 102 s Nuclear Physics Scale Nucleosynthesis, Neutrinos
decouple

10 eV 1011 s Atomic Physics Scale Atoms formed, CMB, Matter
domination

• The period from t ∼ 10−43
− 10−14 s corresponds to temperatures of around T ∼ 1019 GeV–104 GeV, which are not

foreseeably accessible by accelerators. In this sense, the universe can be used to test fundamental physics relevant at
this scales, such as supersymmetry, grand unification, string theory, extra dimensions, and other theories. Perhaps
the most interesting phenomenon in the above energy range is the accelerated expansion of the early universe,
inflation, which, as will be discussed below, likely occurred somewhere near grand unification scales.

• The epoch from t ∼ 10−14
− 10−10 s, corresponding to temperatures of T ∼ 104 GeV–100 GeV, may be accessible

by accelerators. In particular, the standard model of the electroweak and strong interactions is applicable here.
• At t ∼ 10−5 s, the corresponding temperature T ∼ 200 MeV, the QCD scale, where the quark–gluon transition takes

place.
• Between t ∼ 0:2 s and 200 − 300 s (where T ∼ 1 − 2 MeV at the start and T ∼ 0:05 MeV at the end), we have

temperatures at the nuclear physics scale. Two important events happen during this period. First, the primordial
neutrinos decouple from the other particles and subsequently propagate without further scatterings. Second, the
process of primordial nucleosynthesis takes place. The initial conditions for this are set by the ‘freeze out’ of the ratio
of neutrons to protons, when the interactions that keep these particles in chemical equilibrium become inefficient;
the number of the surviving neutrons subsequently determines the abundances of the primordial elements. As
nuclear reactions become efficient, previously free protons and neutrons form helium and other light elements. The
abundances of the light elements resulting from Big Bang Nucleosynthesis (BBN) are in very good agreement with
8
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observations, and this strongly supports our understanding of the universe’s evolution back to the first second after
the big bang.

• t ∼ 1011 s (T ∼ eV). This time corresponds to matter-radiation equality, which separates the radiation-dominated
epoch from the matter-dominated epoch.

• At t ∼ 1012
− 1013 s another two related important event happens. During so-called ‘recombination’, nearly

all free electrons and protons combine to form neutral hydrogen. At this stage, the photons decouple and the
universe becomes transparent to the background radiation. The Cosmic Microwave Background (CMB) temperature
fluctuations, induced by the slightly inhomogeneous matter distribution at photon decoupling, form and survive to
the present day, delivering direct information about the state of the universe at the last scattering surface.

• Finally, at our present time t ∼ 1016
− 1017 s, galaxies and their clusters have formed from small primordial

inhomogeneities as a result of gravitational instability. An important question regarding this period is the nature
of both dark matter and also the dark energy which is driving the present day accelerated expansion.

The standard cosmological model just discussed describes a simple and consistent picture of the relatively recent
universe, which is able to account for the many available observations of the overall structure and evolution of the
universe. This picture bears up to scrutiny very well, at least for all times after the epoch of BBN. This success however,
comes with some drawbacks, which can be summarised as follows:

• The horizon problem. The CMB radiation, first discovered in 1964, is known with excellent precision and is landmark
evidence of the Big Bang origin of the universe. One of its most striking features is that its variations in intensity
across the sky are tiny, less than 0.01% on average. It follows from this that the universe was extremely homogeneous
at the time of recombination. Assuming the standard expansion of the universe, we receive the same physical
information from causally disconnected regions of space. It is (apparently) a puzzle why the radiation is so uniform.

• The flatness problem. The most recent results from the CMB are consistent with a flat universe. Namely, the position
and height of the first acoustic peak on the spectrum of the CMB provides evidence for 
 = 1 (see (11)) [8]. The
flatness problem refers to the fact that for 
 to be so close to one at present, it had to be essentially one in the early
universe to extraordinarily high precision, which also constitutes an apparent puzzle.

• Dark matter & Dark Energy. The standard cosmological model, supported by the most recent data [8], postulates the
existence of two new forms of matter, namely dark matter and dark energy, for which there is no direct evidence
from particle physics or from Earth-based experiments.

– Dark matter: Besides CMB evidence for dark matter, the survey and study of the behaviour of matter, such as
rotation curves of galaxies, at many different scales, has given evidence that there should be a new kind of
matter, not present in the standard model of particle physics. This plays an important role in the explanation
of the large scale structure formation. We still do not know what dark matter is: is it a particle, or some sort
of massive compact object present in the universe?

– Dark energy: Recent results form the study of high redshifted supernovae, combined with CMB results provide
strong evidence for the fact that the universe is accelerating today (ln a ∼ −0:34, see Fig. 1). This indicates
that there should be a form of ‘dark energy’ satisfying Eq. (8) (� + 3p) < 0 and thus causing the universe to
accelerate today. Either an effective cosmological constant or a time varying scalar field, called quintessence, are
the main proposals for this dark energy.

All of these problems are strong guides as to the nature of necessary extensions beyond the Hot Big Bang, and in
eneral to the need for physics beyond that contained in the Standard Model of particle physics.

.3. Cosmological inflation

Cosmic Inflation was initially motivated as a way to address the flatness and horizon problems above. Quite com-
ellingly, it was later found that it also provides a simple explanation for the origin of the primordial density fluctuations
hich seeded the observed temperature fluctuations of the CMB and the formation of galaxies through gravitational
ollapse.
The main idea behind inflation is that the universe underwent a period of accelerated expansion at some point in its

ery distant past. If the inflationary period is long enough, it rapidly flattens the universe, solving the flatness problem. It
lso explains why some regions could be in causal contact with each other, solving the horizon problem. Requiring that
nflation solves both the flatness and horizon problems, one can estimate that inflation should last for N & 60 e-foldings.

An accelerated expansion implies that

ä > 0 : (22)

sing (6) we can express this condition as

ä
= H2 [1 − �] > 0 ; (23)
a
9
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Fig. 3. An illustration of the standard picture of slow-roll inflation ending in fast roll of the inflation to a minimum and subsequent reheating of
the universe.

where we introduce the slow-roll parameter �, defined as

� ≡ −
Ḣ
H2 ; (24)

nd thus the condition for an accelerated universe is encoded in the requirement that

� < 1 : (25)

sing (4) and (7) in (24), we can write � as

� ≡
3
2
(1 + !) ; (26)

nd thus � < 1 implies the condition (17) for an accelerated expansion, as seen previously.
This is equivalent to the statement that the comoving Hubble radius (aH)−1 shrinks in accelerated expansion, rather

han the growing behaviour of radiation and matter dominated phases. That is,

d
dt

(aH)−1
= −

1
a
[1 − �] < 0: (27)

n a universe dominated by a fluid with equation of state p = !�, the comoving Hubble radius behaves as

1
aH

∼ t
�−1
� ; (28)

nd thus again we see that � < 1 implies that the comoving Hubble radius decreases, while for � > 1, it increases. For
example, during matter domination ! = 0 and � = 3=2, while during radiation domination ! = 1=3 and � = 2. Note
that as soon as the condition � < 1 fails, inflation ends and thus we can define the end of inflation as � ∼ 1.

In the de Sitter limit, � → 0, the space grows exponentially as in (16). More generally, an inflationary expansion
requires a somewhat unconventional matter content. Indeed, from (5) we see that, for a universe supported by a perfect
fluid, the energy density and pressure should satisfy

� + 3p < 0 ; (29)

hat is, the overall pressure of the universe should be negative p < −�=3, which corresponds to a violation of the
trong energy condition (SEC).2This occurs in neither radiation nor matter dominated phases (for which p = �=3; p = 0
espectively). However, one simple energy source that can drive inflation is the positive potential energy of a single
canonically normalised) scalar field with negligible kinetic energy (see Fig. 3 for an illustrative example). As we will
ncounter later, other alternatives are also possible.

2 The SEC for a perfect fluid states that � + p ≥ 0 [9].
10



M. Cicoli, J.P. Conlon, A. Maharana et al. Physics Reports 1059 (2024) 1–155

2

I

A
a

T

I

W
f
t

R
�
a

T

U
w

M

i

.3.1. Slow-roll conditions
Let us consider a single (canonically normalised) scalar field, the inflaton, with potential energy V , coupled to gravity.

ts action reads

S =

Z
d4x

√
−g

�
1

8� G4

R4

2
−

1
2
@�’ @

�’ − V (’)
�
: (30)

lthough the inflaton can in principle depend on both time and space, inflation rapidly smooths out spatial variations,
nd thus for the background evolution, it suffices to study3 ’ = ’(t). In a spatially flat FLRW spacetime (1) the variation

of the action (30) with respect to ’ gives

’̈ + 3H’̇ + V;’ = 0 : (31)

he energy momentum tensor of the field derived from (30) gives

T�� = @�’@�’ − g��

�
1
2
(@’)2 + V (’)

�
: (32)

n the flat FLRW background, the energy density and pressure of the scalar are found to be

�’ =
1
2
’̇2

+ V (’) ; (33a)

p’ =
1
2
’̇2

− V (’) : (33b)

With this, Eqs. (4) and (5) yield

H2
=

8� G4

3

�
’̇2

2
+ V (’)

�
; (34)

ä
a

= −
8� G4

3

�
’̇2

− V (’)
�
: (35)

e now introduce the slow-roll conditions. A nearly exponential expansion can be ensured by the requirement that the
ractional change of the Hubble parameter per e-fold N is small, that is � ≪ 1 (see Eq. (24)). In terms of the inflaton, ’,
his can be written as (from now on we use MPl rather than G4)

� =
’̇2

2M2
PlH2

≪ 1 : (36)

equiring that inflation lasts for a sufficiently long time that the horizon problem is solved is equivalent to requiring that
remain small for a sufficient number of Hubble times, which is measured by the second slow-roll parameter, �, defined
s

� ≡
�̇

H�
=

Ḧ
HḢ

+ 2� = 2
’̈

H’
+ 2� : (37)

his then implies that �’ ≪ 1, where we defined

�’ ≡
’̈

H’̇
: (38)

sing the Friedman Eq. (34), we see that the first slow-roll condition (36), implies that ’̇2
≪ V and therefore we can

rite (34) as

H2
≃

V (’)
3M2

Pl
: (39)

oreover, using (38), we can write (31) as

3H’̇ + V;’ ≃ 0 : (40)

In the present case of a single scalar field, we can write the slow-roll conditions (36) and (38) (equivalently (37)) solely
n terms of the scalar potential and its derivatives as follows. From the condition (36), using (39) and (40), we arrive at

�V ≡
M2

Pl

2

�
V;’
V

�2

≃ � ; (41)

3
 The spatial dependence will be relevant later for the quantum fluctuations of the inflaton.

11
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Fig. 4. Horizon exit and re-entry of a density perturbation with wave number k.

which is the first potential slow-roll parameter. Next, using the conditions (39) and (40) in (38), we obtain

M2
Pl
V;’’
V

+ � ≪ 1 ; (42)

nd so therefore introduce the second potential slow-roll parameter, �V ,

�V ≡ M2
Pl

����V;’’V

���� : (43)

hus, in single field inflation, the slow-roll parameters can be written in terms of the scalar potential and its derivatives,
hich need to be small during inflation:

�V ≪ 1 ; �V ≪ 1 : (44)

ote that in this case, the smallness of the �V -parameter (which in the present single field case is equivalent to � and
’), implies that the mass of the inflation, |m2

inf| ∼ |V;’’ | ≪ H2 (as we will see, this conclusion no longer holds when
ore scalar fields are present [10,11]). The required smallness of the slow-roll parameters, and in particular the mass of

he inflaton, is vulnerable to quantum corrections, as we will discuss in detail when we consider UV complete models in
ection 2.3.

.3.2. Primordial fluctuations
As we have seen, the early universe is supposed to have been rendered very nearly uniform by a primordial inflationary

poch. According to our current understanding, structures in the universe originated from tiny ‘seed’ perturbations, which
rew to form all the structures we observe today. Observations of the CMB support this view, indicating that at the
ime of decoupling the universe was very nearly homogeneous with small inhomogeneities at the 10−5 level. The best
andidate for the origin of these perturbations is quantum fluctuations produced during inflation in the early universe.
hese perturbations extend from extremely short scales to cosmological scales by the stretching of space during inflation.
The shrinking of the comoving Hubble radius (Hubble horizon) during inflation implies that fluctuations leave the

orizon at some point (see Fig. 4). Once inflation ends, the Hubble radius increases and the fluctuations eventually reenter
t during the radiation – or matter – dominated epochs. Fluctuations that exit the horizon around 60 e-foldings or so
efore the end of inflation, reenter with physical wavelengths in the range accessible to cosmological observations, with
he CMB probing around 7–10 e-folds (note that the number 60 here depends on the post-inflationary evolution which, as
iscussed in Section 5, can be quite different in stringy scenarios compared to the vanilla picture of immediate reheating;
ee [12,13] for discussions in a stringy context). The spectra generated for density perturbations and gravitational waves
uring inflation provide a distinctive signature and can be measured by analysing the microwave background radiation
nisotropies.
During inflation, the inflaton field dominates the energy density of the universe, and thus any perturbation on it implies

perturbation of the energy–momentum tensor

�’ ⇐⇒ �T�� : (45)
12
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perturbation in the energy–momentum tensor then implies, via Einstein’s equations of motion, a perturbation of the
etric

�G�� =

�
�(R��) −

1
2
�(g�� R)

�
= 8�G�T�� ; (46)

nd so we have

�’ ⇐⇒ �g�� : (47)

he metric perturbations can be decomposed according to their spin into scalar, vector and tensor perturbations with
espect to rotations of spatial coordinates on hypersurfaces of constant time. At linear order, the scalar, vector and tensor
erturbations evolve independently (decouple) and it is thus possible to analyse them separately. Vector perturbations do
ot get excited during inflation because there are no rotational velocity fields. In what follows, we summarise the analysis
f scalar and tensor perturbations in inflation. For more details see e.g. [14,15].

auge choice
An important subtlety in the study of cosmological perturbations is that the split into background and perturbations is

ot unique, but depends on the choice of coordinates or the gauge choice. It is important to note that there is no preferred
auge. To eliminate this ambiguity, one has two choices: either identify gauge invariant quantities or choose a given gauge
nd perform the calculations in that gauge. Both options have advantages and drawbacks. By selecting a certain gauge, the
alculations might be made technically simpler, but there is a risk that doing so introduces gauge artifacts or unphysical
erturbations. On the other hand, a gauge-invariant computation may be technically more involved, but has the advantage
f dealing only with physical quantities.

auge-invariant variables
As we discussed above, it is helpful to provide gauge-invariant combinations of metric and matter perturbations in

rder to avoid the problem of spurious gauge modes. There are three gauge invariant quantities that are usually defined
n calculations of inflation:

Gauge invariant variables

i. The comoving curvature perturbation. This is given by

R = 	 + H
�’

’̇
; (48)

where 	 is the spatial curvature perturbation. In geometrical terms, R measures the spatial curvature of
comoving hypersurfaces.

ii. The curvature perturbation on slices of uniform energy density. This is given by

� = 	 −
��

3(� + p)
: (49)

Geometrically, � measures the spatial curvature of constant-density hypersurfaces. For a scalar field,
(�+p) = ’̇2. Moreover, during inflation �� ≃ −3H ’̇ �’. Thus � and R are equal during slow-roll inflation.
As we will see they are also equal on super-horizon scales and therefore the correlation functions of � and
R are the same at horizon crossing. Moreover, both are conserved on super-horizon scales during slow-roll
inflation.

iii. Scalar field perturbations in spatially flat gauge. The spatially flat gauge is defined as the slicing where there
is no curvature 	 = 0. It gives a gauge-invariant measure of inflaton perturbations and is given by

Q = �’ +
’̇

H
	 : (50)

One can compute the curvature perturbation generated during inflation on super-Hubble scales, � or R, either using
particular gauge and computing the gauge-invariant curvature in that gauge, or by doing a fully gauge-invariant

alculation. The results are equivalent.
The gauge-invariant curvature perturbation R defined above is conserved outside of the horizon. Thus, we can compute

t at horizon exit and remain ignorant about the sub-horizon physics during and after reheating until horizon re-entry of
given R-mode, k.
The equation of motion for the curvature perturbation R, takes a simple harmonic oscillator form and thus it can be

uantised by promoting the classical field R to a quantum operator and then quantising it. One can then compute the
ower spectrum of curvature fluctuations at horizon crossing.
We summarise the results and refer the reader to the bibliography for the details on the computations [15].
13
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calar perturbations
The mode equation of motion for the Fourier components of R is given by

R′′

k + 2
z ′

z
R′

k + k2 Rk = 0 ; (51)

here here a prime denotes derivative with respect to conformal time �, d� = dt=a(t); k is the wavenumber and
z ≡ a ’̇=H , sometimes referred to as the pump field, which satisfies

z ′

z
= aH .1 + � − �/ ; (52)

here we have defined4

� ≡ −
Ḧ

2HḢ
: (53)

et us note that fluctuations are created on all length scales, �. Relating the length scale with its wavenumber k, as
= 2�a=k this means that the fluctuations are created with a spectrum of wavenumbers, k. Fluctuations that are

osmologically relevant start their lives inside the horizon (i.e. Hubble radius), that is k=aH ≫ 1. However, while the
comoving wavenumber is constant the comoving Hubble radius shrinks during inflation. Scales for which k=aH ≪ 1 are
outside the Hubble radius; eventually, all fluctuations exit the horizon. Thus we refer to the scales as follows (see Fig. 4):

k
aH

≫ 1 ⇒ sub-horizon scales

k
aH

≪ 1 ⇒ super-horizon scales

For scales well outside the horizon, the solutions to (51) are given by

Rk(�) = C1 + C2

Z
d�
z2
; (54)

here C1 and C2 are integration constants. From (52) we have

z(a) = z0 exp
�Z

(1 + � − �) d ln a
�
; (55)

nd therefore we see that during slow-roll, when �; � ≪ 1, z ∼ a. Since in this case a ∼ −1=(H�) we see that the term
roportional to C2 in (54) decays rapidly as a−3 outside the horizon, and is thus called the decaying mode. The curvature
erturbation is conserved at super-horizon scales and controlled by the constant mode C1. We thus see that the constancy
f Rk depends on � and � doing nothing dramatic even after horizon crossing. However, a more dramatic situation can
rise from a failure of slow-roll. If at any time after horizon crossing the friction term in (51) changes sign, becoming a
egative driving term, the decaying mode can become a growing mode with interesting cosmological implications [16–18].
his change of sign can occur whenever z reaches a local maximum, that is, whenever 1 + � − � = 0. Since � is always
ositive, � must be at least one for this to happen. This can occur during a transient period of fast-roll, ultra slow-roll or
on slow-roll period. We review below briefly this possibility.
The amplitude of the scalar power spectrum at leading order in slow-roll can be obtained by matching the super-

orizon solution with the Bunch–Davies vacuum at sub-horizon scales, to obtain5:

PR =
H4

(2� )2 ’̇2

����
k=aH

=
H2

8�2M2
Pl �

����
k=aH

; (56)

here all quantities are evaluated at horizon crossing, k = aH and we have used (36) in the last equality. The power
spectrum of the cosmic microwave background scalar fluctuations is shown in Fig. 5.

4 Note from (37) that � = −2� + 2�. Note also the difference between �, determined by the full energy density and �’ , which is associated only
to the dynamics of a scalar fluid(s) component.
5 This is sometimes denoted as P or � .
R s
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ource: Taken from [8])

rimordial tensor perturbations
Quantum fluctuations in the gravitational field are generated in a similar fashion as the scalar perturbations discussed

o far. In general, the linear tensor perturbations may be written as

ds2 = a2(�)
�
−d�2 + (�ij + hij)dxidxj

�
; (57)

ith hij ≪ 1. If the energy momentum tensor is diagonal, as is the case in the simplest inflationary model we have
iscussed so far, the tensor modes do not have any source and their action is that of two (not yet canonically normalised)
ndependent massless scalar fields.6

The corresponding canonically normalised field (dropping ij indices),

vk ≡
a
2
MPl hk ; (58)

atisfies the equation of motion

v′′

k +

�
k2 −

a′′

a

�
vk = 0 ; (59)

hich is the equation of motion of a massless scalar field in a quasi-de Sitter epoch. It is interesting to note that, contrary
o the scalar case, no interesting effects arising from transient violations of slow-roll can occur for gravitational waves in
tandard GR.7 This can be most easily seen as follows. Defining the field

 k =
vk

a
; (60)

q. (59) becomes

 ′′

k + 2aH ′

k + k2 k = 0 : (61)

s the ‘pump field’ a increases for all time, the constancy of the gravitational wave amplitude after horizon crossing is
uaranteed until horizon re-entry [16].

6 The tensor hij has six degrees of freedom, but tensor perturbations are traceless, hi
i = 0, and transverse @ ihij = 0; (i = 1; 2; 3). These are four

onstraints, that leave only two physical degrees of freedom, or polarisations.
7 However, in general scalar-tensor theories there can be non-trivial effects as discussed in [19].
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The amplitude of the tensor power spectrum is found to be

PT =
2
�2

H2

M2
Pl

����
k=aH

: (62)

ote that this differs from the scalar power spectrum by depending only on the value of H and not additionally on the
low-roll parameter �. Consequently, a comparison of both scalar and tensor modes amplitudes provides a direct measure
f the slow-roll parameter �. A more precise statement of this comparison is usually phrased in terms of the parameter
, defined as tensor-to-scalar ratio of the power spectra

r ≡
PT

PR
= 16 � : (63)

.3.3. Scale dependence
The scale dependence of the power spectra is given by the spectral tilt indices and follows from the time-dependence

f the Hubble parameter. The scalar and tensor spectral indices are given, respectively, by

ns − 1 ≡
d lnPR

d ln k
; nt ≡

d lnPT

d ln k
: (64)

sing that d ln k = Hdt + d(lnH) one finds, to first order in the Hubble slow-roll parameters

ns − 1 = −2� − � ; (65a)

nT = −2� ; (65b)

where �; � are defined in Eqs. (24) and (37) respectively and these quantities are defined at horizon crossing.
We see that single-field slow-roll models satisfy a consistency condition between the tensor-to-scalar ratio r and the

tensor tilt nT :

r = −8 nT : (66)

f this relation were to be falsified by future observations of the CMB anisotropies, it would indicate that inflation was
ot driven by a single field.

.3.4. Lyth bound
Note that from Eqs. (36) and (63), we see that the tensor-to-scalar ratio relates directly to the evolution of the inflaton

s a function of the number of e-foldings N =
R
Hdt:

r =
8
M2

Pl

�
d’
dN

�2

: (67)

herefore, the total field evolution, between the time when CMB fluctuations left the horizon at Nhc and the end of inflation
t Nend, is given by

�’

MPl
=

Z Nhc

Nend

dN
r

r
8
: (68)

aking the conservative assumption that r remains approximately constant during the inflationary period probed by the
MB, the inflaton must satisfy the so-called Lyth bound8 [21,22]:

�’

MPl
& 2 ×

� r
0:01

�1=2
: (69)

his relation indicates that ‘large’ values of the tensor-to-scalar ratio, r ∼ 0:01, correlate with �’ ∼ MPl, or large-field
nflation. The vulnerability of large-field inflation to quantum corrections will be discussed in Section 2.3.

Using Eqs. (62) and (63), one can also immediately relate the Hubble parameter during inflation to the tensor-to-scalar
atio or slow-roll parameter �:

Hinf =

p
8�2PR �MPl : (70)

8 Taking into account that the fact that r does not remain constant gives a much stronger bound [20].
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Fig. 6. The most recent constraints on inflationary models in the tensor-to-scalar ratio r and spectral index ns plane, taken from [24]. A substantial
mount of inflationary models are already in tension with observations.

he observational constraints that we are about to summarise might then make a high GUT-scale, large-field inflation
eem more likely in the context of a single inflaton field.

.3.5. Current inflationary constraints
In this section we summarise the most recent CMB experimental results that have tested the physics of inflation [23]

see Fig. 6). Let us start by providing the current best-fit value for the power spectrum amplitude, defined through

PR = As

�
k
k∗

�ns−1

; (71)

where k∗ is a pivot scale taken at k∗ = 0:05Mpc−1 in the Planck analysis [8], and found to be

As = (2:100 ± 0:030) × 10−9 (68%, Planck TT,TE,EE+lowE+lensing) : (72)

The spectral tilt [23] index and latest bound on the tensor-to-scalar ratio [24] given by

ns = 0:9649 ± 0:0042 (68%; Planck TT,TE,EE+lowE+lensing); (73)
�s = −0:0045 ± 0:0067 (68%; Planck TT,TE,EE+lowE+lensing) (74)

r0:05 < 0:036 (at 95% confidence) ; (75)

here �s constrains the scale dependence of the scalar spectral index and is defined by

�s ≡
dns

d ln k
: (76)

.3.6. Inflationary models, a selection
In the box below we illustrate three prototypical vanilla single field inflationary models together with their predictions

or ns; r;�’. All these examples have monotonically increasing slow-roll parameters and can be considered as large field
nflation. Notice, indeed, that whereas super-Planckian field ranges correspond to around r & 10−2 in the conservative
yth bound (69), once the spectral tilt is taken into account, super-Planckian field ranges are obtained already around
hen r & 10−5 [20]. We also comment that, whilst the squared monomial and natural inflation models are in tension
ith the latest cosmological data, the Starobinsky model is well within the current data (see Fig. 6).
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