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Reduction of the circuit depth of quantum circuits is a crucial bottleneck to enabling quantum tech-
nology. This depth is inversely proportional to the number of available quantum gates that have been
synthesized. Moreover, quantum gate-synthesis and control problems exhibit a vast range of external
parameter dependencies, both physical and application specific. In this paper, we address the possibil-
ity of learning families of optimal-control pulses that depend adaptively on various parameters, in order
to obtain a global optimal mapping from the space of potential parameter values to the control space
and hence to produce continuous classes of gates. Our proposed method is tested on different experimen-
tally relevant quantum gates and proves capable of producing high-fidelity pulses even in the presence of
multiple variables or uncertain parameters with wide ranges.
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I. INTRODUCTION

The standard view of quantum computation [1] uses
the classical-computing abstraction of a subdivision into a
finite set of gates, measurements, and state reset tasks. This
paradigm has a number of benefits: notably, it permits for-
mal derivation of universal computation [2,3], that is, the
composition of a quantum circuit for any desired unitary
operation, as well as error-correcting codes [4,5], where
specific error syndromes can be measured and corrected.
On the other hand, this abstraction abandons the essen-
tial analog character of quantum devices, from which they
have the most to gain or lose in terms of their expressibil-
ity or fragility, respectively. That is, the power of quantum
processors depends strongly on the number of usable gates
available to them.

Practically speaking, the usage of discrete gate sets falls
short in at least four important respects. First, the ana-
log character is a more complete (and therefore efficient)
description of variability between different qubits, which
is inevitable, for instance, in solid-state qubits [6]. The use
of qubit-agnostic gate sets as the computational primitive
means that each qubit must be individually optimized and
calibrated to yield each such gate [6], where parametric

*f.preti@fz-juelich.de
†f.motzoi@fz-juelich.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

description of the gates would naturally capture the varia-
tions. Second, these variations can occur for a given qubit
as a function of time [7], e.g., due to time-dependent noise,
and require complete recalibrations where, typically, drift
involves only a single parameter. This is very taxing on the
routines for error suppression, mitigation, and correction.

Third, the complexity arising from parameter variations
in space and time is exacerbated by the subsequent circuit
complexity in composing useful circuits. It is well known
that while discrete gate sets can be universal, the required
number of discrete constituent gates can be very large even
for a simple circuit [3,8,9]. Allowing for analog parame-
ter tuning can dramatically increase the controllability of
the system and thereby necessarily reduce the depth of the
quantum circuit for arbitrary tasks (see, e.g., Appendix C).
Since errors accrue with circuit depth (notably due to deco-
herence), this increase in the circuit success probability
may be highly beneficial to both short-term and long-term
(i.e., fault-tolerant) approaches.

Fourth, a further optimization layer is currently ubiq-
uitous in noisy intermediate-state quantum (NISQ) algo-
rithms [10]. Such optimizable circuits include adia-
batic [11,12], annealing [13,14], and variational [15,16]
quantum algorithms. The common denominator in these
approaches is the circuit being treated as a black box, with
a set of analog parameters acting as knobs to tune as inputs
for the respective algorithm. These analog inputs act as
terms in the Hamiltonian and thus may generate various
quantum continuous gate sets. These cannot realistically
be compiled with digital gates and, moreover, to ensure
that the gate set is correctly specified requires a formal
approach for their general construction.
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Our contribution, in this work, is to present a unified
framework to efficiently describe and optimize continu-
ous quantum gate sets in these scenarios. This frame-
work allows learning of the parametric gates that can be
tuned to very high fidelity across a large number and
wide range of parameter values. We refer to our method
as single-optimization multiple-application (SOMA) quan-
tum gate synthesis. This kind of learning can be understood
as an instance of meta-optimization [17,18] or adaptive-
trajectory learning [19–25] and can be related to more
recent uses of neural networks in quantum physics [9,26–
30]. That is, we find a solution for an optimizer that itself
provides solutions to specific problem instances or, with a
different formulation, automatically discovers heuristics to
construct solutions for a specific optimization problem. In
particular, we see that our algorithms are able to synthesize
heuristics for general Hamiltonians.

We break down the problem of generalized gate syn-
thesis into the following components. We parametrize our
quantum gate set using continuous indices that repre-
sent either physical system parameters or desired angles
of a continuous Lie group. We then present two differ-
ent machine-learning methods for obtaining continuous
control parametrizations that generate the indexed gate
set. The first is a supervised approach where traditional
optimal-control theory is used to generate an operational
data set from which a generalized gate-set recipe can be
trained. The second is an unsupervised approach using
back propagation, from which the continuous gate set can
be incrementally learned over the entire training popu-
lation. Finally, we show that our approaches encompass
the various situations discussed above, including gen-
eral solutions for gates given generic physical architec-
tures with wide parameter ranges, noise-adaptive optimal-
control theory, and compilation of a Lie group instead of a
single element.

The paper is organized as follows. In Sec. II, we intro-
duce the notation for supervised and unsupervised training
of parametrized pulses. In Sec. III, we discuss the results
obtained by applying these methods to single-qubit and
two-qubit gates in the presence of leakage, showing that
they show similarities with known analytical solution fam-
ilies. Furthermore, we also investigate how our methods
perform compared to other existing algorithms. Finally,
in Sec. IV we analyze the dependence on the parame-
ter variability range, the training-data-set size and batch
size, and the system and network size, and again compare
our algorithms to other numerical robust approaches. We
summarize our conclusions in Sec. V.

II. CONTINUOUS GATE-SET LEARNING

A. Definitions

We define a continuous gate set in terms of some
continuous sets or distributions of n system parameters

s1, s2, . . . , sn and m gate specifications θ1, θ2, . . . , θm. An
element of such a gate set is a unitary transformation
between two Hilbert spaces H1 and H2:

U(s1, s2, . . . , sn, θ1, θ2, . . . , θm) : H1 �→ H2. (1)

Obtaining a single element of this set is a well-
known problem in quantum information. Depending on
whether the unitary is synthesized from discrete or ana-
log dynamics, its composition is referred to as circuit
compilation [2,3,37,38] or optimal-control theory [39–44],
respectively.

In Fig. 1(a), we see an example of a generic circuit act-
ing on different qubits. Each qubit in space (and time) will
have different values of the common system parameters
{sk}. In addition, the different unitaries in the gate set {Ui},
each additionally characterized by rotation angles {θi,j },
may vary both throughout the circuit and in iterated uses of
the circuit (e.g., in NISQ algorithms). For compactness, we
now regroup the continuous indices into a common array
of indices �λ = (s1, s2, . . . , sn, θ1, θ2, . . . , θm).

Such a generalization of the gate-synthesis prob-
lem can be framed as solving for the inverse func-
tion of the general dynamics given in Eq. (1), that is,
for

g : �λ �→ u(t), (2)

where u(t) is a wave-form function in the standard case
of optimal-control theory but can also be thought of as a
discrete sequence of hard pulses, as in NMR applications,
or of unitary gates in circuit compilation. Importantly, the
optimal u(t) changes for each parametrization �λ of the uni-
tary, which can be generated from, e.g., the Schrödinger
equation

U̇(�λ, t) = −iH(�λ, u(t))U(�λ, u(t)), (3)

or other equations of motion defining the system. This
task can be cast as an instance of meta-optimization [45]
or trajectory learning for control [24,46,47]. We formal-
ize the meta-optimization problem as a list of problem-
parameter vectors �λ1, . . . , �λL ∈ Vλ ⊂ R

D with figures of
merit F1(x) = F(x, �λ1), . . . , FL(x) = F(x, �λL) and initial
guess x0, the physical parameters of which vary somewhat
from each other, such that �λi ∼ π(�λ|v) for 0 ≤ i ≤ L and
v ∈ Vλ, is drawn from a parameter distribution. Through-
out the paper we assume, without loss of generality, π

to be a multidimensional uniform distribution, such that
π(�λ|v) = U(�λmin, �λmax), with v = (�λmin, �λmax) defining the
parameter space Vλ.

The objective is to find optimal parameters w∗,

w∗ = argmin
w

{1 − Fi(w)| ∀i = 1, . . . , L}, (4)
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(b)

(c)

(e)
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(f)

FIG. 1. An explanatory diagram of the concepts discussed in Sec. II. (a) A general quantum circuit containing a long sequence of
discrete unitaries (Clifford + T set), which do not exhibit any dependence on continuous parameters. (b) A general quantum circuit con-
taining different unitaries with different continuous parameters s1, s2, . . . , s5 for different qubits q1, q2, . . . , q5 and angles θ1, θ2, . . . , θ8
parametrizing each gate. R, U, and W represent an analog single-, two– and three-qubit gate, respectively. Here, the same unitary
parametrization is capable of representing all the different gates needed in the circuit. We show some notable analytical solutions used
to engineer specific gate operations, which are usually implemented due to their adaptive character and simplicity [see Eqs. (5), (6),
and (7)]. (c) STIRAP [31,32]. (d) The Mølmer-Sørensen gate [33,34]. (e) DRAG [35,36]. (f) The method that we propose, SOMA,
does not make strict assumptions on how the pulse depends on the problem parameters but, rather, discovers it more generally through
training.

which allow for simultaneous optimization of all the sys-
tems considered within the range of sampled parameters.

B. Analytical adaptive control

The most straightforward way to generate classes of
solutions to quantum gates has been the development of
analytical solutions for particular quantum systems.

They have in common the knowledge of the relevant
state of the system at all times during the evolution. In
particular, analytical knowledge of the eigenvalues [48]
allows reverse engineering of the pulses to provide (near)
exact solutions for the desired states.

Figures 1(c)–1(f) shows several celebrated examples
where such general classes of solutions have been
found. We quickly review some of their main features.
Given a trial pulse shape such as a Gaussian envelope
p(t, t1, t2, θ) = Ae(t−t2/2+t1/2)2/σ 2

, where θ denotes the area
under the curve, the following dynamical solutions have
been found.

Figure 1(c) shows the stimulated-rapid-adiabatic-
passage (STIRAP) solution for transfering population
between disconnected states |0〉 and |2〉, while avoiding
any (nonvanishing) temporary population in the interme-
diary connecting state |1〉. The pulse shaping is given
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by

STIRAP(|0〉 → |2〉) : (�1, �2, �, θ , T) �→ u(t),

u1(t) = �1eiθp(t, T/3, T, π)ei�t |0〉〈1| ,

u2(t) = �2p(t, 0, 2T/3, π)e−i�t |1〉〈2| , (5)

where the order of the pulses u1 and u2 is famously
counterintuitive [31,32].

Figure 1(d) shows the Mølmer-Sørensen (MS) method
for trapped-ion gates [33,34]. The required laser pulses are
given by

MS(σx ⊗ σx ⊗ · · · ⊗ σx) : (�1, �2, δ, θ1, θ2) �→ u(t),

u1(t) = �1p(t, 0, T, θ1)eiθ2eiδt |g, n〉〈e, n − 1| ,

u2(t) = �2p(t, 0, T, θ1)e−iδt |g, n〉〈e, n + 1| , (6)

where the first state index denotes the state of the relevant
qubit and second index denotes the phonon occupation
number. Because of the symmetry of the gate, it can in the-
ory be used on an arbitrarily large number of qubits, i.e., it
is a collective gate [38,49].

Figure 1(e) shows the derivative-removal-for-adiabatic-
gate (DRAG) solution, for leakage suppression in multi-
level systems [35,36]. This pulse profile is given by

DRAG(|0〉 ↔ |1〉) : (�1, �2, α, δ, θ1, θ2) �→ u(t),

u1(t) = eiθ2eiδtp(t, 0, T, θ1)(�1 |0〉〈1| + �2 |1〉〈2|),
u2(t) = ieiθ2eiδt∂tp(t, 0, T, θ1)/α(�1 |0〉〈1|

+ �2 |1〉〈2|). (7)

We see, with these families of solutions, the common
trend that they allow for different known system param-
eters or for different rotation or phase angles. Naturally,
this is just a representative set but where the equations of
motion are integrable, such solutions are numerous in the
literature.

However, there are a few evident concerns about find-
ing such analytical solutions. First, it is a labor-intensive
task with no guaranteed result, where even particular solu-
tions do not preclude the possibility hat a more systematic
search would produce better results. Second, it is important
to emphasize that these are solutions to idealized models
and in practice the more accurate physical models are not
exactly solved by these ansätze. Finally, most physical sys-
tems have to date not been able to find general analytical
solutions beyond qubits, qutrits, and highly symmetric sys-
tems, both because of the larger state space and the larger
parameter space. This limits their viability for quantum
computing, which requires much larger Hilbert spaces.

C. Gradient-ascent pulse engineering

Gradient-ascent pulse engineering (GRAPE) [41] is a
method originally developed in the context of quantum
chemistry for the optimization of dynamical evolution of
NMR systems. The algorithm assumes the unitary dynam-

ics U(t) = e− ∫ t
t0

iH(τ )dτ , governed by a Hamiltonian of
type

H(t) = H0 +
M∑

m=1

um(t)Hm, (8)

where H0 is a time-independent drift Hamiltonian and Hm,
with m = 1, . . . , M , are different suitable control Hamil-
tonians with corresponding control fields um(t). In simu-
lations, U(t) is often computed through different types of
Trotterization [52]. GRAPE provides us with an efficient
gradient of the merit function with respect to the control-
pulse values. The merit function is usually given by the
gate fidelity:

F = 1
d2 |Tr{UG†}|2, (9)

where the normalization factor d corresponds to the dimen-
sion of the Hilbert space and G is a target unitary, which
we would like to generate using the unitary dynamics. We
assume a Trotter-like unitary evolution of the system of
type

U(T) =
Nevo∏

i=1

Uj (tj , tj −1), (10)

where Uj (tj , tj −1) = e−iHdt, with dt = T/Nevo = tj − tj −1
∀j = 1, . . . , Nevo, in which Nevo defines the number of time
steps used in the Trotterization. In particular, considering
Eq. (8), the unitary step Uj reads

Uj = exp

{

−idt

(

H0 +
∑

k

uk( j )Hk

)}

. (11)

The gradient of the fidelity can be computed iteratively
starting from the so-called propagated optimal state [41],

Oj = Uj +1 · · · UNevoGU1 · · · Uj −1, (12)

so that the gradient approximately results in

∂F
∂uk( j )

≈ 2
d2 Re

{
Tr

{
UG†} Tr

{
idtHkOj

}}
. (13)

This approach, however, cannot directly account for vari-
ations of the underlying dynamics due to, e.g., stochas-
tic noise [53], field inhomogeneity [54], or Hamiltonian
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uncertainties [55] and the optimal pulses output by follow-
ing the native gradient direction can prove significantly
worse than expected if some of the underlying problem
parameters vary. A possible way around this is to switch
to a robust-control approach, in which the cost function
given in Eq. (9) accounts for parameter shifts. A simple
way [41] is to use an average fidelity over the parameter
space sampled with quasi–Monte Carlo,

F̄ = 1
L

L∑

l=1

F(w, λl), (14)

where L is the number of samples.

D. Robust control

Similar to the adaptive solutions using analytical meth-
ods, solutions for controls robust to uncertainty in param-
eters have been found both by analytical and numerical
means [27,40,53–59]. Since this involves only a single
solution and not a family thereof, this has been the pre-
ferred method for parameter variability in quantum gate
sets, as they are easier to design.

Robust solutions are generally defined slightly differ-
ently from the adaptive solutions, using the figure of
merit

w∗ = argmin
w

(

1 − 1
L

L∑

i=1

Fi(w)

)

. (15)

This cost function is more tractable from an optimization
point of view because we can simply account for an ensem-
ble of individual cost functions by taking the average of the
cost functions as the objective of the optimization.

Robust solutions have also been found using
analytical methods. In particular, a common pulse
sequence for gates with robustness to amplitude noise is
the broadband 1 (BB1) sequence

BB1(|0〉 ↔ |1〉) : (�, ��, θ1, θ2) �→ u(t),

u1(t) = �p(t, 0, T/4, θ1)eiφ |0〉〈1| ,

u2(t) = �p(t, T/4, T/2, π)eiθ2+i cos−1(−θ1/4π) |0〉〈1| ,

u3(t) = �p(t, T/2, 3T/4, 2π)

× eiθ2+i3 cos−1(−θ1/4π) |0〉〈1| ,

u4(t) = �p(t, 3T/4, T, π)eiθ2+i cos−1(−θ1/4π) |0〉〈1| ,
(16)

which is independent of offsets in Rabi frequency �� up
to sixth order, 1 − F = O(��6) [60].

Likewise, when applying gates with unknown frequency
offsets, the compensation for off-resonance with a pulse

sequence (CORPSE) method [61] given by

CORPSE(|0〉 ↔ |1〉) : (�, �, θ1, θ2) �→ u(t),

u1(t) = �eiθ2p
(

t, 0,
T
3

, 2π + θ1

2
− sin−1

(
β

2

))

|0〉 〈1| ,

u2(t) = �eiθ2p
(

t,
T
3

,
2T
3

, 2π − 2 sin−1
(

β

2

))

|0〉 〈1| ,

u3(t) = �eiθ2p
(

t,
2T
3

, T,
θ1

2
− sin−1

(
β

2

))

|0〉 〈1| ,

(17)

with β = sin(θ/2), is robust to the exact value of �, for
small enough �.

Robustness has found widespread use in quantum com-
putation, where fabrication uncertainty, use of ensemble
systems, and noise have made control challenging. The
use of robust control is especially important where small
deviations occur over time scales roughly on par with gate
durations.

Nevertheless, if deviations are not small, if they are over
a much longer (or much shorter) time scale, or if very
high fidelity is sought after, then typically they have lim-
ited value. This is especially the case where variability
occurs as a result of design uncertainty or slow parame-
ter drift or when continuous gate sets are needed as for
NISQ algorithms. To understand why maximum fideli-
ties suffer as a result of improved robustness, note that a
longer pulse sequence (with multiple pulses) will necessar-
ily incur more decoherence. Thus while pulses such as BB1
and CORPSE will reduce drift error, the overall fidelity
will not be as high as a single pulse at a fraction of the dura-
tion could have yielded. We also show this quantitatively
in the following sections.

E. Supervised training method: SOMA SL

Rather than constructively producing such classes or
relying solely on optimal-control theoretic methods, here
we pursue the approach of machine learning a functional
approximation to the general solutions. Function approx-
imators are mathematical objects capable of reproducing
arbitrary functions using families of functions [62]. They
are normally identified with neural networks and find
extensive application in machine learning, data analysis,
etc.

For the supervised approach, which is sometimes
referred to as trajectory learning in the robotic control
literature [47], we employ an optimizer to find the cor-
responding minima for a set of problems and a regressor
g : R

D �→ R
Q that maps the problem-parameter space to

the space of solutions to the given problem. We refer to
this approach as SOMA with supervised learning (SOMA
SL). A sketch of the algorithm is provided in Fig. 2(a).
Starting from a seed problem with solution x∗

0, generated
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(a)

(b)

FIG. 2. The SOMA gate-synthesis method represented in its two variants. (a) In SOMA SL, we first optimize N different QOC
problems with different problem parameters �λ1, �λ2, . . . , �λN using an optimal quantum control algorithm such as in Refs. [41,42,50,51]
to obtain optima x∗

1, x∗
2, . . . , x∗

N and then using a function approximator to learn the mapping g : R
D �→ R

Q, �λ −→ x∗(�λ) between
the problem parameters and the optimal pulses. (b) In SOMA BP, we sample L OQC problems �λ1, �λ2, . . . , �λL and train the function
approximator to minimize the average infidelity of the ensemble of problems using back propagation, without generating optimal
solutions for a single problem with a standard quantum control method.

previously, for N different optimal quantum control prob-
lems parametrized by �λ1, . . . , , �λN , we generate N solutions
x∗

1, . . . , x∗
N . Then we train the neural network to find the

best nonlinear mapping between the original parameters
and the solutions. Training is performed via a standard
mean-squared error (MSE) loss:

L(w) =
N∑

i=1

‖z∗
i − g(w, �λi)‖2

2, (18)

z∗
i = x∗

i − x̄
σx

, (19)

where x̄ is the mean value of the generated data, σx is its
standard deviation, and z∗

i are the normalized data.

F. Direct-training method with back propagation:
SOMA BP

An adaptive trajectory is a solution that depends on a
specific parameter of the physical system, which the opti-
mizer does not control, although it can make use of it.
Usually, for many robotics applications, the system does
not have an analytical model, thereby preventing direct-
learning strategies. However, for quantum dynamics, we
show how we can use the model to more directly train
the function approximator. We refer to this approach as
SOMA with back propagation (SOMA BP). A sketch of
the algorithm is provided in Fig. 2(b).

Prime examples of adaptive trajectories are the analyti-
cal pulses in Sec. II B. For instance, by using a frequency-
dependent solution, DRAG eliminates the leakage inside a
qutrit. Moreover, this solution parametrized by the func-
tion approximator, g, directly depends on the physical
system values and can therefore be tuned if these are
shifted.

The cost function for an ensemble of L quantum-
optimal-control (QOC) problems defined by problem
parameters �λ1, . . . , �λL is given by

L(w) = 1 − 1
L

L∑

l=1

F(g(w, �λl), �λl), (20)

where F , as before, is the figure of merit, e.g., the overlap
fidelity of the operation with the target quantum gate [64].

By parametrizing the solution in terms of a neural net-
work that depends on the gate parameters, gradient-based
optimization algorithms can be used to train the net-
work directly off the above cost function. In essence, the
usual back propagation of neural networks matches natu-
rally with gradient-descent optimal-control methods such
as GRAPE [41]. Thus, while optimizing in the fidelity
landscape of the controls, our algorithm is able to simulta-
neously train the network to adapt to the extraneous system
and gate parameters. This method can also be used in com-
bination with a more standard robust-GRAPE approach. In
this case, those parameters the calibration and control of
which proves difficult can be excluded from the network
input.
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G. Experimental adaptation

Direct experimental application of SOMA is possible
both for model-based and model-free implementations. For
these purposes, one must have access to a controlled dis-
tribution of �λ values, corresponding to gate parameters,
pulse parameters, and system parameters. For in situ opti-
mization of the gates, one further requires access to an
experimental cost function to ascertain (with low noise
and bias) the merit of the pulse sequence. For model-
free control learning, the system parameters should still be
indexed in some way, e.g., by performing characterization,
by using a proxy such as other known characteristics, or
by externally tuning parameters (e.g., the qubit frequency
via magnetic or Stark shifts). For model-based approaches,
one can vary the parameters �λ in software to map the solu-
tion space of the continuous gate sets. Thus, in both cases,
provided that there is known variation in some parameters,
then one can index them, e.g., discretely in space or (slowly
varying) continuously in time, as shown in Figs. 3(a) and
3(b), respectively.

Whichever parameters for �λ one chooses for the exper-
iment, the task then becomes to learn the neural-network
weights for the maximal performance on the relevant
device and gate defined uniquely by �λ. Two different
approaches are shown in Figs. 3(c) and 3(d). When an
accurate model for the generators of the dynamics is
known, then Fig. 3(d) is a natural choice whereby offline

(i.e., open-loop) optimization of the simulated gates is
first brought up and only once the solution class has been
learned in situ (i.e., closed-loop) is control learning per-
formed. In this secondary step, one can reoptimize either
over the space of solutions (fine tuning optimal �λ∗) or over
the space of physical controls (fine tuning optimal �x∗).

Closed-loop optimization directly on the experiment can
be performed a number of ways, including numerical and
parameter-shift approximations of the gradient, Nelder-
Mead [65], or evolutionary algorithms [66]. In the latter
case, for example, Monte Carlo gradient sampling can be
used to estimate the update direction [67]:

∇xF(x) = 1

Ñ

Ñ∑

i=1

F(x + εiσ)εi, (21)

where εi ∼ N (0, IQ), i = 1, .., Ñ is a normally distributed
stochastic variable sampled Ñ times, x is the network out-
put representing the pulse, and σ is the standard deviation
of the sampled pulses. This method is often referred to
as natural evolution strategy [67]. Figure 3(c) shows how
the experimental gradient of the cost function can be then
back propagated via the optimizer (similarly to the GRAPE
implementation above) in order to update the network
weights w∗ directly, when the different �λ can be sampled
simultaneously.

(a)

(c)

(b)

(d)

FIG. 3. Four diagrams describing two possible use cases of SOMA and two possible experimental implementations of SOMA BP,
respectively. (a) We consider a chip with several qubits, each one with its own Hamiltonian parameter �λ. We assume parameter
variations δ�λ to be so large that robust pulses are generally ineffective. (b) In the second use case, we consider a single system, the
parameters of which vary with time. Pulses are trained on the average cost function over ensembles of qubits. (c) The approximator
is trained directly on the experimental setting by using a gradient estimator, in this case a policy gradient [63], which usually requires
large numbers of samples to be drawn from the system. (d) The regressor is first trained first in open-loop simulation and then used
as an ansatz for a closed-loop optimization, which leaves the neural-network parameter untouched but modifies the output amplitude
parameter (or, alternatively and if possible, the input parameters) to maximize the fidelity for specific experimental configurations. The
optimization routine can be freely chosen among gradient-free algorithms, such as Nelder-Mead in Ref. [43]. This method can be a
viable option if the experimental setting can be simulated with sufficient precision.
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III. RESULTS

We test our methods and compare to previous optimal-
control theoretic approaches. For this purpose, we train
our solution networks to learn how to perform continu-
ous gate sets for both single- and two-qubit operations.
As a figure of merit of the QOC problems, we choose the
gate fidelity defined in Eq. (9). While the gradients of the
fidelity with respect to the pulse parameters x can be com-
puted using GRAPE [41,68] (see Sec. II C and Appendix
A), in the context of these simulations the gradient can
also be obtained through automatic differentiation [69,70].
To simulate the quantum system, we use a second-order
Magnus propagator as derived in Refs. [71,72] and which
is compatible with analytical or automatic differentiation
[72]. For the optimization of all the parameters, we employ
the algorithm L-BFGS-B [73].

A. Single-qubit gates

Single-qubit gates are the fundamental building blocks
of quantum circuits. Their most general form—e.g., as they
are implemented in the IBMQ compiler [74]—is given by

R(θ1, θ2, θ3) =
[

cos(θ1/2) −eiθ2 sin(θ1/2)

eiθ3 sin(θ1/2) ei(θ3+θ2) cos(θ1/2)

]

.

(22)

By choosing the vector parameter θ appropriately, one can
construct arbitrary single-qubit unitaries. Therefore, in any
optimal quantum control problem, this triple can be consid-
ered as a vector of problem parameters, since they define
the entire class of QOC problems, the goal of which is the
optimization of arbitrary single-qubit gates.

In the following section, we consider an ensemble of
QOC problems defined by parameters of the unitary target
gate, Hamiltonian parameters, parameters of the control
fields, and the evolution time T. To simplify the problem,
we consider a target gate of type

R1(θ) =
[

cos(θ/2) sin(θ/2)

sin(θ/2) − cos(θ/2)

]

(23)

by setting θ1 = θ , θ2 = π and θ3 = 0 in Eq. (22). For θ =
π/2, the gate is the H gate, whereas for θ = π it produces
the X gate.

The second family of unitaries that we consider can be
obtained by setting θ1 = π and θ2 = θ3 = θ − π in Eq.
(22). The resulting family of gates,

R2(θ) =
[

0 ei(θ−π)

e−i(θ−π) 0

]

, (24)

generates, among other unitaries, the X gate for θ = π

and the Y gate for θ = π/2. We would like to point out
that a combination of single-qubit unitary gates as in Eqs.

(24) and (23) is sufficient to generate arbitrary single-qubit
unitaries [1].

For single-qubit simulations, we consider the Hamil-
tonian of a superconducting transmon qubit [75]. This
system can be effectively reduced to a qutrit Hamiltonian
[75,76], where the |0〉 and |1〉 levels provide the compu-
tational subspace and the |2〉 level represents the leakage.
The drift Hamiltonian for our system [35] reads

Hd = ωdn̂ + α�̂2, (25)

�̂j = |j 〉 〈j | , (26)

n̂ =
∑

j

j �̂j , (27)

where ωd is the qubit frequency and α is the anharmonicity.
Furthermore, we consider a control Hamiltonian of type

Hc(t) = �(t)eiφ+iωtσ̂+ + �(t)∗e−iφ−iωtσ̂−, (28)

where ω is the driving frequency and φ represents a time-
independent phase shift between the raising σ̂+ and the
lowering σ̂− operators, which can be related to the rotating-
wave approximation (RWA) [68,77] and which is, in this
model, the only problem parameter influencing the control
fields.

Computing the RWA with detuning δ allows us to
rewrite the drift Hamiltonian as

Hd = δ�̂1 + (α − 2δ)�̂2, (29)

Hc(t) = u1(t)X̂ (φ) + u2(t)Ŷ(φ), (30)

where δ = ωd − ω, X̂ (φ) = eiφσ̂+ + e−iφσ̂−, and iŶ(φ) =
eiφσ̂+ − e−iφσ̂−.

Algorithm 1. SOMA SL.
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CONTINUOUS QUANTUM GATE SETS AND PULSE-CLASS... PRX QUANTUM 3, 040311 (2022)

Algorithm 2. SOMA BP.

For the control fields, we employ a Fourier ansatz:

uj (t) =
K∑

k=1

xkj sin
(

kπ t
T

)

, j = 1, 2, (31)

with K Fourier modes. For the QOC simulations, we
set the central values δ0 = 0 GHz and α0 = −0.34 GHz
[78]. The parameter vector of the QOC-problem class is

given by

�λ = (δ, α, φ, θ , T)T . (32)

For all the single-qubit gate simulations, we con-
sider a multidimensional rectangle centered at �λ0 =
(δ0, α0, φ0, θ0, T0)

T and with upper bounds defined by
±�λmax. We consider four methods, which allow us to opti-
mize multiple systems simultaneously: standard GRAPE;
robust GRAPE, which uses the average GRAPE gradi-
ent over an ensemble of QOC problems in Eq. (15); a
supervised training method, which we refer to as SOMA
SL (Algorithm 1), using both linear and nonlinear models
and where GRAPE solutions are first generated and then
approximated via Eq. (18); and the unsupervised method,
which trains a neural-network pulse directly on the fidelity
of an ensemble of QOC problems using back propaga-
tion on Eq. (20). The latter is referred to as SOMA BP
(Algorithm 2).

In the following section, we consider a QOC problem
with N = 500 time steps of a Magnus-type time integrator,
which approximates the unitary temporal evolution of the
quantum system [72]. Our pulses are parametrized as in
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GRAPE Robust GRAPE SOMA BP SOMA SL Linear model

FIG. 4. The infidelity of pulses predicted by the different optimization methods for the R1(θ = π/2) gate (first row) and the R2(θ =
π/2) gate (second row) as a function of three different quantum control problem parameters: (a),(e) the detuning δ between the qubit
frequency and the driving frequency; (b),(f) the nonlinearity α of the qutrit; and (c),(g) the total gate duration T. (d),(h) The average
performance (1000 test samples) of the algorithms as a function of the radial distance from the center �λ0 of the parameter space. The
terms δ̄, ᾱ, T̄ indicate that the problem parameters are renormalized to the space [0, 1]D—see Appendix B. The shaded regions around
each plot line show the standard deviation of the corresponding infidelities. A more detailed discussion about the standard deviation
can be found in Appendix B. Both gates are optimized with four Fourier components for each one of the two control fields—see Eq.
(28)—using the Hamiltonian in Eq. (29). The range of each parameter is given in Table I.

040311-9



PRETI, CALARCO, and MOTZOI PRX QUANTUM 3, 040311 (2022)

−20 0 20

δ (MHz)

10−6

10−4

10−2

100

1
−

F
R

1

(a)

−π/8 0 π/8

φ

(b)

0 π/2 π

θ

(c)

0.0 0.5 1.0

δ̄2 + φ̄2 + θ̄2

(d)

−20 0 20

δ (MHz)

10−6

10−4

10−2

100

1
−

F
R

2

(e)

−π/8 0 π/8

φ

(f)

0 π/2 π

θ

(g)

0.0 0.5 1.0

δ̄2 + φ̄2 + θ̄2

(h)

GRAPE Robust GRAPE SOMA BP SOMA SL Linear model

FIG. 5. The infidelity of pulses predicted by the different optimization methods for the R1(θ) gate (first row) and the R2(θ) gate
(second row) as a function of three different quantum control problem parameters: (a),(e) the detuning δ between the qubit frequency
and the driving frequency; (b),(f) the phase error φ between the σ+ and σ− terms; and (c),(g) the angle θ parametrizing the target gate.
(d),(h) The average performance (1000 test samples) of the algorithms as a function of the radial distance from the center �λ0 of the
parameter space. The terms δ̄, φ̄, and θ̄ indicate that the problem parameters are renormalized to the space [0, 1]D (see Appendix B).
The shaded regions around each plot line show the standard deviation of the corresponding infidelities. A more detailed discussion
about the standard deviation can be found in Appendix B. Both gates are optimized with four Fourier components for each one of the
two control fields for T = 10 ns using the Hamiltonian in Eq. (29).

Eq. (28) by K = 4 Fourier components according to Eq.
(31) for each one of the two control fields X̂ and Ŷ. The
control fields are multiplied with a scaling factor equal to
1/A0 to ensure that the pulse amplitudes do not exceed the
typical experimental maximal value of 1 GHz.

The results are divided into four blocks of four plots
each (Figs. 4, 5), representing models trained on two dif-
ferent sets of problem parameters, the ranges of which are
given in Table I and in Table II. Here, we limit the number
of different parameters to three, although larger numbers
are possible depending on the parameter range taken into
account, the specifics of the physical system, the size of
the neural network, and the number of systems sampled
(see Appendix B). The first three plots in each row show
the infidelity as a function of one varying parameter, while
the other parameters are kept at their original values given
by �λ0. The fourth plot shows the average performance of
the different methods as a function of the radial distance
from the initial QOC problem �λ0. This last plot ensures
that the performance of the methods is stable when dif-
ferent parameters are changed simultaneously across the
entire range of the parameter space.

In Fig. 4, the problem parameters δ (the qubit-drive
detuning), α (the nonlinearity of the qutrit system), and
T (the gate evolution time) and the target gates R1(θ)

defined by Eq. (23)—first row—and R2(θ) defined by Eq.
(24)—second row—are considered. The blue continuous
line shows the GRAPE solution for the �λ0 parameter,
the fidelity of which shows an exponential decay as a
function of the distance from the center of the parameter
space. The orange dashed line shows the performance of
robust GRAPE and the brown dashed line the performance

TABLE I. The parameter range for the optimization of the
single-qubit gates R1(θ) and R2(θ) as given in Fig. 4. For this
simulation, we do not vary the angle parameters of the gate but,
rather, the physical parameters of the qutrit, such as δ and α and
the evolution time T.

δ (MHz) α (MHz) φ θ 1/A0 T (ns)

Center 0 −340 0 π
2 0.01 10

Maximum 40 −240 0 π
2 0.01 20

Minimum −40 −440 0 π
2 0.01 5
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TABLE II. The parameter range for the optimization of the
single-qubit gates R1(θ) and R2(θ) as given in Fig. 5. In this case,
we not only vary the detuning but also the angles of the gates and
the phase factor φ.

δ (MHz) α (MHz) φ θ 1/A0 T (ns)

Center 0 −340 0 π
2 0.01 10

Maximum 20 −340 π
8 π 0.01 10

Minimum −20 −340 −π
8 0 0.01 10

of SOMA SL with a linear model, both with infidelities
around 10−2. The pink dashed line shows the performance
of SOMA SL with a neural network and the green dashed
line the performance of SOMA BP. We observe that for
the second gate R2(θ), both methods are able to deliver
an average infidelity below 10−4, whereas for the first one
R1(θ), SOMA BP clearly outperforms SOMA SL.

In Fig. 5, the problem parameters are as follows: drive
frequency detuning δ, the phase mismatch in the control
fields φ, and the gate angle θ , together with the target gates
R1(θ) defined by Eq. (23)—first row—and R2(θ) defined

by Eq. (24)—second row. We note the same general trends
as in Fig. 4. In particular, we observe that although both
SOMA methods are closer in terms of performance for
R1(θ), with a little advantage for SOMA BP, for gate R2(θ)

SOMA BP clearly outperforms SOMA SL. We can again
note that SOMA BP mostly outperforms all the other meth-
ods, providing pulses that are stable over a large range of
parameters.

For simulations with single-qubit gates, we use a two-
layered network with 256 components per layer and eight
neurons in output—the output space of the approximator
has an output dimension Q = 2K .

B. CR gate with leakage

The cross-resonance (CR) gate is a two-qubit gate acti-
vated by microwave fields, which drive one of the qubits
(target) at the frequency of the other (control). The gate
is implemented in the context of quantum computing with
superconducting qubits [79–82]. The gate gives rise to a
ZX -type interaction [79], which can then be used to gener-
ate different two-qubit entangling unitaries. The CR gate
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FIG. 6. The infidelity of pulses predicted by the different optimization methods for the direct controlled-NOT (CNOT) gate (first row)
and the CR(θ) gate (second row) as a function of the different quantum control problem parameters: (a),(e) the frequency difference �

between the two qubits; (b),(f) the nonlinearity α of the qutrits; (c) the phase error φ between control fields σ̂+ and σ̂−; and (g) the
angle θ parametrizing the CR continuous family of gates given by Eq. (38). (d),(h) The average performance (1000 test samples) of
the algorithms as a function of the radial distance from the center �λ0 of the parameter space. The terms �̄, ᾱ, φ̄, and θ̄ indicate that
the problem parameters are renormalized to the space [0, 1]D—see Appendix B. The shaded regions around each plot line show the
standard deviation of the corresponding infidelities. A more detailed discussion about the standard deviation can be found in Appendix
B. Both gates are optimized with 30 Fourier components for each one of the four control fields and for total gate duration T = 90 ns.
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can be embedded in a higher-dimensional system, e.g.,
where two qutrits are capacitively coupled together. In this
case, the target gate is a two-qubit gate but the unitary gen-
erated by the Hamiltonian evolution is a two-qutrit gate;
thus the fidelity is only computed with respect to the com-
putational subspace—the CR gate is constructed using the
|0〉 and |1〉 levels. The Hamiltonian of a two-transmon
system reads [80]

H(t) = Hd + Hc(t),

Hd =
2∑

j =1

(
ωj b̂†

j b̂j + αj b̂j b̂†
j b̂†

j b̂j

)
+ J

(
b̂1b̂†

2 + b̂†
1b̂2

)
,

Hc(t) =
2∑

j =1

�(t)eiωj t+iφ b̂†
j + �(t)∗e−iωj t−iφ b̂j ,

(33)

where J is the coupling strength of the transmon-transmon
interaction, bj is the lowering operator on the j th transmon,
� is the driving field, and a Duffing-oscillator approxima-
tion is performed [76]. A further standard RWA allows us
to simplify the problem, introducing at the same time the
notation from Eq. (25), such that

Hd = �n̂1 + α(�̂
(1)

2 + �̂
(2)

2 ) + J
(

b̂1b̂†
2 + b̂†

1b̂2

)
, (34)

Hc(t) =
2∑

j =1

(

u( j )
1 (t)

(
eiφ b̂†

j + e−iφ b̂j

)

+ u( j )
2 (t)

(
eiφ b̂†

j − e−iφ b̂j

))

, (35)

where � = ω1 − ω2. As control operators, we use the
projectors X̂j (φ) = e−iφ b̂j + eiφ b̂†

j and iŶj (φ) = eiφ b̂†
j −

e−iφ b̂j , both on the control qutrit (j = 1) and the target
qutrit (j = 2), as in Eq. (28), such that

Hc(t) =
2∑

j =1

u( j )
1 (t)X̂j (φ) + u( j )

2 (t)Ŷj (φ), (36)

where u(1)
j (t), u(1)

j (t) are the control fields on the j th qutrit
(for the X̂j and the Ŷj operators, respectively). Note that
all the fields operate at frequencies near-resonant to the
target qubit. The Hamiltonian parameters are centered at
values �0 = 0.2 GHz, α0 = −0.34 GHz, J0 = 0.01 GHz.
For each control field, we use a Fourier parametrization

[43,81]:

∀j = 1, 2, ∀i = 1, 2 : u( j )
i (t) =

K∑

k=1

xi,j
k sin

(
kπ t
T

)

. (37)

We further assume, as in the single-qubit case—see Eq.
(28)—that the control fields are influenced by a phase fac-
tor φ, which then counts as a QOC-problem parameter in
the two-qubit simulations.

For two-qubit gates with leakage, we present two dif-
ferent simulations, one for the controlled-NOT (CNOT) gate
alone and one for a family of CR-like gates with the
following parametrization:

CR(θ) = exp[iθ(Z ⊗ X )]. (38)

For the two-qutrit gates, we use a two-layered neural
network with 500 neurons per layer and 120 neurons in
output. Here, the output of the approximator has a dimen-
sionality Q = 4K , where K = 30 is the number of Fourier
frequencies for each one of the four control fields—see Eq.
(37). The time evolution is given by 5000 Magnus steps.

The results of the pulse-class learning are shown in
Fig. 6. The evolution time is chosen as T = 90 ns, an
improvement of about a factor of 2 over typical experi-
mental durations. The first row of plots shows the results
for the CNOT gate, where variations of the parameters �

(the frequency difference between the control and target
qubits), α (the nonlinearity of the qutrits), and φ (the phase
term of the control fields) are considered. The second line
shows the results for the CR(θ) gate as defined in Eq. (38).
The maximal range for each parameter for each one of
the two gates is described in Tables III and IV, respec-
tively. We observe that, for both gates, the neural-network
pulse trained with SOMA BP outperforms the other algo-
rithms. For the CNOT gate, it can produce pulses that are
robust over a very large detuning range (|�max − �min| =
200 MHz) by training on just 100 different systems sam-
pled from a uniform distribution. For the CR gate, we
choose a range of 100 MHz, while also taking into account
the dependence on the angle θ . It is possible that a very

TABLE III. The parameter range for the optimization of the
two-qubit CNOT gate. The range of values �, α, and φ, as well
as the evolution time T, are determined by considering typical
experimental settings of state-of-the-art superconducting quan-
tum circuits [82–84]. For the value of φ, we assume a small phase
error influencing the X̂ and Ŷ control fields both on the target and
the control qubits.

� (MHz) α (MHz) J (MHz) φ A0 T (ns)

Center 200 −340 10 0 0.05 90
Maximum 300 −330 10 0.1 0.05 90
Minimum 100 −350 10 −0.1 0.05 90
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TABLE IV. The parameter space for the optimization of the
two-qubit CR gate as given in Eq. (38). Compared to the simula-
tion of the CNOT gate, given in Table III, the range of the target-
control frequency detuning � is reduced but the continuous
parameter θ is also considered.

� (MHz) α (MHz) J (MHz) φ θ A0 T (ns)

Center 200 −340 10 0 π
4 0.05 90

Maximum 250 −330 10 0 π
8 0.05 90

Minimum 150 −350 10 0 3π
8 0.05 90

large amount of samples or long training times could
improve the performance of SOMA SL further; however,
as the size of the Hilbert space increases, the optimization
of large sample numbers on classical machines can become
computationally too time consuming.

IV. PERFORMANCE ANALYSIS

In this section, we compare the different meta-
optimization methods as the size of the QOC problem-
parameter space increases. In particular, we vary the order
of magnitude of the laser-frequency detuning δ, the qubit-
frequency detuning � for the two-qubit gate, and the
nonlinearity α for both the single-qubit gate and the CR
gate. For the sake of this analysis, we only vary the max-
imal range of one single parameter at a time, while the
other problem parameters have a fixed maximal range
of 10−3 GHz. As hyperparameters for the different algo-
rithms, we use the same values that have proved to be
effective in the previous simulations. For SOMA SL, we
use up to 10000 sample problems optimized with GRAPE,
whereas for SOMA BP we optimize the average fidelity

with 500 system samples for the single-qubit gate and 100
systems for the two-qubit gate.

The results are shown in Fig. 7. We observe that
although supervised training using the minima produced
by robust GRAPE (blue line) shows lower infidelities for
small variations of the detuning (up to 10 MHz), it fails
when this value is increased to 100 MHz, whereas the neu-
ral network trained with back propagation of the fidelity
still produces valid optima of the QOC problem. In par-
ticular, we observe a crossing between 10 and 100 MHz
for both types of detuning (δ and �) and for the non-
linearity α in the two-qutrit case, where the performance
of the supervised method (SOMA SL green line) worsens
dramatically, whereas SOMA BP (orange line) is able to
keep the fidelity at high experimentally valid values. In
general, we observe that SOMA SL significantly outper-
forms SOMA BP for small parameter variations, where
the precision of the nonlinear regression is high enough
to reproduce the pulse variations perfectly (see also Sec.
7). As a consequence, SOMA SL can be a useful tool to
achieve adaptive robustness against small parameter vari-
ations, where it clearly surpasses SOMA BP, whereas the
latter shines when the parameter variations and the number
of Fourier components are comparatively larger. Further-
more, SOMA BP is capable of handling large variations of
multiple parameters at the same time, as shown in Fig. 5.
In all cases, at least one neural-network approach out-
performs robust GRAPE and the linear regression model
significantly. We argue that sampling large amounts of
problem parameters could actually lead to a better per-
formance for SOMA SL for in situ physical systems or
numerical simulations where sampling proves fast and
efficient. However, as we show in Fig. 8, it seems that
for SOMA SL (green line), there exist systems where its
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FIG. 7. A comparison of four different generalized optimization methods as a function of the parameter space size, when only one
parameter range is varied, while all the others are kept constant at 10−3 GHz: (a),(b) the results for the single-qubit gate R1(θ); (c),(d)
the results for the CR(θ) gate. Both axes are on a logarithmic scale and represent the average infidelity over 1000 test samples. The
values δmax, αmax, and �max on the horizontal axes represent the maximum range of the corresponding problem parameter, δ, α, and
�. The maximum range defines the parameter space over which the QOC problems are sampled. We observe how the neural network
trained with the supervised algorithm outputs pulses with higher average fidelity than the other methods but it fails nonetheless when
the detuning variation in the two different systems is increased up to the order of 100 MHz. In this case, the model trained with SOMA
BP, however, still outputs high-fidelity pulses.
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FIG. 8. An example of the average performance (1000 test
samples) of robust GRAPE, SOMA SL, SOMA BP, and the
linear model as a function of the number of (training) systems
sampled for the single-qubit R2(θ) gate with the same parame-
ters as in Fig. 5. We observe here how in this case, the average
infidelity in SOMA BP decreases as a function of the sample size,
whereas the other methods show little to no improvement.

improvement as a function of the sample size is limited,
which makes SOMA BP orange line a better option, if
its implementation is possible. Likewise, robust GRAPE
(blue line) and the linear model (pink line) gain lim-
ited benefit from increasing sample sizes. In particular for
SOMA SL, we can often observe behaviors such as branch-
ing and outliers in the training data set, which probably
contribute to a loss in the quality of the approximations.
One may try to increase the precision of the model by
using loss functions that are sensitive to outliers, such as
the Huber loss [85], or to restrict the use of SOMA SL to
systems where limited parameter drifting does not prevent
the regressor from learning a high-quality representation of
the solution space.

We also study whether varying the chosen samples dur-
ing training (i.e., minibatching) can affect the performance
of our algorithms; in particular, for robust GRAPE and
SOMA BP. Computing the gradient over a batch of sam-
ples gives rise to a batched version of the algorithms.
More specifically, a batched version of robust GRAPE,
called bGRAPE, has been studied in Ref. [29], where
impressive robustness is achieved by combining batches
of problem parameters with momentum-based stochastic
gradient descent. This is, of course, a different algorithm
than L-BFGS-B, i.e. the optimization algorithm employed
in all simulations discussed in this paper, and it does not
similarly guarantee near-quadratic convergence [73]. For
SOMA SL, computation of the gradient based on the MSE
loss over a batch of samples leads to standard neural-
network training with stochastic gradient descent. For the
systems we consider, we do not observe an improvement
of bGRAPE over robust GRAPE (called sGRAPE in Ref.

[29]), neither with L-BFGS-B nor with ADAM [86]. We
believe that this is due to the use of Fourier components,
which allow for more controllability of the quantum sys-
tem [68], and the use of curvature information granted by
both algorithms. Nonetheless, exploration of the effect of
varying samples during training remains an interesting per-
spective worthy of further studies and commitment, both in
the context of adaptive and robust control.

In the last part of the analysis, we discuss the scaling
of the network approximations as we increase the output
dimension, the number of qubits, and the input dimen-
sion. Since we aim at controlling single- and two-qubit
gates, the number of expected controls only scales linearly
with the number of qubits; and since the weak coupling
between qubits drops off roughly exponentially with dis-
tance, we also do not expect the search complexity in
state space to increase dramatically. In simulations, we
expect both algorithms to behave similarly to GRAPE (or a
different gradient-based control algorithm, if this is imple-
mented) as the dimension of the Hilbert space increases.
This is due to the underlying time evolution, which in
both cases is given by the Trotterization or, as in our case,
the Magnus expansion. The approximation of the quan-
tum propagator affects the gradient-based optimization for
single QOC problems, which generates the target data for
SOMA SL but also acts as an activation function for the
neural network [29] in SOMA BP. As a consequence, we
do expect the state space and the equations of motion to
scale exponentially with number of qubits, which is a gen-
eral problem for all control and compilation tasks. Just as
in the general case, we expect a combination of informed
state-space parametrizations (such as tensor networks and
sparse algebras) and of quantum-aided optimization (as in
Sec. II) largely to address this important problem. More-
over, by considering increasing numbers of qubits, the
number of pulse parameters and control fields increases
consequently. However, control fields acting on different
qubits usually commute, which can dramatically decrease
correlations between the pulse components. Therefore, one
does not need, in general, to have a single neural net-
work outputting all pulse parameters at once but, rather,
several different neural networks, one for each group of
control fields, which commute between each other. For
SOMA SL, we need to generate a large data set of QOC-
problem solutions by means of a standard quantum control
algorithm, which may be slow for many-qubit systems.
However, this task can be easily parallelized, since the dif-
ferent optimizations are independent of each other. In this
case, the main obstacle is not represented by the nonlin-
ear regression over the data but, rather, by the quality of
the data generated by the quantum control algorithm for
each solution in the parameter space. Since the problem is
high dimensional, the solution space will probably exhibit
structures such as branching and outliers that are difficult to
include in the nonlinear regression. A possible option here
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TABLE V. A comparison of SOMA SL and SOMA BP in terms
of their performance features. Here, nfev and tGRAPE are the max-
imal number of function evaluations and the computation time
required by L-BFGS-B with GRAPE to solve a single quantum
control problem. tREG is the time required for the neural-network
regression. tBPROP is the time required by the neural-network
back propagation for one sample.

Algorithm parameter SOMA SL SOMA BP

QOC cost-function evaluations nfevN nfevLNguesses
Computation time tGRAPEN + tREG tBPROPL
Number of samples N L

is to employ algorithms for data reduction and clustering,
in order to obtain a high-quality representation of the solu-
tion space. As for SOMA BP, one may distinguish between
simulation and experimental implementation. In the former
case, the evaluation of the infidelity and its gradient as a
function of the time evolution represents the main bottle-
neck (see Table V in Appendix B), together with vanishing
gradients, which are also a well-known problem for other
NISQ use cases and represent one of the main obsta-
cles to any experimental application. Vanishing gradients
could also be tackled with alternatives to back propagation
(see, e.g., Ref. [87]). Finally, for large output spaces and
very deep networks, GPU training and stochastic gradient-
descent algorithms may provide useful speedup, as it is the
standard in deep learning.

V. CONCLUSIONS

In this work, we show how to engineer solutions of
problems in quantum optimal control that depend on prob-
lem parameters located outside the optimization routine.
This includes physical system parameters, other external
parameters such as the pulse time or bandwidth, and gate
parameters such as rotation angles.

We therefore propose two methods to learn large
classes of quantum gate-synthesis problems, SOMA SL
and SOMA BP. We show through experimentally relevant
examples that these methods prove able to learn adaptive
solutions to generalized QOC problems. The output gates
have fidelities that remain very high over the entire contin-
uous parametrization of the gate sets, for typically large
ranges as would be encountered experimentally. These
continuous gate sets provide the opportunity to be used
as computational primitives in compilation tasks, in NISQ
variational algorithms, and for entire arrays of qubits rather
than individually optimized ones.
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APPENDIX A: GRADIENTS OF THE FIDELITY

GRAPE [41,89] is the standard open-loop gradient-
based method for QOC solutions. It can be implemented
together with a Magnus-based propagator—see Ref. [72].
The gradient can then be used in combination with a
gradient-based optimization algorithm, e.g., the L-BFGS-
B algorithm [73,90]. Variations of GRAPE exist that
exploit the advantages of parametrizing the pulse accord-
ing to a specific set of basis functions (e.g., Fourier basis)
[68] or compute the higher-order derivatives of the fidelity
with respect to the pulse [51,89]. In this paper, GRAPE is
always used in combination with L-BFGS-B, which uses
fast Hessian estimation [91].

For a given set of parametrized functions sk : t �→
sk(t), k = 1, . . . , K describing the time dynamics of the
control fields uj (t) with control parameters xkj —see Eqs.
(28) and (37)—and that can be time sliced in values ski =
sk(ti), i = 0, . . . , Nevo, the gradient of the cost function with
respect to the control parameters can be computed using
the chain rule [68]:

∂F
∂xkj

= ∂uij

∂xkj

∂F
∂uij

, (A1)

where the k index runs over the number of basis-function
components, the i index over the time slice, and the j
index over the different control operators. In a similar way,
this can be applied to a neural-network parametrization
g : R

D �→ R
Q, �λ −→ g(�λ) of the GRAPE pulse, mapping

a given number of metaparameters to the pulse space, and
the original formula can be rewritten to output the gra-
dients of the fidelity with respect to the neural-network
parameters (wml, bl):

∂F
∂wml

= ∂xkj

∂wml

∂uij

∂xkj

∂F
∂uij

, (A2)

∂F
∂bl

= ∂xkj

∂bl

∂uij

∂xkj

∂F
∂uij

, (A3)

with the same indexing as in Eq. (A1). In this case, the
neural-network output values, which give the coefficients
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of the time-dependent basis functions, i.e., the terms xik =
g(�λ)ik, depend on the QOC-problem parameters �λ.

APPENDIX B: IMPLEMENTATION DETAILS

For every physical system considered—the single-qubit
gate with leakage and the two-qubit gate with leakage,
each one with different target gates and system parame-
ters—we first define an interval for each parameter. Values
are sampled from a uniform distribution over the hyper-
volume defined by the intervals of parameters. The system
together with the interval of parameters defines a family of
QOC problems, which we analyze with one of three meth-
ods: robust control with GRAPE, which simply seeks for
the best pulse for a set of different systems; SOMA SL,
which first solves a sample of systems and then performs a
regression over the sampled values—for the sake of com-
pleteness, we consider here both a linear and a nonlinear
approach; and SOMA BP, where the network is trained
directly on the average infidelity of an ensemble of systems
with back propagation.

In the case of robust GRAPE, we sample L systems
and run the optimization with random restart, i.e., we run
the optimization Nguesses = 5 times with different condi-
tions and then choose the pulse with the smallest average
infidelity.

For SOMA SL, we sample up to N = 10 000 points
within the parameter space. For each one of these, we opti-
mize the corresponding QOC problem with GRAPE—this
can be performed with any proper optimal quantum control
method—and then train the model to map the correspond-
ing parameter to the optimal pulses.

As for SOMA BP, we sample L systems and run the
neural-network training with random restart. The num-
ber of total samples required by the regression is usually
larger than the one needed by the other two methods.
The corresponding single-system optimization is nonethe-
less much faster and can be run in parallel. Therefore,
we set N = 10 000 for each simulation, whereas for the
sake of comparison and due to the similarity of the other
two methods, we always use the same number of samples
(either L = 500 for the single-qubit case or L = 100 for the
two-qubit case). Both SOMA methods employ two-layered
neural networks with 256 neurons per layer for the single-
qubit system and 500 neurons per layer for the two-qubit
system. The linear model performs multilinear regression
on the same data used by SOMA SL.

For the random restart of SOMA methods, we run the
optimization Nguesses = 5 times with different initial con-
ditions and then test the quality of the predictions on a
test set. Afterward, we choose the model with the lowest
average test infidelity. For both algorithms, we use the L-
BFGS-B algorithm. Since the training of SOMA SL, which
uses a MSE loss, is much faster than that for SOMA BP, we
do not limit its maximal number of iterations. For SOMA

BP, however, this is limited to 6000 for the single-qubit
gates and to 7000 for the two-qubit gates. Here, the input
parameters for both SOMA SL and SOMA BP should be
rescaled to lie, e.g., within the range [0,1]. For SOMA BP,
this can be avoided in certain cases, as long as the size
of the pulses remains large enough. For details about the
performance of the algorithms, see Table V.

For each system, we evaluate the performance of the
neural-network pulses on the entire parameter space. In
order to visualize the performance of the algorithms con-
sidered in a one-dimensional plot, we consider the nor-
malized parameter space, where all parameter axes are
rescaled to the interval [0,1]:

f : R
D �→ [0, 1]D, �λ −→

�λ − �λmin∣
∣
∣�λmax − �λmin

∣
∣
∣
. (B1)

By then considering D-dimensional spheres of radius r ∈
[0, 1]D, we sample Ns = 1000 systems on the surfaces
of such spheres and compute the average infidelity over
these systems. By doing so, we can evaluate the perfor-
mance over the parameter space, thereby ensuring that our
methods are effective for every combination of problem-
parameter values. The result is then averaged over Ns
samples, i.e., we plot the mean and its standard. The latter
is pictured as a shady region.

We also want to consider how the standard deviation
of the average infidelity behaves when the different algo-
rithms are tested against a batch of quantum systems
sampled according to the parameter space. In particular,
the standard deviation of the infidelity for Ns test systems
is bounded by the average performance of the algorithms:

σ(w)2 = 1
L

Ns∑

i=1

F(w, �λi)
2 − F2

test ≤ 1 − F2
test, (B2)

where Ftest is the average fidelity of the trained pulses on
the Ns test systems. For SOMA BP, assuming that over-
fitting is negligible, we have σ(w)2 ≤ 1 − (1 − L(w))2,
which means that the fidelity of the algorithms considered
is guaranteed not to drop significantly below the average
performance shown in Figs. 4, 5 and 6.

APPENDIX C: FIDELITY OF DISCRETE GATES
AND THEIR PERFORMANCE

In this appendix, we briefly discuss how analog gates are
expected to outperform equivalent-circuit decomposition
with sequences of traditional discrete gates. In particu-
lar, we first consider the standard universal set of quan-
tum gates S = {CNOT, T, S, H} used in Fig. 1. We search
for decompositions to determine the correct compilation
sequence for the aforementioned gates. In particular, we
consider the CR gate defined in Eq. (38) for an angle of
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TABLE VI. The number of gates: the results of searching for
CR-gate decompositions for four different angles— π√

2
, π√

3
, π√

5
,

and π√
7
—obtained with the help of exhaustive search (up to ten

circuit layers) and stochastic descent (up to 20 circuit layers). The
universal gate set is S. We observe here that while for π√

7
we can

find a suitable decomposition with high fidelity, this is not the
case for the remaining angle values. Moreover, two of the best
decompositions contain two CNOT gates, which again leads us to
a much longer gate-evolution time.

Angle θ NCNOT NT NS NH Highest fidelity
π√

2
1 2 4 1 0.9819

π√
3

2 3 1 2 0.9778
π√

5
0 2 3 2 0.9728

π√
7

2 3 0 2 0.9999

θ = π/4. The decomposition is given by the following
circuit:

This decomposition consists of one entangling gate (the
CNOT) and four local unitary operations and the represen-
tation is exact. Note that CNOT has to be implemented effi-
ciently on the chosen quantum computing platform, which
probably requires quantum control anyway. An entangling
gate in the context of superconducting circuits usually
requires T ∼ 150 ns [92]. This is a little bit slower than
the CR gate presented here but shows the equivalency of
these gate sets. Nonetheless, SOMA also allows learning
of both the CR and the CNOT as part of the same continuous
gate set, thereby saving the additional cost of single-qubit
gates (which typically take at least T ∼ 15 ns each).

Where the advantage really shows up is for a gate angle
that does not belong to the same entanglement class as
CNOT. Here, it is clear how continuously parametrized
gates and consequently SOMA can be beneficial to quan-
tum compilation. A CR gate with an angle θ = π/8 also
requires five gates to be implemented, as shown by the
following circuit:

but its circuit contains two CNOT gates. Since the CR (π/8)
can take roughly half the time of a CR(π/4), this implies
that the CNOT-based circuit can be as much as 7 times
slower than the continuously parametrized gate.

For other angles, it becomes increasingly difficult to
find good circuits, with only partial approximations being

3 6 9 12 15 18
lcirc

10−3

10−1

1
−

F
C

R

(a)

1 2 3 4 5 6 7 8 9 10
lcirc

10−3

10−1

(b)

CR
(

π√
2

)

CR
(

π√
3

)

CR
(

π√
5

)

CR
(

π√
7

)

FIG. 9. Infidelities reached by applying (a) stochastic descent
search and (b) brute-force (exhaustive) search on the CR gates
defined by the angles in Table VI in order to decompose them
into discrete circuits. As we can observe, both algorithms pro-
vide us with the same results. However, they cannot find a circuit
representation with F > 0.98 for the first three gates, thus indi-
cating that circuits decomposing these gates with a higher fidelity
are longer, more error prone, and harder to discover.

possible at reasonably short depth. In order to test the
quality of the approximation, we search for optimal dis-
crete circuits representing a given circuit according to
a given parametrization. We use exhaustive search [93]
of all possible circuits (up to circuit depth 10) and
stochastic descent, a special type of structured random
search—see the reinforcement-learning (RL) approach in
Ref. [26]—(up to circuit depth 20) to search for opti-
mal decompositions of discrete gates and try to reproduce
the chosen circuit with an increasing number of unitaries.
The results are given in Table VI and Fig. 9 for the CR
gate with angles π/

√
2, π/

√
3, π/

√
5, and π/

√
7. We see

that although the fidelity of the discrete gates increases
with the size of the quantum circuit, in three cases it
cannot reach the value of F = 0.99 for circuits of depth
smaller than 20. In the case of θ = π/

√
7, a valid decom-

position with fidelity F = 0.9999 is found. The search
is performed exhaustively for lcirc < 10 and then using
stochastic descent for lcirc > 10. Moreover, the decompo-
sition of CR(π/

√
7) contains two CNOT gates, which again

implies a slowdown of the gate execution time.
Other examples for gates with superior analog per-

formance can be seen in, e.g., Ref. [8], with supe-
rior performance especially expected for variational
circuits.
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