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Abstract—We present two datasets for Machine Learning
(ML)-based Predictive Quality of Service (PQoS) comprising
Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) ra-
dio channel measurements. As V2V and V2I are both indispens-
able elements for providing connectivity in Intelligent Transport
Systems (ITS), we argue that a combination of the two datasets
enables the study of Vehicle-to-Everything (V2X) connectivity in
its entire complexity. We describe in detail our methodologies
for performing V2V and V2I measurement campaigns, and
we provide illustrative examples on the use of the collected
data. Specifically, we showcase the application of approximate
Bayesian Methods using the two presented datasets to portray
illustrative use cases of uncertainty-aware Quality of Service and
Channel State Information forecasting. Finally, we discuss novel
exploratory research direction building upon our work. The V2I
and V2V datasets are available on IEEE Dataport [1], [2].

Index Terms—predictive QoS, V2X, V2V, V2I, machine learn-
ing, deep learning.

I. INTRODUCTION

One of the core objectives of next-generation Beyond
5G (B5G) and 6G wireless systems is the minimization of
human intervention in network management. On the one
hand, network operators need new and more cost-effective
solutions to match the increased management complexity. On
the other hand, new services like autonomous driving set
stringent requirements on reliability and guaranteed Quality
of Service (QoS). As such, integrating autonomous capabil-
ities and proactive decision making in network management
constitutes a timely research challenge. Predictive Quality of
Service (PQoS) was introduced as a real-time mechanism to
provide autonomous systems with advance notifications about
upcoming QoS changes [3]. In contrast to reactive strategies,
PQoS allows for proactive decision-making and ensures agile
adaptation and continuity of service following a predict-adapt-
inform closed loop principle. In Vehicle-to-everything (V2X)
applications (e.g., trajectory prediction, high-density platoon-
ing, teleoperated driving, etc. [3]) PQoS was introduced
to accommodate various configurations (such as automation
level, inter-vehicle gap, etc.) and allows for configuration
adjustments in response to changes in QoS. Prompt adjustment
may favor service continuity, comfort, and safety. Besides
that, predictive knowledge of future network conditions might
trigger a series of network procedures aimed at ameliorating
channel conditions and QoS (e.g., early handover decision or
Up Link (UL)/Down Link (DL) power control).

M. Skocaj and N. Di Cicco are co-first authors of this paper.

Recently, two main factors contributed to the rise of PQoS
and autonomous adaptivity in network management: techno-
logical breakthroughs in the fields of artificial intelligence (AI)
and machine learning (ML), and unprecedented availability of
data and computing resources in many engineering domains
[4]. Unfortunately, the lack of high-quality publicly-available
datasets hinders progress in this domain. As such, with the
goal of providing a reliable landmark to the research com-
munity, we propose two high-quality channel measurements
testbed methodologies and datasets for Machine Learning
(ML)-based PQoS in V2X applications. The V2X systems
are primarily characterized by two distinct communication
links, namely Vehicle-to-Vehicle (V2V) links for inter-vehicle
communication and Vehicle-to-Infrastructure (V2I) links for
backbone connectivity [5]. These links exhibit diverse char-
acteristics, necessitating distinct technology, measurements,
and optimization procedures. In the case of V2V links, per-
formance is predominantly defined by channel conditions,
which are susceptible to variations due to factors such as
inter-vehicle distance, velocity, and the surrounding environ-
ment. mmWave communications have been envisioned as a
potential communication technology for V2V communication,
especially for applications that require high data transfer rates
and low latency, such as cooperative driving scenarios where
fast response times are critical [6], [7]. Novel beamforming
and power control optimization techniques are timely research
challenges associated to the use of mmWave frequencies
in V2V communications, where Line-of-sight (LoS) is still
nowadays an utmost requirement. In order to advance the
study of proactive forecasting and optimization techniques,
in Section II-B, we report a testbed methodology for V2V
Channel Measurement and illustrative Channel Impulse Re-
sponse (CIR)s measurements at 60 GHz collected in the
campus of Brno University of Technology. Conversely, V2I
communications are often performed via sub-6-GHz com-
munications and rely on network Key-Performance Indicator
(KPI) as the standard metrics. Thus, this study presents a
KPI-oriented measurement campaign performed in the city of
Munich. Overall, a combination of the two datasets enables
studying the V2X connectivity from the points of view of
both high-levels KPIs and raw channel measurements. One
of the primary objectives of this study is to demonstrate
how a similar algorithmic framework can be used to deliver
PQoS for both V2I and V2V communications. We remark
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Fig. 1: Structural diagrams of the setups: for V2I KPI measurements on the left, for V2V channel measurements on the right.

that V2X trials should be performed on the field, since it
is nearly impossible to obtain realistic results in laboratory
environments. However, field results may significantly differ
in different scenarios and urban environments. Therefore, we
consider the contribution of this paper significant not only
for disseminating specific data set(s), but also to propose
a reference and repeatable testbed methodology for dataset
collection. In particular, we enable the generation of compa-
rable datasets, a better understanding of environmental effects
on the V2X connectivity, and the use of datasets for novel
ML-based predictive QoS methods. Moreover, we illustrate
novel methods and experimental results for ML-based QoS
forecasting, differentiating from previous literature which did
not account for the evolution of QoS KPIs over time. In this
regard, if new datasets are collected and structured similarly
to the presented ones, methods and algorithms developed and
tested in Section IV can be employed out-of-the-box. The
two datasets have been originally presented in [8] and [9],
respectively, and are shared for scientific collaboration within
the European COST INTERACT 20120 cooperation action.

II. TESTBED DESIGN

This Section describes the testbed design and the measure-
ment campaigns conducted for building the two presented
datasets. The structural diagrams of the two setups depicted
in Fig. 1 are discussed in more detail in the following.

A. V2I KPI Measurements

The measurement scenario illustrated in Fig. 1 was designed
to resemble V2X use cases with stringent requirements in
terms of UL throughput, such as teleoperated driving and/or
local dynamic map update. We selected a commercial area
located in the northwest part of Munich, Germany, character-
ized by the presence of relatively high buildings and two-lane
streets with vegetation on the sides. In this urban area, the
average speed limit is 50 km/h and the traffic is moderately
heavy with stable flows and no congestion.

The measurements were conducted using a prototype 5G
standalone system composed of one Huawei’s base station and
one user terminal. The base station was composed of three
units, i.e, the baseband unit, the radio remote unit, and the
antenna system. The radio remote unit and the antenna systems
were placed on the rooftop of a building with a height of 21 m
above the ground, at the location labeled with a black triangle
in Fig. 2. The baseband unit was placed inside a server room

of the same building, and was connected to the radio remote
unit by means of optical fiber links.

Similarly, the user terminal was composed of a baseband
unit, a radio frequency frontend, and an antenna system.
All the units were installed on a compact car, with the
antenna placed on the roof at a height of 1.5 m. The system
was operating with a carrier frequency of 3.41 GHz and a
bandwidth of 40 MHz. The antenna gain was 15.5 dBi at the
base station side and 5 dBi at the user side. Both for the
DL and UL channels we used a fixed modulation and coding
scheme, with modulation order of 2 and 6, and code rate of
0.43 and 0.45, respectively. The transmission power of both
the base station and user terminal was set to 28 dBm, and
the UL channel was using two Multiple-Input Multiple-Output
(MIMO) layers. The user terminal was connected to the base
station and upstreaming data at a constant rate of 40 Mbps.
Conversely, an application installed at the base station side
was downstreaming data at a constant rate of 2.08 Mbps.
Additionally, the car was equipped with a Global Positioning
System (GPS) sensor measuring coordinates, speed, and time.

To build a rich dataset for ML training tasks as well as to
ensure the consistency of the results, the vehicle traversed 10
times the 8-shaped track depicted in Fig. 2. In particular, the
vehicle started from the position represented by the black star
in the figure, turned left, and drove along the track clockwise.
For training and testing of a ML model, repeated traversals of
the same trajectory ensure that the data can be easily split both
temporally (e.g., one round for training, and the remainder for
testing) and spatially (e.g., south locations only for training,
and the remainder for testing).

During the trial we monitored multiple metrics, including
throughput, Signal-to-Interference-and-Noise-Ratio (SINR),
and Modulation-Coding Scheme (MCS), both for the DL
and the UL channels, together with the vehicle’s GPS data.
We measured these metrics for the entire duration of the
experiment with a sampling period of 1 second. We note
that, while the original study focused on predicting uplink
throughput from uplink features via Supervised Learning,
a similar study can be performed for predicting downlink
throughput from downlink features. Furthermore, since loca-
tion information (longitude, latitude, altitude), the speed of
the vehicle, and uplink and downlink modulation and coding
scheme are collected, it is also possible to use the dataset for
uplink/downlink modulation scheme classification, trajectory
prediction, etc. Overall, the composition of our dataset allows
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Fig. 2: Map showing UL throughput measurements. The test vehicle route
traversed the double loop 10 times and is marked with GPS track in 4 colors
representing throughput intervals. Base station antenna at top of the building
(black triangle), 21m above ground. Vehicle antenna height: 1.5m.

for a diversified set of potential ML tasks.

B. V2V Channel Measurements

A measurement campaign for collecting Channel Impulse
Responses (CIRs) in the 60 GHz frequency band has been
carried out in Brno, Czech Republic to evaluate the time-
domain dispersion characteristics of V2V channels [9]. Here,
we present in further detail the testbed design and we extend
the use of the presented dataset to the task of PQoS in
V2V communications, as further elaborated in section IV-B.
Given the crucial importance of LoS communication at 60
GHz, our experimental methodology was designed to ensure
that this condition was met. Specifically, we conducted our
investigation in a controlled traffic setting where LoS was
consistently maintained throughout the duration of our CIR
recording process. To further minimize potential sources of
interference, no other vehicles or moving objects were present
during the course of our measurements. It is worth noting that
the two-lane road under examination is situated in a sparsely
populated area, with no nearby structures that could impede
signal transmission. The nearest edifice, a university building,
is located approximately 50 m from the ”meeting point” of the
passing vehicles. The measurement setup is shown in Fig. 3.
We use two vehicles marked as Cars #1 and #2, as transmitting
and receiving endpoints, respectively. To power the transmitter
(TX) and receiver (RX) hardware, the TX is powered by a
large battery pack mounted in the trunk, while the RX is
powered by a generator loaded on the trailer. The RX and TX
are each equipped with a pair of omnidirectional Substrate-
Integrated waveguide (SIW), as expounded upon in [10], [11].
The antenna is situated in the upper left-hand corner of the
windshield of the test vehicle, as viewed from the driver’s
perspective, and is securely fastened using a suction cup.
For the sake of reproducibility, in the following, we elaborate
on the design principles and commercial components of the
transmitter and receiver ends of our setup. The key parameters
of the time-domain sounder can be enumerated as follows: a
maximum observable time of 163.8 ns, a maximum observable
distance of 49.13 m, a pseudorandom binary sequence (PRBS)

bit count of 2048, a sample count of 8192, a correlation gain
of 39.1 dBm, a number of saved channel impulse responses
(CIRs) equaling 468, and a total measurement duration of
either 2.3 or 4.6 s.

1) Transmitter design: Our transmitter is based on an
Anritsu MP1800A Signal Quality Analyzer (used as Pseudo-
random binary sequence (PRBS) generator), whose baseband
output signal is upconverted to the mmWave band using a
SiversIma FC1005V/00 V-band up/down converter equipped
with a programmable phase-locked loop local oscillator. To
improve phase noise performance, the oscillators are kept
separate and the reference signal for up-conversion is taken
from an Agilent E8257B frequency-stable, low phase noise
generator. The transmitter is powered by a DELL 5600W
4U 230 V uninterruptible power supply (UPS). As a transmit
signal, we use seamless repetitions of complementary Golay
sequences with a data rate of 12.5 Gbit/s with a frequency-
limited bandwidth of 0-4 GHz, up-converted to the mmWave
band with a centre frequency of 59.6 GHz. A bandpass filter
(BPF) partially suppresses the leakage of the local oscillator
signal into the RF path to prevent the PA saturation. Finally,
the signal with a gain of 35±3 dB is fed to the power amplifier
through a coaxial cable with an attenuation of 12 dB. The
output powers of the PRBS and reference signal generators
are 5 dBm and 10 dBm, respectively.

2) Receiver design: The receiver comprises a Tektronix
MSO72004C (20 GHz, 50 GS/s) Mixed Signal Oscilloscope,
and a SiversIma FC1003V/01 (without local oscillator) for
downconversion. As a carrier generator, we employed an
Agilent 83752A. We used LabView for downloading and
processing the raw data from the oscilloscope and setting the
operational parameters. The received signal is passed through
an LNA with a gain of 33± 3 dB, a noise figure of 4.5 dB,
and a coaxial cable with an attenuation of 12 dB. The front-
end oscillations caused by the large gain of the amplifier and
the subsequent SiversIma input circuit are suppressed with
a waveguide isolator and a special three-screw waveguide
tuner that acts as a matching circuit. A quadrature down-
converter produces two baseband signals, I and Q, which
are digitized and stored in the oscilloscope’s memory for
use as matched receivers. Since the converter contains a 4-
multiplier, the frequency of the generator is set to 14.9 GHz.
The Golay sequence was used as a excitation signals for their
excellent cyclic correlation properties. To compensate for large
propagation losses in the mmWave band and attenuation in
coaxial cables, we employed a Quinstar’s QLW-50754530-I2
Low Noise Amplifier (LNA) and a QPW-50662330-C1 PA.
The transmitter and receiver were synchronized by a 10 MHz
reference signal generated by a Rubidium 10 MHz oscillator.

III. DATASETS

In this Section, we provide a concise description of the
format of the presented V2I and V2V channel measurement
datasets.

A. V2I KPI Measurements
The dataset is provided as a .csv file organized in a tabular

format, containing 3034 rows and 12 columns. Each row
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Fig. 3: Pictures of the two measurement vehicles, Car #1 with the TX and Car #2 with RX at their ”meeting point”. Detail photos of RX and TX, including
Power Amplifier (PA) and Low Noise Amplifier (LNA) installation.

corresponds to a data sample, while each column reports a
different metric, as follows:

• User Equipment (UEs) identifier (IDs)
• UEs GPS longitude
• UEs GPS latitude
• UEs GPS Speed (m/s)
• UEs GPS Time
• DL Signal to Noise Ratio (SNR) (dB)
• DL MCS
• DL Throughput (Mbps)
• UL SINR (dB)
• UL MCS
• UL Throughput (Mbps)
Since a single user terminal was used in the experiment,

the UEs IDs are 0 for all observations. UEs Longitude and
UEs Latitude values are expressed using a xxyy.zzzz format,
where xx are degrees, yy are minutes, and zzzz × 60 are
seconds. UEs GPS Time values are in a hh:mm:ss format.
The MCS was fixed for both DL and UL channels.

As an illustrative data exploration example, Fig. 4 shows the
relationship between the user throughput and UL SINR, and
location. We note that the throughput distribution is heavily
skewed towards the maximum value of 40 Mbps. In fact,
approximately 95% of the collected samples are above 20
Mbps. Furthermore, there is a clear relationship to SINR,
taking the shape of a sigmoid-like curve. This implies that, at
sufficient SINR, the throughput jumps rapidly and fast reaches
the maximum. Moreover, we observe that the points where
the highest throughput was measured are concentrated in the
South-East and North-East portions of the map.

B. V2V Channel Measurements

The measurement campaign consists of two independent
runs of the vehicles as described in Section II-B. Specifically,
the separate runs refer to a distinct set of CIRs captured at
different relative TX-RX positions for a fixed duration of 4.6
seconds. During each measurement run, a set of 468 CIR
realizations is acquired. Each experiment run lasts approx-
imately 4.6 s, while each CIR measurement has a duration
of 163 ns with 8192 samples each. In Fig. 5 we refer to
the first time interval, comprising the whole length of the
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Fig. 4: UL SINR versus UL Throughput in the V2I measurements dataset.

experiment, as ”slow time” (x-axis), while the length of a
single CIR measurement (y-axis) is referred to as ”fast time”.
The dataset consists of two .mat files named run*.mat. We
provide an illustrative MATLAB script (V2V_CIR_show.m)
for visualizing the run*.mat files. We illustrate one CIR
measurement in Fig. 5, which we can interpret as follows:

1) In t ∈ [0, 2.4) s, the measurement vehicles are in motion
towards each other from opposite directions. As a result,
the received power increases together with the channel’s
delay dispersion.

2) The vehicles meet each other approximately at time
t = 2.4 s having the minimal mutual distance of approx.
3 m. At this point, the received power and the delay
dispersion are maximized.

3) In t ∈ (2.4, 4.6] s, the measurement vehicles are driving
apart from each other in opposite directions.

IV. MACHINE LEARNING USE-CASES AND RESEARCH
DIRECTIONS

This Section discusses and illustrates potential ML use cases
for the presented data. Our goal is to show that, even though
the two sets of data yield very different kinds of measurements,
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Fig. 5: Illustrative CIR of one pass of the vehicles from V2V dataset.

they can both be employed for proactive decision-making
based on predictive QoS with a similar algorithmic approach.

A. V2I KPI Measurements

In [8] it was shown that the KPI measurements collected
allow for satisfactory results in the task of UL throughput
regression by employing classic ML methods such as linear
regression, decision trees, and Deep Neural Network (DNN)s.
We illustrate a novel use-case for the presented dataset, such
that the data is not treated as independent KPI snapshots but as
a KPI time series. In particular, we consider the task of multi-
step KPI forecasting in place of instantaneous regression.
This is a fundamental step towards PQoS, enabling reliable
proactive decision-making in adaptive transmission systems
(e.g., after forecasting an outage event tens of seconds in
advance). To this end, we propose the use of approximate
Bayesian ML models [12] capable of yielding probabilistic
outputs, which can be interpreted as a measure of predictive
uncertainty. This makes possible to leverage PQoS in risk-
sensitive application scenarios.

To tackle the task of time-series forecasting with uncertainty
estimation, we leverage Long-Short Term Memory (LSTM)
networks with Variational Dropout [13]. In contrast with
standard Dropout, Variational Dropout allows to perform
approximate Bayesian inference in deep Bayesian LSTM
networks. In particular, we implement our forecaster as an
encoder-decoder architecture, where the encoder consists of
multiple LSTM layers, and the decoder is a standard Multi-
Layer Perceptron (MLP). We consider the task of forecasting
future values of the UL throughput given a time series of
past radio and location features. As in [8], we consider as
input features the UL SINR and the position coordinates of
the user equipment. Our forecasting task straightforwardly
extends the work in [8]: the forecaster must learn not only a
mapping between the input features and the user throughput,
but its behavior over time too. For training and evaluating our
model, we consider a 70/30 temporal train-test split. At test
time, we perform approximate Bayesian inference via Monte-
Carlo Dropout [13]. This provides not only a point-estimate

prediction of the UL throughput, but also an estimation of
the predictive uncertainty via the empirical standard deviation
and/or confidence intervals.

Fig. 6a, shows an illustrative forecast obtained on the
prediction of the UL user throughput over 128 consecutive
time steps, corresponding to a forecast prediction of 128
seconds. Our forecaster almost perfectly predicts an outage
phenomenon approximately one minute in advance. As such, it
is possible to act proactively to ensure that the user equipment
will not experience the forecasted outage phenomenon in
the future, for instance, by switching to a lower MCS or
by initiating an early handover procedure. Moreover, outage
predictions are useful in the context of high-density platooning
to estimate when platoon members are out of coverage and
ensure continuous operation even without connectivity [3].

Our approach can be easily generalized to a swarm of ve-
hicles collaboratively collecting data over a vehicular network
infrastructure. In this context, predictive uncertainty would
provide indications on where (in terms of position coordinates)
additional data is needed for improving the performance of
the ML model [14]. In this scenario, each vehicle can share
the same neural network model illustrated above, and rely on
confidence bands to identify highly-uncertain regions where
the available amount of training data is insufficient. This can
be formally contextualized as an Active Learning framework
[15], in which the action of labeling new data is associated
with a cost (in our case, it would be the cost of a drive test,
data collection, and data upload to a cloud server). The final
goal would then be to train an accurate forecasting tool while
minimizing the operational costs of data collection.

B. V2V Channel Measurements

The second measurements we discuss are intrinsically dis-
tinct from the previous dataset, as they collect CIRs in place
of network KPIs. Nevertheless, using the same algorithmic
framework described above, it is still possible to make use
of these data in the context of PQoS. In [9], it is shown and
discussed how in V2V communications the maximization of
the SNR ratio is not always related to the best achievable
performance in terms of Bit Error Rate (BER) and user
throughput. This is because V2V communications are typically
characterized by short distances, thus self-interference due
to multipath components (MPCs) might lead to error floors
and increase of the (uncoded) BER. In order to preserve
a guaranteed level of QoS, it is therefore crucial in V2V
scenarios to have proper predictive mechanisms as a support
for adaptive algorithms. In particular, it is possible to represent
raw CIR measurements as a collection of time-series of re-
ceived power. As such, the same algorithm presented for PQoS
can be leveraged for producing probabilistic CIR forecasts
over time given past CIR measurements. As an illustrative
application, CIR forecasts can be fed to a closed-loop power
control algorithm, such as to guarantee that, e.g., the RMS
delay spread never exceeds a given threshold.

We considered a forecasting task where the model is fed
with the last 64 CIR samples and is tasked to predict the next
32, corresponding to a 0.32 s forecasting horizon. Moreover,
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Fig. 6: (a) V2I UL throughput forecast from UL SINR and vehicle position. Each future prediction corresponds to 1 second in the time horizon. (b) V2V
received power time-series forecast given past values of correlated received power time-series. The illustrated time-series corresponds to the top-left row of
the CIR measurement shown in Fig. 5.

as CIR time-series are strongly correlated over fast time, we
observed that including the six time-series ”closest in time”
to the forecasted one yields a significant boost in forecasting
performance. In Fig. 6b we show an illustrative forecast from
our Encoder-Decoder LSTM for the earliest received power
time-series, corresponding to the top row in Fig. 5. We can
observe that our forecasting model not only captured correctly
the temporal evolution of the time-series, but also provided
accurate uncertainty estimates covering almost-perfectly the
ground-truth, allowing for risk-aware decision making.

Finally, since V2V communications exhibit stronger vari-
ability compared to V2I, due to surrounding and traffic condi-
tions, it makes sense to extend the framework from single-
vehicle measurements to a swarm of vehicles. In particu-
lar, extending the presented dataset with new delay spread
measurements conducted on highway scenarios would be of
particular interest. Firstly, as vehicles in highways move in the
same direction and the relative movement between them is less
arbitrary, the typical evolution of the delay spread evolves at
a slower pace. In turn, this makes the prediction task even
more affordable. Secondly, given the large vehicular traffic in
highways, a considerable amount of vehicles might contribute
to measurements collection and sharing. Data or global ML
models might be stored within roadside units.

V. CONCLUSION

In this work, we present two datasets comprising V2I and
V2V measurements and show how these can be employed
for PQoS. Besides discussing why it is important to employ
both channel and KPI measurements for V2X systems, we
discuss how similar predictive tasks can be performed using a
similar algorithmic approach. To this end, we introduce novel
experimental results and methods for predictive regression by
leveraging ML techniques. In particular, we present numer-
ical results showing that it is possible to predict an outage
phenomenon approximately one minute in advance from KPI

observations, and we discuss how the same methods apply to
the task of CIR forecasting and adaptive power control in V2V
communications. Moreover, by leveraging Bayesian Learning
(BL) techniques, we articulate how it would be possible to
efficiently extend the presented data from a single vehicle
to a swarm of vehicles collaboratively collecting data over
a vehicular network infrastructure. The datasets are available
on IEEE Dataport [1] [2].
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