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Information flow and error scaling for fully quantum control

Stefano Gherardini ,1,2,3,* Matthias M. Müller,4,† Simone Montangero ,5,6,7,‡ Tommaso Calarco,4,8,§ and Filippo Caruso 2,‖
1CNR-INO, Area Science Park, Basovizza, Trieste I-34149, Italy

2Department of Physics and Astronomy & LENS, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
3INFN, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

4Peter Grünberg Institute–Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, Jülich, Germany
5Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, I-35131 Padova, Italy

6Padua Quantum Technologies Research Center, Università degli Studi di Padova
7Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy

8Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany

(Received 31 October 2021; accepted 19 December 2021; published 11 April 2022)

The optimally designed control of quantum systems is playing an increasingly important role to engineer novel
and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum
system via the interaction with an another optimally initialized auxiliary quantum system, we show that the
quantum channel capacity sets the scaling behavior of the optimal control error. Specifically, by fitting the model
to numerical data, we verify that the minimum control error is ensured by maximizing the quantum capacity of
the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the
quantum information flow from the controller to the system to be controlled. Analytical results, supported by
numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes.
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I. INTRODUCTION

Quantum control theory studies the steering of a quan-
tum system from an initial state to a desired target one, by
means of a control system that can be either classical or
quantum [1–16]. Quantum control has played a key role in
recent quantum technology breakthroughs [17–21], and, thus,
the problem of identifying a universal relation for the scaling
of the control error with the relevant parameters of system and
control knobs is no longer only academic but also practical
and even decisive for the success of any quantum platform.
This especially holds if the control action is provided by the
interaction between a quantum system to be controlled and
an auxiliary one, namely, the quantum controller, whereby
the control problem is denoted as coherent-quantum or fully
quantum [22–24].

In the scenario in which a quantum system is controlled
by optimal coherent pulses, which can be engineered for
instance via the Krotov method [25], the gradient ascent
pulse engineering (GRAPE) [26], and the (dressed) chopped
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random basis (dCRAB) optimal control algorithms [27–34],
the cost function (or landscape), which quantifies the error
in performing a desired control task, may have many local
minima. This can entail the “entrapment” of the optimization
procedure and, thus, the impossibility of completing the con-
trol task [7,35–37], especially in the open quantum systems
case [14,38,39]. However, the situation is different when the
controller is another quantum system. In this case, indeed, the
control landscape, provided by the error of the control task as
a function of the input state of the quantum controller, is usu-
ally convex and the optimal solution can be straightforwardly
found by optimization or analytic solutions, independently of
the complexity in preparing the initial state of the quantum
controller [37].

A similar statement could be made about the complexity
of the control action, identified by its information content.
Regarding the classical control of a quantum system, it was
numerically found that the control complexity has to grow at
least as much as the dimension of the quantum system to be
controlled [27,32,40,41]. This evidence can be even pointed
out by considering the control problem as a classical commu-
nication channel between the control and the system [42,43],
where the control pulse is interpreted as a communication sig-
nal whose correct reception means the complete attainment of
the desired control task. Also in solving fully quantum control
problems, universal results from information and communi-
cation theories could be used. In this regard, it is well-known
that any physical quantum process (thus, also a quantum sys-
tem interacting with a quantum controller) can be generally
represented as a quantum channel that maps an initial state
to a final one through a quantum dynamical map (also called
quantum operation) [39].
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FIG. 1. Pictorial representation of a fully quantum control pro-
cedure given by the unitary interaction USC between the quantum
system S to be controlled and the quantum controller C. The dashed
green and solid orange arrows identify the channels � and �, with
quantum capacities Q� and Q�, modeling the reduced dynamics of
the quantum controller C and quantum system S, which map ρC

and ρS into ρ̃C and ρ̃S , respectively. The blue arrow refers to the
complementary channel � with quantum capacity Q�̄ responsible
of the quantum control performance and mapping ρC into ρ̃S .

In this paper, as depicted in Fig. 1, we formalize the fully
quantum control problem according to the quantum channels
language, commonly used in quantum information and com-
munication theory. This allows us to determine the analytical
expression of the control error scaling in reaching a desired
target state. Specifically, we find that the control error scales
exponentially with the quantum channel capacity of the chan-
nel linking the initial state of the controller with the output
state of the controlled system (control channel). As a result,
the performance of a fully quantum control is exponentially
enhanced as the quantum channel capacity of the control
channel increases. We provide analytical and numerical re-
sults showing how the maximization of the control channel’s
quantum capacity decreases the control error, when the con-
trol is optimized by properly choosing the initial state of the
quantum controller. As discussed in more details below, these
results are expected to find application for, among others, the
state preparation of many-body quantum systems [20,21,33],
the realization of photonic links [44] between quantum pro-
cessors, and long-distance communication through quantum
carriers [45].

II. QUANTUM CHANNELS AND CONTROL PROBLEM

Let us consider a bipartite quantum system composed of
the system S to be controlled and the auxiliary one C repre-
senting the controller. The goal of the control is to bring S
from the initial density operator ρS to the target ρ̂S chosen by
the user through a properly designed dynamical transforma-
tion. The latter and also the final state of the system depend
on the initial (input) state ρC of the controller C. Here, the
control problem is to find the value of ρC that minimizes the
distance between the final and target states. To this end, the
quantum controller C has to be optimally initialized.

Any physical transformation performed on a quantum
system can be generally described by a family of com-
pletely positive trace-preserving (CPTP) maps �[·] : ρS →
ρ̃S ≡ �[ρS], with ρS and ρ̃S denoting, respectively, the initial

and final density operator of S before and after the transforma-
tion. In Fig. 1 we show a pictorial scheme identifying the fully
quantum control problem given by the interaction between S
and the quantum controller C. The composite system SC is
initially prepared in the product state ρin = ρS ⊗ ρC , where
ρC is denoted as the control state.

Under the assumption that the target state ρ̂S belongs to the
set of density operators that can be reached by the system [46],
to solve the control problem we need to find the optimal value
of ρC that allows for the equality

ρ̃S = �[ρS] ≡ TrC[USC ρin U†
SC] = ρ̂S, (1)

where USC is the unitary map describing the physical trans-
formation of the composite system. If the target state cannot
be reached by the system, the equality (1) does not have
a solution and this unavoidably leads to a non zero error
value ε. The control error ε is commonly expressed as a
function of the Uhlmann fidelity F(ρ̂S, ρ̃S ) � 0 (and � 1)
between the target state ρ̂S and the final state ρ̃S , namely,
ε = 1 − F(ρ̂S, ρ̃S ), with F(ρ̂S, ρ̃S ) ≡ Tr

√√
ρ̂Sρ̃S

√
ρ̂S [48]. In

this case, solving the control problem corresponds to finding
the optimal state ρC that minimizes the residual control error.
Moreover, as illustrated in Fig. 1, �[ρC] ≡ TrS[USC ρin U†

SC]
denotes the CPTP map that transforms ρC into ρ̃C , while the
super-operator mapping ρC into ρ̃S is given by the so-called
complementary quantum channel that is formally defined by
the map �[ρ] : ρC → ρ̃S . As we will show, in the quantum
control problem represented in Fig. 1, what matters to derive
the error scaling behavior is our knowledge of the comple-
mentary quantum channel �, which depends on the initial
state of the quantum system S and the way the controller C
interacts with it.

III. CONTROL ERROR AND QUANTUM INFORMATION

The transmission of quantum information over a quantum
channel can be quantified by the quantum capacity Q mea-
suring the rate of information that can be reliably transmitted
(thus, without any degradation) through the channel. More
formally, given a set of n arbitrary quantum information car-
riers, the quantum capacity Q is defined as the maximum
value of the ratio κ/n, where κ denotes the number of qubits
employed (e.g., faithfully transmitted within a communica-
tion link) in the implemented operation [49–51]. It is worth
noting that the formal derivation of Q ideally stems from the
asymptotic limit of taking κ and n infinitely large, namely,
by hypothetically considering unlimited resources. Therefore,
being this mathematical definition an upper bound for the
rate of transmitted information in a real experimental setting,
usually it may not be calculated and, indeed, analytical closed
formula have been found only in few cases. However, approx-
imated values of Q can be computed by means of numerical
simulations or empirical analysis [39].

Let us now translate these concepts from quantum informa-
tion theory to the fully quantum control problem illustrated in
Fig. 1. In doing this, we consider the complementary channel
�[ρ], mapping ρC into ρ̃S , and the corresponding quantum
capacity Q�̄ that quantifies the maximum rate of information
needed by C to control the quantum system S. Thus, the
performance in controlling S shall necessarily depend on the
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value of Q�̄ ; in this paper, we are going to investigate if there
exists a formal relation expressing the error in controlling S as
a function of Q�̄ . To evaluate this aspect, let us consider the
information-theoretic error bound proposed in Ref. [42] that
establishes how much a classical control action for a quantum
system can be informative. For the sake of clarity, we here
bring up a sketch of the reasoning addressed in Ref. [42] about
the informativeness of a control action. In the reference, it
is conjectured to ideally divide the space of possible target
states ρ̂S of S into hyperspheres of radius ε (called ε-balls),
so that, if the final state ρ̃S perfectly (i.e., without error)
overlaps at least with one state of a given ε-ball, then any other
target state in the ε-ball can be reached with a control error
� ε. As a consequence, to “cover” all the space of possible
target states by bringing the final quantum state of S over a
generic target one with an error smaller than ε, the number
of independent controls (equivalent to the degrees of freedom
of the control) has to correspond at least to the number of
ε-balls. If such requirement is satisfied, then the control action
can be considered as being informative with fidelity 1 − ε.
Let us note that, here, we are implicitly taking into account
also the possibility that the target state ρ̂S is not reachable,
namely, that the equality ρ̃S = ρ̂S cannot be achieved. What
is actually important, indeed, is that the final quantum state
ρ̃S reaches the ε-ball in which the target state ρ̂S is contained.
By definition, the self-information associated to each ε-ball
is equal to −D log2(ε), where D denotes the dimension of
the space containing the quantum states of S. This implies
that, regardless of how the control procedure is implemented,
classically (modulation of the system Hamiltonian via an ex-
ternal classical control pulse) or quantum-mechanically (see
Fig. 1), the information content Ic of the control action has to
be at least greater or equal to the information associated to the
ε-ball:

Ic � −D log2(ε). (2)

It follows that Eq. (2) can be interpreted as the concept that a
limited amount of information encoded in the control neces-
sarily imposes a bound on the control error. In particular, from
Eq. (2) one finds that

− Ic

D
� log2(ε) ⇐⇒ ε � 2−Ic/D. (3)

According to the principles of classical and quantum infor-
mation theory [39,52–54], it has been established that the
information content enclosed by a given (logic, computing,
communication, control, etc.) state is directly proportional to
the rate with which such a state (on which, for example, a
communication message is encoded) is effectively transferred.
In other terms, greater is the transmission rate, and greater
may be the information content carried by the transmitted
state. Hence, by applying this concept to the fully quantum
control problem described in Fig. 1, one gets that the infor-
mation content Ic of a fully quantum control action depends
on the quantum capacity Q�̄ of the complementary channel
�[ρ]. However, since by definition a quantum capacity is
provided by the maximum transmission rate obtained in ideal
conditions (i.e., by resorting to unlimited resources), we can

state that

Ic � Q�̄n, (4)

where the further parameter n stands for the number of times
the fully quantum control procedure (with reinitialization of
ρC) is repeated, or for the number of independent quantum
controllers in case the control procedure is performed only
once. It is worth noting that Eq. (4) is an inequality, since
in physical implementation of the fully quantum control pro-
cedure one shall expect not to recover for the information
content the allowed maximum value Q�̄n due to a degradation
originated by the error done in preparing the initial state of the
quantum controller.

As a result, the lower bound of the fully quantum control
error obeys the following relation:

log2(ε) � −Q�̄n

D
. (5)

Here, we want to stress that we still do not know how tight the
bound Eq. (5) is, also because so far the control error ε could
have been defined also differently for this heuristic derivation.
Thus, since we aim to determine a unique scaling behavior
of the control error ε as a function of the quantum capacity
Q�̄ , we introduce the parameters a1 and a2 that allow for the
saturation of the bound, so that

log2(ε) ≈ −a1Q�̄ − a2. (6)

Below, to show the effectiveness of the approximated equal-
ity Eq. (6) for the scaling of ε, some analytical examples
involving a discrete and continuous variable quantum sys-
tem are presented. In such cases, beyond the empirical
model −a1Q�̄ − a2, also the relations −b1Qb3

�̄
− b2 and

−c1 log2(Q�̄ + c3) − c2 are tested, with bk’s and ck’s param-
eters to be fitted. A detailed numerical analysis of these three
models (cf. Appendix) confirms the validity of Eq. (6) as
proper scaling of ε as a function of Q�̄ .

IV. QUBIT-QUBIT CONTROL SCHEME

As first example, let us consider that both the system S and
the controller C are qubits [55]. In this context, the reduced
dynamics of C induced by system-controller interactions can
be described as a map � represented by only two Kraus
operators [39]:

A1 =
(

cos θ 0

0 cos ϕ

)
and A2 =

(
0 sin ϕ

sin θ 0

)
,

(7)
such that

�[ρC] ≡ ρ̃C = A1ρCA†
1 + A2ρCA†

2. (8)

This parametrization describes a wide class of two-qubit
interactions as, e.g., the amplitude damping channel for
cos(2θ ) = 1, cos(2ϕ) = 2η − 1 (with η damping rate), or
the bit-flip channel when θ = ϕ. In particular, as proved in
Refs. [56–58], if cos(2θ )/ cos(2ϕ) < 0, then Q� = 0 and the
quantum channel � is denoted as antidegradable. Conversely,
if cos(2θ )/ cos(2ϕ) � 0, then Q� is obtained by solving the
optimization problem expressed in terms of the single-letter
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formula

Q� = max
p∈[0,1]

S (c1) − S (c2), (9)

with p a real number, S (x) ≡ −x log2(x) − (1 −
x) log2(1 − x) denoting the binary Shannon entropy
function, and c1 = p cos2(θ ) + (1 − p) sin2(ϕ), c2 =
p sin2(θ ) + (1 − p) sin2(ϕ). Moreover, the quantum capacity
Q�̄ of the complementary channel � can be directly derived
from Q� by using the relation

Q�̄ = Q�

(
θ → −θ, ϕ → ϕ + π

2

)
, (10)

where

ρ̃S ≡ �[ρC] = A1ρCA
†
1 + A2ρCA

†
2 (11)

and Ak ≡ Ak (θ → −θ, ϕ → ϕ + π
2 ) with k = 1, 2.

According to the fully quantum control problem as defined
in the previous section, we have to find the optimal control
state ρC = ρ�

C such that the cost function (i.e., the control
error) ε = 1 − F(ρ̂S, �[ρC]) � 0 is minimized. Formally, for
this example we can always find an analytical solution ρ�

C such
that ρ̃S = ρ̂S (see the Appendix). However, only if the target
state ρ̂S is reachable by the system, the formal solution ρ�

C
corresponds to a physical state. In such a case, the quantum
system S can be brought to the target state ρ̂S with zero
error. In Fig. 2, the negative logarithm of the average control
error 〈ε〉 (dots)—obtained from numerical simulations—is
compared with a1Q�̄ + a2, both as a function of cos(2θ ) and
cos(2ϕ) ∈ [0, 1]. For each dot plotted in Fig. 2, the average
control error is computed over 1000 random target states ρ̂S ,
uniformly sampled from all the Bloch sphere by respecting
the Haar measure [59]. The values of the parameters a1 and
a2, instead, are determined by means of a least-squares fitting
procedure. Also the maximum values εmax of the control error
(i.e., the respective maximum over the 1000 random target
state for each set of parameters) have been analyzed: apart
from a scale factor, namely, slightly different numbers of a1

and a2, their behavior is qualitatively comparable with the one
obtained for the average values (see Fig. 4 in the Appendix).
The agreement between theory and numerical simulations is
very good. As discussed in the Appendix, we have tested the
scaling behavior of the logarithm of the control error also by
using fitting models with more than two free parameters, i.e.,
−b1Qb3

�̄
− b2 and −c1 log2(Q�̄ + c3) − c2. Overall, our anal-

ysis confirms that the average control error scales as a power
of 2 proportionally to Q�̄ , as described by Eq. (6). This leads
us to conclude that, apart from a few single parameter values
(e.g., the limit case of cos(2ϕ) → 1 with θ = 0 discussed
in the Appendix), the error associated to the fully quantum
control procedure follows the information-theoretical model
discussed in this paper and tends to zero when the value of the
quantum capacity Q�̄ is maximized.

V. ONE-MODE BOSONIC GAUSSIAN CHANNELS

As second and more challenging example, S and C are
taken as continuous-variable systems described in terms of
one-mode Bosonic harmonic oscillators, typically a specific
normal mode of the electromagnetic field. In particular, we
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FIG. 2. Qubit-qubit control scheme. Comparison between the
empirical model a1Q�̄ + a2 (lines), with Q�̄ ∈ [0, 1], and − log2〈ε〉
(dots) as a function of cos(2ϕ) and six different values of cos(2θ ),
with ϕ, θ = kπ/24, and k = 1, . . . , 6. The error bars denote the
standard deviation of the negative logarithm of the control error ε,
while the values of the model parameters a1 and a2, respectively,
equal to 11.8 and 3.8, are obtained by means of a single fitting
procedure operating at once on all the 6 curves depicted in the figure.
The average control error 〈ε〉 is obtained by solving numerically the
proposed fully quantum control problem for 1000 different target
states ρ̂S and then making the average over all the sampled target
states. It is worth noting that for cos(2ϕ) → 1 with θ = 0 the numer-
ical average control error slightly increases (i.e. − log2〈ε〉 slightly
decreases when cos(2ϕ) is very close to 1); see the Appendix for
more details.

consider the so-called Gaussian quantum channels mapping
Gaussian (i.e., with a Gaussian characteristic function) input
states to Gaussian output states [60] and it is experimentally
widespread, since it includes not only linear attenuation and
amplification processes, but also thermalization and squeez-
ing phenomena and any physical interaction described by a
quadratic Hamiltonian. As shown in Refs. [39,61], they can
be described in terms of a single parameter K � 0 and are
unitarily equivalent to two (canonical) classes of Gaussian
channels, simply corresponding to attenuation and amplifica-
tion processes, respectively. For K2 � 1, the quantum channel
corresponding to the process describes linear losses with at-
tenuation factor K2, while for K2 > 1 an amplification with
gain K2 is obtained [39,61]. Moreover, at the level of quantum
capacity, Q� = 0 for K2 � 1/2; in such a case, the channel is
called antidegradable. Otherwise, when K2 > 1/2,

Q� = log2

(
K2

|K2 − 1|
)

, (12)

leading to the degradable channel case [62]. For our control
purposes, also in this example the quantum capacity Q�̄ as-
sociated to the complementary (still Gaussian) channel � is
determined straightforwardly from the knowledge of Q� , as
in the qubit-qubit control scheme. Specifically, by means of
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the functional substitution K2 → 1 − K
2
, one gets

Q�̄ = log2

(
|1 − K

2|
K

2

)
, (13)

with K
2 � 0. From here on, for the sake of simplicity of

notation, we will denote K
2

as q. To control the Gaussian
state of the quantum system S, we need to search for the
covariance matrix γC , associated to the control Gaussian state
ρC , ensuring that

γ̃S ≡ X T γCX + Y = γ̂S, (14)

where γ̂S is the target covariance matrix and γ̃S denotes the
covariance matrix of the final (Gaussian) state ρ̃S of the sys-
tem S. Note that, in doing this, we are implicitly assuming
(without loss of generality) that the quantum channels � and
� are (unitarily) reduced to a canonical form, i.e., with van-
ishing displacements and with the matrices X and Y taking
a particular symmetric form, as specified in Refs. [39,63].
Hence, X ≡ √

q1 and Y ≡ |q − 1|1, where 1 denotes the
identity matrix, and the solution to the control problem can
be analytically determined. In particular, the optimal control
covariance matrix γ �

C , allowing for γ̃S = γ̂S with zero error, is
equal to

γ �
C =

(
γ̂1−|q−1|

q
γ̂2

q
γ̂2

q
γ̂3−|q−1|

q

)
with γ̂S ≡

(
γ̂1 γ̂2

γ̂2 γ̂3

)
, (15)

provided that γ �
C obeys the generalized uncertainty relation

γ �
C � iσ , where σ is the single-mode phase-space canonical

symplectic matrix (taking into account all the commutation
relations of the the ladder operators). If this inequality holds,
then γ �

C corresponds to a physical state. Otherwise, the optimal
control covariance matrix is chosen as the covariance ma-
trix that minimizes the control error ε = 1 − F(γ̂S, γ̃S ) � 0,
where F(γ̂S, γ̃S ) ≡ Tr

√√
γ̂S γ̃S

√
γ̂S is the Uhlmann fidelity

between the target and final covariance matrices, γ̂S and γ̃S ,
respectively.

In Fig. 3, for q ∈ [0.5, 3], the empirical model a1Q�̄ + a2

is compared with the control error obtained by numerically
solving the control problem for 1000 different target covari-
ance matrices, uniformly sampled from the space of one-mode
Gaussian quantum states in accordance with the Haar measure
defined on this space. In particular, the numerical findings
are compared with the theoretical predictions provided by
the quantum capacity Q�̄ , the analytic curve 2−Q�̄ , and the
model of Eq. (6). Also in this case, the models −b1Qb3

�̄
− b2

and −c1 log2(Q�̄ + c3) − c2, defined by more than two free
parameters, are tested. Similarly to the qubit-qubit control
scheme, the values of the model parameters are chosen by
means of a least-squares fitting procedure. We have found
that the correct scaling of both the average control error 〈ε〉
(and corresponding confidence intervals defined by the error
bars in Fig. 3) and the maximum values εmax is reproduced by
Eq. (6). The quantitative analysis of the fit, and corresponding
error values, of the fitted models is presented in the Appendix.
In conclusion, Fig. 3 confirms the main result discussed in
this paper, namely, that for a quantum system (in this case,

0.5 1 1.5 2 2.5 3q
10-2
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100

Numerics: 
max

Theory: 2-Q

0.5 1 1.5 2 2.5 3q
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Numerics: -log

2

Theory: 5.3Q

Theory: 3.8 + 4Q

(b)

(a)

FIG. 3. Fully quantum control associated to a one-mode Bosonic
Gaussian channel. (a) Comparison between the maximum values
εmax of the control error ε (blue dots), obtained by numerically
solving the control problem for 1000 different target covariance
matrices, and 2−Q�̄ ≡ q/|1 − q| (red solid line) for q ∈ [0.5, 3] by
using a logarithmic scale for the y axis (for the sake of brevity,
Q�̄ is denoted as Q in the legends of the two panels of the figure).
Note that, although the comparison in panel (a) is more qualitative
(indeed, a1 = a2 = 1), the link between εmax and Q�̄ can be clearly
assessed. (b) Linear-scale comparison between the numerical values
of − log2〈ε〉 (blue dots) and the empirical model a1Q�̄ + a2 as a
function of q ∈ [0.5, 3]. While the blue dots refer to the average
control error 〈ε〉 obtained by averaging ε over the sampled target
covariance matrices, the blue error bars denote the corresponding
standard deviations. As one can observe, there are values of a1 and
a2 that allow for the overlap of the empirical model a1Q�̄ + a2

with both − log2〈ε〉 and the extreme points of the error bars. For
the former case, the values of a1 and a2 are provided by the set
(5.3,0) (black dotted line), while, for the latter, by the set (4,3.8) (red
solid line). We have plotted both for their relevance. Finally, also
notice that Q�̄ ∈ [0, ∞): Q�̄ = 0 for q = 1/2 and q → ∞, while
Q�̄ → ∞ when q = 1.

a continuous-variable one) the average control error, result-
ing by applying a fully quantum control procedure, scales
exponentially as 2−Q�̄ with the associated quantum channel
capacity. Thus, the system can be potentially controlled with
zero error if the capacity of the complementary channel �

takes its maximum value.

VI. APPLICATIONS

Here we identify three explicit possible applications for our
results:

(i) To perform quantum state preparation of (many-body)
quantum systems that are difficult both to access and control
via classical control fields. In such cases one could use an-
other quantum system with more control knobs as a quantum
controller that allows for full control over the main system.
This, for instance, may be experimentally implemented in
state-of-the-art solid-state platforms exploiting nuclear spins
as controller of large quantum registers of electron spins in
diamond [17,64].
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(ii) To realize a photonic quantum bus [44] being able
to connect quantum memories and n-qubits quantum pro-
cessors. Indeed, one could think to prepare single atoms
or atomic ensemble in distinct (remote) cavities—as done,
e.g., in Refs. [65–67]—and link the atoms through single
photons or few-photon quantum states. Such control prob-
lem can be recast in the same class of procedures depicted
in Fig. 1, whereby the atoms in the cavities represent the
system S to be controlled and the photons are the quantum
controller C.

(iii) To carry out long-distance quantum communica-
tion through flying photons [45] by implementing quantum
repeater protocols, as, e.g., the one proposed by Duan-Lukin-
Cirac-Zoller (DLCZ) [68]. Similarly to the previous case,
pairs of entangled photons sent through the communication
channel represent the auxiliary control systems, while the
platforms used to realize the quantum memories of the scheme
are the system that we aim to control.

VII. CONCLUSIONS

In this paper, we have analytically characterised the scaling
of the error ε in controlling a quantum system S through the
interaction with an auxiliary one, i.e., the quantum controller
C. Specifically, we have demonstrated that ε scales as 2−Q�̄

where Q�̄ is the quantum capacity of the complementary
channel � mapping ρC onto ρ̃S . These findings are confirmed
by numerical simulations (Figs. 2 and 3) taking into account
both discrete- and continuous-variable systems.

In all cases where the fully quantum control procedure
is required, one can take the quantum controller as a quan-
tum system with the same dimension of the controlled one
and, then, optimize the control parameters with n = 1. Con-
versely, a lower-dimension controller could be employed, but
one would need to choose n > 1, i.e., to repeat the control
operation—with reinitialization of ρC—more than once. In
any case, from the information-theoretic error scaling Eq. (5)
or the empirical model Eq. (6), we can deduce that the control
over a system via a quantum controller is maximized (at given
quantum controller and interaction between system and con-
troller) if the initial state of the system is chosen such that the
quantum channel capacity Q�̄ is maximized. This generally
allows for the best possible control at the lowest possible
repetitions n of the control operation. Finally, the discussed
applications show the very promising impact of the achieved
results on practically all the different fields involving quantum
technologies.
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APPENDIX

1. Curve fitting of the control error

Here, we provide further details on the numerical simula-
tions of Figs. 2 and 3. In particular, both for the qubit-qubit
control scheme and the control procedure using one-mode
Bosonic Gaussian channels, we will show the results obtained
by numerically testing three different models for the control
error scaling. In this regard, notice that for both cases the con-
trol error ε is obtained by solving the fully quantum control
procedure described in the main text. Given the control error
ε, the models that we have tested (below denoted as M) by
making the comparison with − log2(ε) are the following:

(1) M = a1Q�̄ + a2,
(2) M = b1Qb3

�̄
+ b2,

(3) M = c1 log2(Q�̄ + c3) + c2.
In turn, it is worth observing that the models (i)–(iii) cor-

respond to the following models M for the scaling behavior
of ε:

(1) M = a3 2−a1Q�̄ with a3 = 2−a2 ,

(2) M = b4 2−b1Q
b3
�̄ with b4 = 2−b2 ,

(3) M = c4(Q�̄ + c3)−c1 with c4 = 2−c2 .
Below, we will show that the scaling given by (i) [or equiv-

alently (I)] is the best solution in terms of the fitting error ζ (ε)
and/or the number of parameters adopted for the fitting. The
fitting error ζ (ε) is defined as the ratio between the Euclidean
distance (or L2 norm) of the difference between − log2(ε) and
the corresponding fitting model, and the Euclidean distance
− log2(ε) alone. More formally,

ζ (ε) ≡ ‖M + log2(ε)‖2

‖ log2(ε)‖2
.

a. Qubit-qubit control scheme

For the example with the qubit-qubit control scheme, the
fully quantum control procedure requires to find the optimal
value y� and z� of the parameters y (real number) and z
(complex number) pertaining to the control state

ρC =
(

y z

z∗ 1 − y

)
,

such that ρ̃S , the final density operator of S after the control
transformation, is as close as possible to the target state,

ρ̂S ≡
(

ŷ ẑ

ẑ∗ 1 − ŷ

)
.
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Since ρ̃S = A1ρCA
†
1 + A2ρCA

†
2 with A1 and A2 are the quan-

tum maps associated to the complementary channel �, one
can proceed to solve the equation

ρ̂S = A1ρ
�
CA

†
1 + A2ρ

�
CA

†
2

as a function of the elements of the optimal control state ρ�
C

and find the analytical expressions of y� and z�. The latter are
given by the following relations:

y� = ŷ − sin2(ϕ)

cos2(θ ) − sin2(ϕ)
,

Re{z�} = −Re{ẑ}
cos(ϕ − θ )

and Im{z�} = −Im{ẑ}
cos(ϕ + θ )

,

where Re{x} and Im{x} denote the real and imaginary part
of the generic complex number x, respectively. However,
the obtained solutions are not always physically feasible. In
particular, if y�(1 − y�) − |z�|2 � 0, then the optimal control
state ρ�

C is physically realizable and one can get the equal-
ity ρ̃S = ρ̂S with zero error. Otherwise, the optimal control
state ρ�

C is obtained as the physical state that minimizes
the cost function ε = 1 − F(ρ̂S, ρ̃S ) � 0, with F(ρ̂S, ρ̃S ) ≡
Tr

√√
ρ̂Sρ̃S

√
ρ̂S Uhlmann fidelity. The latter is the procedure

that has been followed to derive the control error ε in the
numerical simulations. Specifically, ε has been computed as
a function of cos(2θ ) and cos(2ϕ), both belonging to the
interval [0,1], for 1000 random final target states ρ̂S uniformly
sampled from all the Bloch sphere by respecting the Haar
measure. The negative binary logarithm of the average value
of ε, i.e., − log2〈ε〉, has been compared with the models (i)–
(iii), all originating by the information-theoretic error bound
of Eq. (5) in the main text. For all the models we now pro-
vide the values of the set of parameters {ak}2

k=1, {bk}3
k=1 and

{ck}3
k=1, obtained by means of a least-squares fitting proce-

dure, and the corresponding error values ζ (〈ε〉), i.e.,
(1) a1 = 11.8, a2 = 3.8; ζ = 0.086,
(2) b1 = 14.1, b2 = 4.3, b3 = 1.4; ζ = 0.064,
(3) c1 = 11.3, c2 ≈ 0, c3 = 1.27; ζ = 0.094.
By analyzing only the error values ζ (〈ε〉) (all smaller than

0.1) obtained by the fitting procedure, one can deduce that
the best result is given by model (ii). However, all the error
values ζ (〈ε〉) are very close to each other. Thus, one can
reliably state that the results from model (i) are consistent
with the ones from models (ii) and (iii). Moreover, also by
comparing the behavior of − log2〈ε〉 as a function of cos(2ϕ)
and cos(2θ ), the three models can be considered as equivalent
within the relevant interval given by the values assumed by
Q�̄). To determine the choice of the most suitable model for
the control error scaling, we resort to minimal complexity
arguments, whereby the model to be privileged is the one with
the lower number of free parameters/coefficients and the same
fitting error. Accordingly, our choice falls on model (i) that
just uses two free parameters. This confirms that the average
control error scales exponentially with the negative quantum
capacity Q�̄ . Furthermore, it is worth recalling that also the
maximum values εmax of the control error have been analyzed.
Also in this case, as shown in Fig. 4, the scaling provided
by the model (i)—comparable with the one obtained for the
average values—can be observed.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5 θ = π/12

θ = π/8

θ = π/6

θ = 5π/24

θ = π/4

cos(2ϕ)

FIG. 4. Comparison between the empirical model a1Q�̄ + a2

(lines), with Q�̄ ∈ [0, 1], and − log2 εmax (dots) as a function of
cos(2ϕ) and five different values of cos(2θ ) corresponding to θ =
kπ/24 with k = 2, . . . , 6. Again the values of the model parameters
a1 and a2, here, respectively, equal to 7.5 and 1.3, are obtained by
means of a single fitting procedure operating at once on all the five
curves depicted in the figure.

Now, let us discuss more in detail the aspects regard-
ing the increasing of the average control error 〈ε〉 (namely,
the decreasing of − log2〈ε〉) for cos(2ϕ) = 1 and θ = 0 or
cos(2θ ) = 1 and ϕ = 0. In doing this, we analyze the Kraus
operators A1 and A2 that are involved in the control procedure.
Such operators are equal, respectively, to

A1 =
(

cos θ 0

0 − cos ϕ

)
and A2 =

(
0 sin ϕ

− sin θ 0

)
,

where θ , ϕ ∈ [0, π
4 ] so as to ensure that Q�̄ > 0. In particular,

when cos(2ϕ) = 1 and θ = 0 or cos(2θ ) = 1 and ϕ = 0, A2

becomes a singular operator and both of its eigenvalues are
equal to zero. This means that, in such a case, the operator
A2 is nilpotent. The singularity of the Kraus operator is the
reason under the slight rising of the control error values, which
in turn can be interpreted as a reduction of the dimension of
the space of control states. Finally, it is also worth noting
that the simultaneous validity of the conditions cos(2ϕ) = 1
and cos(2θ ) = 1, i.e., ϕ = θ = 0, is not pathological in the
sense that, apart from a phase factor, the solution to the control
problem is just provided by the equality ρ�

C = ρ̂S .

b. Fully quantum control with one-mode
Bosonic Gaussian channels

Any Gaussian quantum state is fully characterized by its
first and second moments (of the characteristic function in
the phase-space representation), also denoted as displacement
vector and covariance matrix, respectively. For the fully quan-
tum control procedure depicted in Fig. 1 in the main text,
we assume that the quantum channels governing the reduced
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dynamics of S and C are described as Gaussian channels, map-
ping Gaussian states into Gaussian ones. By applying suitable
Gaussian unitaries at the input and output of the channel,
one can always neglect the first moment contributions and
exploit a particular symmetric form for the matrices X and
Y , hence obtaining the canonical form of the channel in terms
of evolution of the covariance matrix of the considered system
[39]. Therefore, in our case we have to look for the covariance
matrix γC , related to the control state ρC , such that

γ̃S ≡ X T γCX + Y = γ̂S,

with X ≡ √
q1, Y ≡ |q − 1|1, q a real number greater than

1/2, and γ̂S being the target covariance matrix for the system
state. Then, given the optimal covariance matrix γ �

C provided
by Eq. (15) in the main text, if the generalized uncertainty
relation γ �

C � iσ (with σ being the canonical symplectic ma-
trix) holds, then the controller state physically exists and the
control task can be carried out with zero error. Otherwise,
if γ �

C < iσ , then the optimal control covariance matrix γC is
taken so as to minimize the cost function ε = 1 − F(γ̂S, γ̃S ),
with F(γ̂S, γ̃S ) ≡ Tr

√√
γ̂S γ̃S

√
γ̂S , but while satisfying the un-

certainty relation γC � iσ .
On the numerical side, the control error ε is computed

as a function of q ∈ [0.5, 3] and for 1000 different target
covariance matrix, uniformly sampled from the space of one-
mode Gaussian quantum states in accordance with the Haar
measure. Then, both the average and the maximum values
of ε, 〈ε〉 and εmax, respectively, have been evaluated. As
shown in Fig. 3(a) in the main text, the agreement between

the maximum control error εmax and the bound 2−Q�̄ is very
good, especially for q ∈ [1, 3]. However, regarding the neg-
ative binary logarithm of the average control error 〈ε〉, we
made use of the models (i)–(iii), as previously done for the
qubit-qubit control scheme. The following results have been
found:

(1) a1 = 5.3, a2 ≈ 0; ζ = 0.36,
(2) b1 = 5.3, b2 ≈ 0, b3 = 0.64; ζ = 0.14,
(3) c1 = 5.16, c2 ≈ 0, c3 = 1.1; ζ = 0.27.
The fitting procedure has been carried out by taking into

account all the values of Q�̄ pertaining to q ∈ [0.5, 3]. In-
stead, for each computed set of model parameters, the fitting
error ζ just refer to the values of − log2〈ε〉 within the in-
terval [5,15] so as to prevent that ζ is biased by too large
or too small values of the logarithm function. Thus, by an-
alyzing the figure of merit ζ , the best results are provided
by model (ii), but the values of the fitting error ζ for the
models (i)–(iii) are comparable and of the same order of
magnitude. For this reason and for the scaling of − log2〈ε〉
in the analysed intervals, the three models can be consid-
ered consistent and with only slight differences among them.
However, among the three models, only model (i) is char-
acterized by two free parameters/coefficients, different from
models (ii) and (iii) that are defined by three coefficients.
Therefore, by resorting again to minimal complexity argu-
ments, we conclude that the preferable model for the control
error is the one predicted by our theoretical analysis, namely,
the one provided by model (i) that has the lower number of
coefficients.
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