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Optimal two-qubit gates in recurrence protocols of entanglement purification
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We propose and investigate a method to optimize recurrence entanglement purification protocols. The ap-
proach is based on a numerical search in the whole set of SU(4) matrices with the aid of a quasi-Newton
algorithm. Our method evaluates average concurrences where the probabilistic occurrence of mixed entangled
states is also taken into account. We show for certain families of states that optimal protocols are not necessarily
achieved by bilaterally applied controlled-NOT gates. As we discover several optimal solutions, the proposed
method offers some flexibility in experimental implementations of entanglement purification protocols and
interesting perspectives in quantum information processing.
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I. INTRODUCTION

Entanglement is a key resource for several tasks in quan-
tum information, quantum simulations [1], computation [2],
and communication [3]. These tasks are based on the idea
of creating networks of quantum systems, where the genera-
tion of maximally entangled sates between qubits in spatially
separated nodes is essential. These networks, which may
consist of distant or nearby nodes, have been thoroughly in-
vestigated for efficient processing and transfer of quantum
information [4]. However, due to interactions with an un-
controllable environment, mixed or nonmaximally entangled
states are produced. To protect quantum information and to
guarantee a high performance of its processing, one can use
quantum error correction [5,6] or quantum teleportation in
combination with entanglement purification [7-9]. Quantum
error correction is characterized by the quantum capacity of
the transmission channel, which can be compared with the
yield of entanglement purification for both one- and two-
way classical communication [9]. The latter is the subject of
this article. In particular, we consider a so-called recurrence
protocol [10], an iterative approach, which operates in each
purification step only on two identical copies of states.

In this paper we discuss entanglement purification from
the point of view of optimality. Recently, optimized entan-
glement purification has been investigated with the help of
genetic algorithms [11], where the analytical and numerical
studies are based on Werner states [12]. In fact, also the
first ever proposed protocols are based on either Werner [7]
or Bell diagonal states [8]. It has been shown that 4 or 12
local random SU(2) transformations can convert any state into
a Bell diagonal or Werner state, respectively [9]. We have
already argued that these random local unitary transforma-
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tions and states obtained in consequence are only useful for
grasping and understanding the complex task of entanglement
purification because they may waste useful entanglement [13].
Therefore, here we develop a method for general states and
demonstrate it for several simple examples including also the
Werner state. Nonetheless, our motivation also lies in the fact
that an experimental implementation may not have enough
control over the generated mixed entangled states and thus
more general, adaptive, and optimal entanglement purification
strategies have to be made available. In this general context,
we assume that an experiment can still guarantee identical
copies of states before the protocol takes place.

Our method is based on quasi-Monte Carlo numerical
sampling of the states which undergo the purification protocol
and then the concurrence [14] of the output states is inte-
grated over an a priori probability distribution function. This
results in an average two-qubit gate-dependent cost function
for the whole sample of states. We employ a quasi-Newton
algorithm [15] to solve this nonlinear optimization problem on
the whole SU(4) group. We focus on increasing entanglement
in each step; therefore, the obtained two-qubit gate is optimal
in the sense that it achieves, on average, a higher increase
of entanglement of an input family of states for a given pu-
rification step. This is beneficial in reducing the number of
qubit pairs required to purify a single two-qubit state, as this
number grows exponentially with the number of steps. We
discuss the performance of our method for several examples
and compare with protocols based on one bilateral application
of controlled-NOT (CNOT) gates, the paradigmatic two-qubit
operation used in the seminal purification protocols [7,8].

The paper is organized as follows. In Sec. II we introduce
our method and give some elementary examples to allow
further acquaintance with the concept of the introduced cost
function. In Sec. Il we demonstrate our approach for one
two-parameter and four one-parameter families of states. Nu-
merical and analytical results are presented for concurrences
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and success probabilities. In Sec. IV we summarize and draw
our conclusions. Some details supporting the main text are
collected in the Appendix.

II. METHOD

In this section we describe how the recurrence protocol is
optimized with respect to an input family of quantum states.

A. Entanglement purification protocol

Let us consider the product state of two-qubit pairs
o= pA|,B| ® pAz,Bz7 (1)

where qubit components of each pair are assumed to be spa-
tially separated at nearby or distant locations. These locations
are labeled by A and B. In an entanglement purification pro-
tocol, one performs local quantum operations, which may
not involve just two-qubit gates [16]. This is followed by
measurements on one of the pairs at both locations. A classical
communication between A and B results in a qubit pair with
a higher degree of entanglement. Both pairs are assumed to
start in the same state p and the degree of the entanglement
is usually measured by the fidelity with respect to one of the
Bell states
WE) = (01 110, [6%) = —=(00) £ [11). 2)
V2 ’ V2

However, these states can be subject to local unitary transfor-
mations, which can cause some technical difficulties, when
one uses fidelity, i.e., using fidelity as a cost function would
force us to search also for additional local unitary operations
in order to align the output state of the protocol with the Bell
basis. Furthermore, using a fidelity restricts the purification
process to a particular basis. For instance, in Refs. [7,8] a state
can be purified only if it presents fidelity greater than % with
respect to any Bell state in Eq. (2). In this setting a mixed state
with fidelity close to one with respect to the maximally entan-
gled state |Wy) = (|@7) +i|®T) +i|¥™) + [¥T))/2 would
not be purifiable, as |Wy;) has a fidelity of i with respect to
any Bell state. As we intend to analyze the entanglement pu-
rification in a very general setup, we require an entanglement
measure that is invariant under local unitary transformations.
Therefore, we turn to the concurrence as a measure of the
attainability of a maximally entangled state [14]:

C(p) = max{0, A; — Ay — A3 — Aq). 3)

1

Here X1, A2, A3, A4 are the square roots of the non-negative
eigenvalues of the non-Hermitian matrix

p= p(Uy Y Uy)p*(ay ® Uy)v

where the asterisk is the complex conjugation in the standard
basis and o, is the Pauli matrix. It is worth noting that there
are other possible entanglement measures, such as the entan-
glement formation or the relative entropy of entanglement
[17], but we do not consider them in this article, because
the concurrence is, from a numerical point of view, a more
tractable entanglement measure for two-qubit states.

In this paper we examine and optimize a purification pro-
tocol having the following steps.
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FIG. 1. Schematic representation of bipartite entanglement pu-
rification, where the entanglement purification protocol trades two
entangled qubit pairs for a qubit pair with a higher degree of entan-
glement, which is quantified by the concurrence C.

(i) Two unitary transformations p — U (at)pU ()" are ap-
plied locally at A and B (see Fig. 1), where U is a general
two-qubit unitary described by a parameter vector . After
the application of the quantum operation the four-qubit system
attains the state

0P = Unia2(@)Us1s2(@)pUgy p (U} jp(@).  (4)

(ii) One of the pairs (A;, By) is then locally measured in
the standard basis. There are four possible states, i.e., four-
dimensional vectors, in which one can find the measured pair

[1) =100)a,.8,» [2) = |01)a, 5,.
13) = 110)a,.,,  |4) = [11)a,.,.

A successful measurement of one of the states |i) with i €
{1, 2, 3, 4} results in a state for the other qubit

ae _(ilo'li)

el 5
S S i ie) ®)

with probability
pi = Tr{li)ilp}.

(iii) Depending on the value of the measurement results,
which are communicated between the two parties, the state
with the largest concurrence and the related success probabil-
ity are kept, whereas the others are discarded. The output of
the protocol is the pair (C’, P), with the concurrence value C’
of the state obtained with probability P. If there are multiple
maxima, e.g., C(Z)f‘"B‘) = C(,Z)‘ZL‘"B‘ ), then ' = C(,b‘f"B‘) and
P=p +p.

Given two copies of a state p with concurrence C, it is
straightforward to see that the pair (C’, P) depends on the
vector o, which we use as the optimization parameter.

Recurrence entanglement purification protocols might in-
clude symmetric and asymmetric single-qubit gates before
and after the bilateral action of the two-qubit operations [7,8].
These are important in an analytical approach to maintain the
form of the state after each iteration; however, entanglement
is not affected by this process. In this work we omit these
specific single-qubit gates, as we are focused on increasing the
value of the concurrence and not on the specific form of the
state after each iteration step. We may instead consider general
single-qubit unitaries as part of more general parametriza-
tions. Furthermore, we stress again that our approach aims to
increase the amount of entanglement between the qubits pairs
regardless of the basis. This is an improvement concerning
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previous approaches based on seminal protocols [7,8] where
a fidelity greater than % with respect to a Bell state is needed
for a working entanglement purification protocol.

B. Protocol optimization

In order to optimize the protocol described in Sec. I A,
we first define an appropriate parametrization for the two-
qubit unitary transformations used in Eq. (4). In principle, one
should consider elements from U(4), the group of 4 x 4 uni-
tary matrices, which contains the subgroup SU(4). However,
U(4) is the semidirect product of U(1) and SU(4), where ele-
ments of U(1) are rotations of the unit circle [18]. Therefore,
choosing elements from SU(4) in Eq. (4) represents the most
general unitary quantum operation involving two-qubit gates
at locations A and B. Elements in SU(4) can be parametrized
as [19]

_ losay iohoy I03Q3 1050 10305 101006 10307 100
U(O()—€31€2€ 3 010504 HlO3A5 L1006 KO3 51020

io30g i0s5a) 030 102 i03013 i08Q 4
X '3 g!73%10 173 8

e'e e el

with & = (a1, a2, ..., o55)" € R (T denotes the transposi-

tion) and
0 <oy, 3,05, 07,0, 011, 0013 < 7T,
0 < a2, 0y, a6, g, 010, A1 < %,
0<a< 2= 0<as< =, (©)
V3 NG
where o;, i =1,...,15, form a Gell-Mann type basis of

the Lie group SU(4) (see the Appendix). This is called the
Euler angle parametrization of SU(4), which is sufficient to
represent every element of the Lie group. For example, the
canonical parametrization e/, where H is a 4 x 4 self-adjoint
matrix with trace zero, is not minimal, because after expo-
nentiation we may have multiple wrappings around the great
circles of the 7-sphere.

Our aim is to increase the concurrence, which is a nonlinear
function of the state p and the protocol’s unitary matrix U.
Furthermore, we have lower and upper bounds on «, as given
in Eq. (6). We then consider a cost function f : R'> — R as

fle)y=1-Cl(a) )

and our optimization problem is to find local minimizers, e.g.,
a point o* such that

) < fa)

for all « in the Euclidean norm defined neighborhood of
a*. The gradient V f(a) can be made available to us due to
an automatic differentiation [20], so we implement for the
optimization a quasi-Newton algorithm, the so-called lim-
ited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
method [15]. Here we have a constrained optimization prob-
lem, because « takes values in the hyperrectangle defined by
Eq. (6), and thus we use the LBFGS approach of Ref. [21]. As
long as the state to be purified is given, the above approach
yields an optimal e* and a concurrence C’ as close as possible
to one. The vector a* gives the best two-qubit gate associated
with this given state for a given purification step. However,
our main aim is to provide the best quantum gates, which

are able to purify most effectively certain classes of states
and not only a fixed one. This is relevant in a scenario where
the generation of distant entanglement is affected by altering
noise, leading to slightly different types of states entering the
protocol. In order to formulate this quantitatively we introduce
a probability density function (PDF) p(x), where the vector x
defines uniquely the state p according to a parametrization.
For example, in the case of a Werner state [12]

1-—
plx) = x| W) (W | + waﬂ(wﬂ
1- 1-
+ Tx|d>*><d>*| + Tx|<1>+><d>+|, 8)

we have x € [0, 1] and the PDF satisfies

1
/ px) = 1.
0

In general, a two-qubit state can be described by 15 parame-
ters, which have to fulfill some nontrivial conditions [22—-24].
The choice of the PDF is not straightforward and the only
guideline we have is that the support supp(p) consists of all
x, which define entangled states. This is motivated by the
fact that separable states are not purifiable. In the case of the
Werner states, the support of the PDF is the interval (0.5,1].
Thus, the PDF may put more weight on states with a given
concurrence.

Algorithm 1 Optimization of recurrence protocol.

Input p(x), optimizer OPT
Output p(x)
l:for j =1toM do
20 xj~ plx))
3 p; = px;))
4: end for
5:for N = 1 to Ny do > with random restart
6: Usp(a) = UA],A2(“)UBI,B2(‘¥)
7: for j=1toM do
8 o/(a) = Uns(a)p;Uz(e)
9: for/ = 1to4 do
ULCHN)

. (o) —

10: 04 (@) = Figein
11: end for

12:  end for

13: Cl)= £ Y C)

14: [’ = argmin[1 — C'(a)]
1=1.234

150 fle)y=1-C"' (o)

16: o = OPT(f (), Vof ()

17: for j =1toM do

18: p;= aﬁl,(a*) ® aﬁl,(a*)

19: end for

20: end for

In this context, we have an output concurrence C'(e, x)
depending on both the two-qubit gate and the input state.
Therefore, we are going to use an average cost function

fl@)y=1- / C'(a, x)p(x)dx )
supp(p)
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in the LBFGS algorithm. The integral can be either solved
numerically or approximated via a quasi-Monte Carlo ap-
proach by sampling x over its corresponding parameter
distribution p(x):

fl@y=1-_E [C'(a x)]. (10)

x~p(x)

We chose the second approach since it proved to be precise
enough, i.e.,

1 M
=3 " px) 1,
M =

with M being the sample size, and numerically faster. A sum-
mary of the optimization routine can be seen in Algorithm
1. We first sample a batch of random density matrices by
sampling over the parameter space according to a probability
distribution p(x). Then we optimize the average output con-
currence of the protocol as a function of the parameters o. The
optimization routine provides us with output density matrices,
which are reinserted in the protocol for a successive purifi-
cation round, controlled by a different unitary matrix U ().
This is also optimized, giving rise to a loop that breaks when
the desired concurrence level or when the maximal number
of iterations Np,yx is reached. We would like to highlight that
the unitary matrices which build the optimized purification
protocol are different from each other. Each one of them is
optimized for its own purification step, a procedure that can
be conceived as a form of adaptive purification. Due to the
nature of the optimization and the intrinsic complexity of
differentiating, e.g., the concurrence, it is likely that some of
the concurrence values output by our optimization routine are
not true optima, but rather local optima. However, in general,
restarting the algorithm multiple times with different initial
conditions can help reduce the probability of it being stuck in
a local minimum.

Now we shed light on the meaning of the average cost
function through the following two examples. We employ the
CNOT gate

i3 /4 ’
Ucnvor = =M U s

eSu4)

ool
SO = O
— o O O
oS = O O

where U’ in the Euler angle parametrization is given by setting

03 =05 = 07 =

N

04 = U = U0 =

’

SRS

and the remaining nine angles to zero in Eq. (6). By fixing the
vector o, we are able to get a value for the average cost func-
tion of the CNOT gate and thus to evaluate its performance.

We remark that for the following three examples, we
merely calculate the cost function of the CNOT gate in order to
explain this particular process and to show that this gate can be
optimal in certain cases with a possible combination of other
single-qubit gates. In Sec. III we run an optimization process
where the cost function is evaluated for many two-qubit gates
in order to find the optimal one.

Example 1. Let us consider the state

1+2x 0 0 1—4x
1 8 2_()2x 2—02x 8 with x € [0, 1]
1 —4x 0 0 1+ 2x

Y

subject to the purification protocol with CNOT gates. This state
is a rotated Werner state [12], which was employed in the
seminal protocol of Ref. [7], and its concurrence reads

C[2—1, xe05,1]
Cx) = {0, x € [0,0.5].

The output reads
3(4x> — 1)
5 —4x + 8x2

with success probability

Cloor(X) = forx € (0.5, 1],

5 —4x + 8x2
9 .

For the sake of simplicity, we consider a uniform PDF p(x)
with supp(p) = (0.5, 1]. Hence, the input average cost func-
tion reads

P CNOT —

1

Fopue = 1 — f Cx)p(x)dx = 0.5
0.5

and the application of the purification protocol with CNOT

gates yields

1
Jexor =1— | C'(x0)p(x)dx = 0.450 103.
0.5
The result shows that the protocol with two identical copies
of states allows us to increase on average the entanglement of
the output states.
Example 2. Now we consider the state

5 0 0 =3

0 0 0 0 .

0 0 1-x o | withxe1. a2
X 0 0 :

Restricted to the interval x € [%, 1], it corresponds to a max-
imally entangled mixed state [25,26]. In general, for every
x € (0, 1], this state with concurrence C(x) = x is perfectly
purifiable in just one iteration of the protocol [13]. We can
find after one iteration that the concurrence becomes

CéNorr(x) =1,

with success probability

X2

E .
It is immediate from Eq. (9) that for any PDF with supp(p) =
[0, 1],

Penor =

1
]FCNOT =1- / C'(x)p(x)dx = 0.
0

This means that the CNOT gate is optimal for this family of
states.
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FIG. 2. Optimized purification protocol for the family of states in Eq. (11). (a) Average cost function f with a uniform PDF as a function
of N, the number of iterations. (b) Concurrence C as a function of x. Four curves are presented for different values of iterations N: O or the
input concurrence (black dashed line), 1 (orange dotted line), 2 (blue dash-dotted line), and 3 (red solid line). (c) Success probabilities as a
function of x for different values of iterations N: 1 (orange dotted line), 2 (blue dash-dotted line), and 3 (red solid line). (d) Overall success
probability after N = 1 (orange dotted line), N = 2 (blue dash-dotted line), and N = 3 (red solid line) iterations as a function of x. The sample

size has been set to M = 1000.

Example 3. As the last example let us consider the initial
state

x| TN DT| 4+ (1 —x)| @) (P7| withx € [0,1] (13)

and concurrence C(x) = |1 — 2x|. After one iteration of the
purification protocol with bilaterally applied CNOT gates, it is
not hard to realize that the resulting state has the concurrence

Claor®) = (1 — 2x)*

with success probability Poyor = 1. The output concurrence
Clnor(X) is less than or equal to C(x) for all x € [0, 1]. Thus,
we conclude by using the properties of concurrence and inte-
gration that
1 1
| Contopiran < [ cooptoax s
0 0

for any PDF with supp(p) = [0, 1]. Hence, the initial average
cost function fi,py is always less than or equal to fenor.
This is an example where the purification fails with the sole
implementation of the CNOT gate. It should be noted that for
x # 0.5, the state in this example can be purified with previous
protocols [7,8] that work on the Bell basis and where the
implementation with the CNOT gate is now accompanied by
local single-qubit gates.

These examples demonstrate the meaning of the average
cost function. It is obvious that one or more two-qubit gates
can be optimal for certain family of states and less optimal for
others. In the subsequent section we will investigate numeri-
cally several cases.

III. RESULTS

In this section it is demonstrated how our proposed method
can find optimal purification schemes. Our first case is the
continuation of Example 1 in Sec. II. We have seen so far that
the CNOT gate in N = 1 purification round can reduce the av-
erage cost function f approximately by 0.05. The simulation
results with the input state in Eq. (11) show that the optimal
SU(4) gate for N = 1 has a similar improvement on f as the
CNOT gate (see Fig. 2). The optimal gates found for N = 2
and 3 can further reduce f ; however, it is easy to check that
the CNOT gate alone is not optimal anymore for these rounds
of iterations. In Fig. 2 it is also shown that a higher number of
iterations results in more concave shapes of the corresponding
concurrences. It is worth noting that the success probability
of the second iteration is lower than the success probability
of the first iteration. The overall success probability of three
iterations, displayed also in Fig. 2, is defined as follows: In
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FIG. 3. Optimized purification protocol for Werner states [see Eq. (8)]. (a) Average cost function f with a uniform PDF as a function of N,
the number of iterations. (b) Overall success probability after N = 1 (orange dotted line), N = 2 (blue dash-dotted line), and N = 3 (red solid
line) iterations as a function of x. The sample size has been set to M = 1000.

the first iteration four qubit pairs, in the second iteration two
qubit pairs, and in the third iteration the final qubit pair are
successfully purified. These results show that states close to
maximally entangled states can be produced already in the
third iteration, but the overall success probability of the proce-
dure is getting smaller with the number of iterations. The only
fixed point is C = 1. Thus our method seems to provide the
same success probabilities as the ones found in [7]. As a result,
we have investigated the circumstances where the CNOT gate is
also optimal. It turns out that the local unitary transformation
introduced by [8] and given by

bj;n ® bjaz ® by, @ bg,,
where
bh— I, + io, ,

V2

with the Pauli matrix o, and the identity map I, is crucial for
the CNOT gate. This is the transformation which transforms a
Werner state in Eq. (8) into the state in Eq. (11). Now if one
applies Eq. (15) before all iterations of the protocol involving
only the CNOT gate, then the same curves are obtained as in
Fig. 2. This means that there are more optimal protocols which
yield the same results and our approach can find them.

The one-parameter family of states in Eq. (11) has the same
concurrence as the Werner state. Therefore, we consider the
Werner state to be our next application. In Fig. 3 numerical
results are presented for the average cost function f and the
overall success probability which exhibit the same behavior
found for the one-parameter family of states in Eq. (11). In this
case, one can note an improvement of 0.04 in f after N = 3
iterations. This is less than the previously obtained value of
0.09 shown in Fig. 2. Furthermore, this is accompanied by
another numerical inaccuracy: The overall success probability
at C = 1 is less than one. Given these results, the proposed
method can find optimal entangling two-qubit gates for at
least three iterations. It is also clear from these tests that the
algorithm is always reducing f, but from N = 3 iterations
this might not be an optimal improvement of the concurrence.
This originates from the fact that the gradient V f(a) [see
Eq. (7)] is almost flat in the neighborhood of C = 1 for N > 2

(15)

iterations and thus the numerical search for the optimal gate,
i.e., the search for a* € R'?, becomes inefficient. Now, to test
our method further, let us consider another state whose entan-
glement purification procedure is known. For this purpose we
note that the state of Example 2 in Eq. (12) can be transformed
using a separable gate b ® b', with b defined in Eq. (15), into
the state

X[UTW W 4 (1 = X)),
with x € [0, 1] and

(16)

L
V2

Using the unitary transformation »” ® b on Eq. (16), one ob-
tains the state in Eq. (12) which can be purified in one iteration
using bilateral CNOT gates. For this reason, it is expected that
the optimal two-qubit gate that purifies the states in Eq. (16)
is the one that achieves the task in one iteration and given by
a CNOT gate combined with single-qubit gates in the form of
b. As both states are connected via a separable gate, they have
the same concurrence C(x) = x. However, it is important to
note that the CNOT gate is not optimal for the state in Eq. (16),
because after one iteration round

0, x €[0,0.5]
Conor(®) = {2xzx—1 x€(0.5,1],

1+4x2°

IT) = —= (&) +i]07)).

and Clo; (x) < x. The success probability is

1+x2

P CNOT — .

2

Thus, the CNOT gate without the nonsymmetrical local trans-
formation of Eq. (15) impairs the concurrence. In contrast to
this analytical observation, numerical analysis with a uniform
PDF yields already in the first iteration for both states an
average cost function f &~ 0.0002. To demonstrate the robust-
ness of the numerical approach, we provide examples of three
nonuniform PDFs for N = 1 iteration. First, we consider

p(x) =2x withx € [0, 1],

which describes a situation where states with higher con-
currences are more likely to be subject to the purification.
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(b) C'(x.y)
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-1.0

FIG. 4. Optimized purification protocol for the state in Eq. (17) for 1000 parameter samples. (a) Average cost function f with a uniform
PDF as a function of N, the number of iterations. Crosses are the results of the CNOT gate, whereas circles display the numerical optimization.
They have been connected by lines to guide the eye. (b) Concurrence C" as a function of x and y after one purification round. The cone-type
surface is obtained with our approach. A less optimal surface with minima at x = 0 and along the y axis is the result of the purification protocol

with the CNOT gate. The sample size has been set to M = 1000.

The resulting average cost function is f & 0.000 004. Second,
we take

p(x) =2(1 —x) withx € [0, 1],

which puts more weight on states with low concurrences and
find f = 0.0005. Finally, we investigate a PDF

p(x) =6x(1 —x) withx € [0, 1],

i.e., the states around the concurrence C(x) = 0.5 are more
likely to participate in the purification, and obtain f ~
0.00005. These results demonstrate the effectiveness of our
approach and up to a numerical precision these one-parameter
families of states can be purified in one iteration. Next we
consider the following two-parameter family of states arising
from a generation of distant entanglement in the context of a
hybrid quantum repeater [27]:

1—x iy —iy x—1

A | iy x+1 —x-1 iy

plx.y) =3 iy —x—1 x+1 —iy a7
x—1 —1iy iy 1—x

Here x,y € R and x? 4+ y? < 1. The concurrence of this state
is /x2 4+ y2. In order to relate the performance of our ap-
proach, we apply the CNOT-gate-based purification protocol
to this family of states. We obtain

o _ 2H
CNOT(X7 )’) - mv (18)

1422
Penor = > (19)

after N = 1 and
41x|(1 + x?)
Conor(x, y) = T+ et (20)
1+ 6x% +x*

cNoT = Z(I—I——xz)z 21

after N = 2 purification rounds. If one applies the unitary
transformation in Eq. (15) on the state before the bilateral

CNOT gates are performed, then the above results remain un-
changed. These results demonstrate that the CNOT gate and
the additional tricks, which have yielded optimal purifications
for the one-parameter family of states, are not optimal in this
scenario, since they are outperformed on average by our op-
timized protocol. Thus, the original CNOT-based purification
protocols cannot exploit all the useful entanglement, because
the concurrence and the success probability become indepen-
dent of the y variable. Using these analytical results and the
uniform PDF

1
plx,y) = = with x* +y* < 1,

we compare our approach with the above-presented analyti-
cal results [see Egs. (18) and (20)]. In Fig. 4 we show that
our optimized protocol provides after one iteration an x- and
y-dependent concurrence. Although the numerically obtained
concurrence is larger at x = 0 and y € [—1, 1] than the sur-
face given by Eq. (18), one can also observe the opposite at
y =0 and x € [—1, 1]. However, the concurrence has more
improvement with our algorithm and the average cost function
with the uniform PDF stays, for more iterations, lower than the
original CNOT-based protocols [see Fig. 4(a)]. In regard to the
overall success probability, we let our algorithm work until
the third iteration and in Fig. 5 the results are compared with
the CNOT-based purification protocols. The obtained surfaces
differ only by a 7 /2 rotation around the z axis. Therefore,
there is not much difference in the overall success probability
and from this aspect the CNOT gate can also be considered
optimal, though it still cannot improve the concurrence as
effectively as the gate obtained with our approach. However,
one might think that with a proper choice of local unitary
transformations, like the transformation in Eq. (15) used for
Werner and one-step purifiable states, the application of the
CNOT gate may result in an optimal purification protocol. Let
us consider then two general local unitary transformations at
locations A and B for the preparation of two-qubit states. It
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Overall success probability
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FIG. 5. Overall success probability of the state in Eq. (17) after
N = 3 iterations as a function of x and y. Both surfaces are similar in
appearance. The one having maxima at x = 1 belongs to the CNOT-
based protocol and the other one having maxima at y = 1 is obtained
via the optimized numerical protocol.

is enough to consider unitary transformations in SU(2), for
which the Euler angle parametrization reads [28]

UA — ell7;0(1el(T'\,Otzel(Tzoq7 (22)

Up = 2191 510 B2 yio:P3 i (23)

where o, and o, are the Pauli matrices. Here o, g € [0, 7],
oy, By € [0, /2], and a3, B3 € [0, 2] are the Euler angles
for SU(2). For the first iteration, we analyze the output unitary
of the optimized protocol with Mathematica [29] and observe
that the angles «; and B; do not affect the effectiveness of the
CNOT-based purification protocol. Optimal concurrences for
the remaining four angles yield either the result in Eq. (18) or

2|yl
Conor®, ¥) = 1+y2 (24)
with success probability
1+)°
Poson = ——. (25)

for oy = %, B = 3?”, and oz = B3 = %”. For these results the
average cost function with a uniform PDF yields f ~ 0.372,
which is still lower than the average concurrence found by
our approach. These results demonstrate that even with local
unitary transformations the CNOT gate is globally not optimal
for all values of x and y. However, when x and y are known
beforehand, one can combine the CNOT gate together with the
local unitary transformation

Ul ®Up withU = cos(6)I, + sin(0)ay, (26)

where the angle 6 is a function of x and y. For example, for
x,y 2 0 we have

1
cos(9) = 5 +

TABLE 1. Comparison of the average concurrences produced
with different parametrizations of unitary matrices given in Egs. (6)
and (31) for M = 1000. The values in columns 2 and 3 represent
the two best sequences found by the algorithm among ten different
runs. We observe that the two different parametrizations provide us
with improving concurrences. Nonetheless, the general two-qubit
gate seems to perform slightly better.

N U 0"
0 0.666 0.666
1 0.753 0.751
2 0.897 0.798
3 0.968 0.937

Using this transformation before the purification protocol, we

obtain the state
14+ x2+y> I—yx2+y2
fyw ) fy@ N®|. (@27)

Now, together with the single-qubit gates in Eq. (26), the
CNOT-based purification yields, after one iteration, the con-

|+

currence
Chantoy) = 2 28)
.X, = T 5 . 5>
cNor WX Y 1+ 2+ y2
with success probability
1 +x% +y?
Penor = s 29)

It is immediate that Clyo,(x, ) = /X% + )2, i.e., we are im-
proving the concurrence. In this particular case, we do not
need the average cost function in the numerical search, be-
cause the state is fixed. Our algorithm running with a single
state with parameters (x, y) as defined in Eq. (17) instead of
an ensemble of states can optimally improve the concurrence,
but is unable to find this particular optimal solution presented
above because the transformation (26) together with CNOT
gates is a nonsymmetrical transformation at nodes A and B.

To show that optimization becomes more effective with an
increased number of angles, we consider a less general unitary
gate than the one in Eq. (6). This gate consists of one CNOT
gate and four local unitary transformations of Eq. (22),

U() = [Ui(a}, oy, o) @ Us(atf, af, )]
UCNOT[US(O[;7 Olé, Olv/;) & U4(0l/1(), 01/11, aiz)], (30)

i.e., the quantum gate has a clear quantum circuit represen-
tation. Now & is a 12-dimensional vector of the angles. We
have inserted this gate into our algorithm and observe that the
results are almost as good as the optimization of a general
gate with 15 parameters (see Table I). Furthermore, the two
optimal gates after N = 1 iteration are presented in Fig. 6.
Finally, let us point out that our approach does not take
into account operational or memory errors. These always de-
pend on the implementation and if an experiment can provide
us models for the errors, then our approach can be easily
extended. Another important experimental input is the PDF
p(x), which is usually subject to the method of generating
entangled states between locations A and B. Furthermore, this
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FIG. 6. Optimized unitaries (a) and (b) Uy (a*), the Euler angle parametrization in Eq. (6), and (c) and (d) Uy(a*), the CNOT circuit given
in Eq. (30), for N = 1. The optimal protocols are obtained for the state given in Eq. (17) with M = 1000 and the procedure discussed in
Algorithm 1. For each unitary, (a) and (c) represent the absolute value of the matrix entries taken in the computational basis, whereas (b) and
(d) represent the phase of the same entries divided by 27. The colormap describes values varying from O (white) to 1 (dark orange and

dark blue).

PDF is assigned to the process of choosing a value x as a
random event, i.e., we have the same two two-qubit pairs
parametrized by x before the purification protocol.

In effect, we integrate away the parameter dependence of
the states and thus our approach yields an optimal two-qubit
gate on average. If the value of x is fixed in an experimental
design, then our method provides an optimal two-qubit gate
designed for this particular state. The optimal two-qubit gates
can always be realized by three CNOT gates and additional
single-qubit gates [30,31], and therefore the experimental gen-
eration of this gate is possible with high fidelity [32]. Also
in the context of trapped ions or superconducting quantum
circuits, the generation of two-qubit entangling gates can be
achieved with high precision using the Mglmer-Sgrensen gate
[33] or the +/iSWAP [34] gate. Since two-qubit gates have
a straightforward implementation in many physical settings,
due to quantum compilation [35], we argue that quantum com-
puting and communication platforms could actually benefit
from globally optimal gates for entanglement purification.

IV. CONCLUSION

In the context of entanglement purification and recurrence
protocols, we have presented a method to obtain optimal pro-
tocols. This method searches for the optimal two-qubit gate,
which is applied bilaterally at the nodes A and B in order to
distill from an ensemble of mixed entangled pairs a higher
fidelity state with respect to a maximally entangled state. Here
we assumed that the same copies of the states can be generated
before the purification protocol takes place, but a different
experimental run could result in different states. Errors orig-
inating from local operations, memory requirements, or even
classical communication have been neglected for now.

We numerically demonstrated the optimality of our pro-
posal for several states. In the case of the Werner state, we
found that several optimal two-qubit gates and their perfor-
mances are the same as in the CNOT-based Deutsch protocol
[8]. Thus, for Werner states the optimality cannot be improved
beyond the already known performance. Next we investigated
a family of states which can be purified in one step, i.e.,
two copies of mixed entangled states are enough to obtain
a maximally entangled state. Here we immediately obtained
a minimal average cost function f & 0, as expected. Finally,
we considered a two-parameter family of states which is

obtained in theoretical models of a quantum repeater [27].
Our numerical investigation demonstrated that a single bilat-
erally applied CNOT gate cannot be globally optimal for these
states. On the other hand, when the state is known beforehand,
then parameter-dependent, nonsymmetric local transforma-
tions allow again the CNOT gate to be also one of the optimal
two-qubit gates. This case exemplifies the difference between
protocols that are optimal for a full class of parametrized
states and those that are only optimal for a single state. We
also investigated with our algorithm a concrete quantum cir-
cuit consisting of four different single-qubit gates and a CNOT
gate, which is only a subset of the SU(4) group. We found
that the optimal two-qubit gate among all elements of this
quantum circuit seems to be slightly worse than the one found
among all matrices in SU(4). This suggests that the search
after an ensemble of optimal two-qubit gates can benefit from
a general parametrization.

In conclusion, we have proposed a general method to op-
timize entanglement purification for an arbitrary family of
states. Our algorithm [36] can find the two-qubit gates that
on average induce the highest increase of entanglement. We
remark that the method is general for the set of parameters
defining the states. Optimizing for a single state is also possi-
ble, as shown in one of the presented examples. Furthermore,
we focused on the degree of entanglement measured by the
concurrence and not on the fidelity with respect to a particular
Bell state. This is motivated by the fact that a general entan-
glement purification protocol may not always purify towards
a given Bell state, but rather a maximally entangled state. As
we optimize among many different protocols, it is necessary
to use a measure for which all maximally entangled states are
equivalent. A possible drawback is that one cannot know with
certainty the final maximally entangled state produced by the
protocol. This and other issues such as different input states,
nonsymmetric two-qubit gates, and nonideal local operations
remain open questions. However, this work aims to introduce
a concept of globally optimized recurrence protocols that is
flexible enough to incorporate the aforementioned points in
further investigations.
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J
APPENDIX: GELL-MANN-TYPE BASIS

In this Appendix, details concerning the Gell-Mann-type basis for the Lie algebra of SU(4) are shown. The matrices read

01 0 0 0 —i 0 0 1 0 0 0
1 0 0 0 i o o0 o0 o -1 0 o0
T=10 o o o] “2=lo o o o] =|lo o o of
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1L 0 0 0 —i 0 0 0 0 0
~{o 0o 0 0 (o 0 o0 o0 o 0o 1 0
%=11 0 o o) =i o o of °=lo 1 o of
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1
o 0o —i o0 _lfo 1 0o o (o 0 0 o
=10 i o of T &zlo 0o —2 of ®Tlo 0o 0o o)
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 —i 0 0 0 0 0 0 0 0
~{o 0 0 o (o 0 0 1 (o 0 0 —i
=19 0 0o o] °=lo o o o] °=lo o 0o o]
i 0 0 0 01 0 0 0 i 0 0
0 0 0 0 0 0 0 0 1 0 0 0
oo 0o o (o0 0 o _1fo 1 0 o0 A
B=1o 0o 0o 1) ™Tflo 0o 0o —i|]" T Elo 0o 1 o0
0 0 L 0 0 i 0 0 0 0 -3
Actually, these matrices, together with the identity matrix
1 0 0 0O
(o1 0 0
%=1o 0 1 of
0 0 0 1

form an orthogonal basis for the space M, (C) of 4 x 4 matrices with complex entries equipped with the Hilbert-Schmidt scalar
product

(A,B) =Tr{A'B}, A,B e M,(C),
where AT is the adjoint of A. We first note that o; =o; foralli € {0, 1,2,...,15}. Therefore, every matrix X € M,(C) can be
written as
15 15
i X iy X)*
x=y 00,y oy X,
= (o1, 0i) = (0, 01)
where z* is the complex conjugate of the complex number z € C. In this fashion, we can obtain another representation for any
element U e SU4) fulfilling UTU = UUT = oy and including also that its determinant is equal to one. This is also a minimal

parametrization, however a cumbersome one compared to the Euler angle parametrization. In general, a Gell-Mann-type basis
for the Lie algebra of SU(n) can always be obtained (see Refs. [28,39]).
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