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Abstract—Large monitoring systems produce data that is often
compressed to be transmitted over the network. For latency or
security reasons, compressed data may be processed at the edge,
i.e., along the path from sensors to the cloud, for some purposes
such as anomaly detection. However, the performance of a detec-
tor distinguishing between normal and anomalous behavior may
be affected by the loss of information due to compression. We
here analyze how lossy compression affects the performance of
a generic anomaly detector. This relationship is formalized in
terms of information-theoretic quantities. Within such a frame-
work we leverage a Gaussian assumption to derive analytical
results regarding the importance of white noise as a represen-
tative of both the average and asymptotic anomalies. Moreover,
in an anomaly-agnostic scenario, we also show the existence of
a level of compression for which an anomaly is undetectable
though compression is not completely destructive. Numerical evi-
dence confirms that the proposed information-theoretic quantities
anticipate the performance of practical compressors and detec-
tors in the case of Gaussian and non-Gaussian signals allowing
an assessment of the tradeoff between compression and detection.

Index Terms—Anomaly detection, edge computing, Internet of
Things, lossy compression, rate-distortion theory.

I. INTRODUCTION

ATYPICAL scenario for nowadays massive acquisition
systems can be modeled as a large number of sensing

units, each transforming some unknown physical quantity into
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Fig. 1. Sensorized plant whose compressed acquisitions are aggregated at
the edge before being sent to the cloud.

samples of random processes that are then transmitted over a
network. To reduce transmission bitrate, the sensor readings
are often compressed by a lossy mechanism that aims to pre-
serve the useful information [1]. Implicitly, this brings out
a tradeoff between transmission bitrate and the amount of
information loss which is addressed in general terms by the
Information Theory with the optimal rate-distortion curve [2],
i.e., the theoretical lower bound for the rate given a maximum
distortion level.

In any practical application, a compression mechanism
corresponds to a proper rate-distortion curve while the com-
pression level imposed by the final application identifies a
point on that curve. This is the case of a large variety
of applications that include the extraction and the monitor-
ing of features characterizing the object under observation
as in structural health monitoring [3], [4], sensorization of
industrial plants [5], [6], [7], or the processing biomedical sig-
nals [8], [9], [10] (e.g., Fig. 1 for an example). In general,
the lower the signal distortion, the more likely to meet the
requirements of a main task.

A common practice is to adopt a remote unit to process and
store compressed data [1], [6], [11]. Before reaching a possi-
ble cloud facility, the corresponding bitstreams may traverse
several levels of hierarchical aggregation and intermediate
devices that are often indicated as the edge of the cloud [12].
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For latency, privacy, or cybersecurity reasons, some compu-
tational tasks may benefit from their deployment at the edge.
One of those tasks is the detection of anomalies.1

Usually, compression schemes applied to sensor data are
asymmetric and entail a lightweight encoding performed on
very-low complexity devices paired with a possibly expensive
decoding stage running on the cloud. In these conditions, it
is sensible that anomaly detectors working on the edge access
compressed data and not the raw signal. Yet, lossy compres-
sion bases its effectiveness on neglecting some of the signal
details. This translates into a distortion between the original
and the compressed signal but also in a loss of features that, in
principle, could have been used to tell normal behaviors from
anomalous ones.

In general, acquisition systems must obey a distortion con-
straint so that they are designed to best address the tradeoff
between compression and distortion. However, such a tradeoff
goes in parallel to the one between distortion and the abil-
ity to determine whether the signal is normal or anomalous.
Here, we analyze the latter with the same information theoretic
machinery used in the well-known rate-distortion analysis and
show that the two tradeoffs are different.

A. Related Works

How compression affects the ability of a detector to dis-
tinguish between two sources of information is a topic that
has been investigated in the literature. In [13], the problem of
hypothesis testing is discussed for a single source under a rate
constraint. Such a basis has been extended to information-
theoretic problems of statistical inference in the case of
multiterminal data compression in [14]. With respect to the
proposed framework, the authors do not include a constraint
on distortion since original signals are not required to be
reconstructed. On the contrary, we assume that compression
is designed to guarantee the quality of service needed by the
processing tasks that receive the reconstructed data.

In a sense, the framework we identify is partially related to
the information-bottleneck scheme [15], [16]. In that scheme,
the main tradeoff between rate and distortion is replaced
by a very general criterion that identifies which part of the
information content of the original signal must be preserved
during compression, i.e., the compressor limits the rate by
maintaining some features. In detail, the preserved features
consist of the information contained in the original signal
about a second suitably introduced signal matching the target
application. For example, compression can also be adapted to
anomaly detection. However, in our context, compression is
independent of anomaly detection as it is designed to max-
imally preserve the signal information for further analysis
(see Fig. 2). Hence, we augment the classical rate-distortion
framework to add a quantity representing the distinguisha-
bility between normal and anomalous signals. Moreover, we
also consider cases in which we completely ignore the statis-
tic of the anomaly thus spoiling the applicability of the

1Depending on the context, an anomaly may also be referred to as outlier,
novelty, intrusion, attack, etc.

information-bottleneck scheme that can model anomaly detec-
tion only if we can identify anomalies with a second source
of information.

The information-bottleneck principle has also been
employed for unsupervised tasks. To tackle one-class clas-
sification, in [17] and [18] an optimization problem is
considered in terms of rate-distortion tradeoff and it is solved
by applying the information-bottleneck principle. However,
as in previously reported contributions, this tradeoff is used
for anomaly detection with no consideration about signal
distortion affecting further applications, i.e., without any
constraint on the error committed in the reconstruction of the
original signal.

Another way to relate unsupervised anomaly detection to
data compression is described in [19]. Here, the level of abnor-
mality of a data point with respect to the entire data set, called
coding cost, is given by its ability to be efficiently compressed
in a Huffman coding fashion.

The same reason that differentiates our work from the
information-bottleneck principle makes the analysis we pro-
pose different from other modifications of classical rate-
distortion theory that substitute energy-based distortion with
perceptive criteria [20], [21].

Though not overlapping with the problem we address, it is
also worthwhile to mention [22], [23], in which it is assumed
that the original signal is characterized by some parameters
(e.g., the mean) and the authors clarify how the estimation of
such parameters is affected by lossy compression.

Note also that other applications exist in which rate and
distortion are paired with additional merit figures taking into
account relevant features of the system. As an example [24]
adds computational effort considerations to the analysis of
rate-distortion of wavelet-based video coding.

Finally, even without emphasis on compression, the relation-
ship between the analysis of suitably defined subcomponents
of a signal to detect possible outlier behaviors is a classic
theme that is still under investigation [25], [26], [27].

B. Our Contribution

In this article, we propose an analysis of the performance
of a generic anomaly detector working on a signal distorted
by compression mechanisms addressing the rate-distortion
tradeoff. In particular, we consider ideal and real detectors
working on signals compressed by ideal and real encoders
designed to preserve the original information. To anticipate
the performance of a detector trying to distinguish anomalous
from common signals, we lay down a theoretical frame-
work and define two information-theoretic measures of dis-
tinguishability to model anomaly-agnostic and anomaly-aware
scenarios.

Specializing our analysis to the case of Gaussian sources.
1) The distinguishability metrics in case of white anomalies

are representative of the average detector’s performance
over many different anomalies.

2) As the signal dimension increases, white anomalies tend
to be typical.
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Fig. 2. Signal chain is tuned on the normal signal xok to best address the
rate-distortion tradeoff, guaranteeing a certain quality of service to a given
application. An anomalous signal xko may occur and a detector working on
the compressed signal y should be able to detect it.

3) In the case of an anomaly-agnostic detector, the rela-
tion between distinguishability and distortion needs not
to be monotonic and there may be at least one nondis-
ruptive distortion level that makes the white anomaly
undetectable.

We then present numerical evidence showing the effec-
tiveness of the theoretical framework when Gaussian signals
(GSs), the distortion-optimal compressor, and optimal detec-
tors are considered.

Finally, we provide further numerical evidence when the
assumptions under which the theory was developed are pro-
gressively relaxed, showing the effectiveness of the latter in
modeling the behavior.

1) Real-world detectors monitoring GSs compressed by the
encoder optimal in the rate-distortion sense.

2) Real-world detectors coping with GSs compressed by
practical suboptimal encoders that adapt the compres-
sion mechanism to the statistical properties of the normal
signal source.

3) Real-world detectors working on electrocardiogram
(ECG) and accelerometer signals compressed by the
same real-world suboptimal encoders.

Both theoretical and empirical results reveal how compres-
sion tuned to maximize the information transfer does not
necessarily address at best the compromise with distinguisha-
bility.

This article is organized as follows. Section II reviews the
classical rate-distortion theory to define the expression of the
optimal compressor, while Section III defines the model for
normal and anomalous signals together with the metrics to
measure the distinguishability between them. Section IV lays
down some theoretical results that are then confirmed with
numerical evidence in Sections V and VI. The conclusion is
finally drawn. Proofs of the theorems and lemmas are reported
in the Appendix.

II. RATE VERSUS DISTORTION

Signals are compressed by encoding the information con-
tent into symbols which can be transmitted over a channel
whose capacity is limited to a maximum rate of symbols per
second. When the rate is not sufficient, the compression mech-
anism discards some information to fit the channel. This loss

of information results in a receiver observing a signal that
is distorted with respect to the original. Intuitively, the lower
the channel capacity, the higher the distortion. This tradeoff is
extensively studied in rate-distortion theory [2, Ch. 13].

We consider the context in which a system has the main
task of transferring the information content of a signal source
x to a receiver through a communication channel that has a
constraint on rate. At any time instant t, an instance x[t] is
passed to an encoding stage producing a compressed version
y[t] that may then be decompressed into x̂[t] ∈ ̂Rn, where
̂Rn ⊂ R

n.
The constraint on the rate is such that it implies a lossy

compression mechanism. The encoding stage is therefore not
injective and introduces some distortion. The encoder is tuned
on the source x, which is modeled as an independent discrete-
time, n-dimensional stochastic process.

Distortion may be defined as follows:

D = E
[

∥

∥x[t] − x̂[t]
∥

∥

2
]

(1)

where E[·] stands for expectation, and the minimum achievable
rate ρ can be expressed as a function of the maximal accepted
distortion δ as follows [2, Th. 13.2.1]:

ρ(δ) = inf
fx̂|x

I
(

x̂; x
)

s.t. D ≤ δ (2)

where I(x̂; x) is the mutual information between x̂ and x
[2, Ch. 8], and fx̂|x is a conditional probability density function
(PDF) modeling the possibly stochastic mapping characteriz-
ing the encoder–decoder pair. Although [2, Th. 13.2.1] defines
the rate-distortion function in the discrete case, it can also be
proved for well-behaved continuous sources [2, Ch. 13] as
considered in this work.

If the source is memoryless (thus allowing us to drop the
time index t) and generates vectors of independent and zero-
mean Gaussian variables, i.e., when x ∼ G(0, �) where � is a
diagonal covariance matrix such that � = diag(λ0, . . . , λn−1)

with λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ 0, then the solution of (2) is

ρ = 1

2

n−1
∑

j=0

log2
λj

min
{

θ, λj
} = −1

2

n−1
∑

j=0

log2 τj (3)

δ =
n−1
∑

j=0

min
{

θ, λj
} =

n−1
∑

j=0

λjτj (4)

where θ ∈ [0, λ0] is the so-called reverse water-filling param-
eter [2, Th. 13.3.3], and τj = min{1, θ/λj} accounts for
the fraction of energy canceled by distortion along the jth
component.

The coding theorems behind such a classical development
imply that the optimal tradeoff (2) between rate and distor-
tion is asymptotically obtained by simultaneously encoding an
increasing number of subsequent source symbols into a single
block that can be then reverted to a sequence of distorted sym-
bols. Hence, in principle, the intermediate symbols y feeding
the anomaly detector in Fig. 2 cause it to work simultaneously
on multiple instances of the signals.

Though this is not incoherent with what happens in real
detectors that observe more than one suspect instance before
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declaring an anomaly, we here instead consider a per-use anal-
ysis which is typical and scales the key merit figures (rate,
distortion, and, in our case, distinguishability—see Section III)
by the number of source symbols aggregated to obtain them.

This allows us to pursue the classical approach defining
a test channel whose single user has the same expected
behavior as the average of infinite uses and, in the case of
Gaussian sources, has a particularly simple expression that
we derive and exploit to imagine that a source instance x is
encoded into a compressed symbol y from which x̂ can be
recovered [2, Ch. 13], [28].

In the same Gaussian framework, it is also possible to derive
the PDF of the distorted signal x̂ and the conditional PDF
fx̂|x that stochastically maps an input x ∼ G(0, �) to x̂. If
we accept to identify a zero-variance Gaussian with Dirac’s
delta and define Sθ = In −Tθ with Tθ = diag(τ0, . . . , τn−1) to
account for the fraction of energy that survives distortion along
each component, then we can derive the following lemma
whose proof is in the Appendix.

Lemma 1: If x ∼ G(0, �) is a memory-less source and we
constraint the distortion D ≤ δ, the optimally distorted signal
has distribution

x̂ ∼ G(0, �Sθ ) (5)

and the optimal encoding mapping is

fx̂|x(α, β) = GSθ β,�Sθ Tθ (α) (6)

where Gm,K(·) represents the PDF of a Gaussian variable with
mean vector m and covariance matrix K.

Although in general it is not explicitly reported, the expres-
sion of fx̂|x is important when the compression mechanism is
employed to encode a signal different from the one for which
it was designed. This is the case of an unexpected anomalous
source that replaces the normal signal.

III. ANOMALIES AND THEIR DISTINGUISHABILITY

Once introduced the rate-distortion tradeoff that rules many
lossy compression mechanisms, we analyze what happens
when a compressed signal is processed for anomaly detec-
tion. As compression introduces distortion, it also reduces the
information available for a detector to distinguish whether
the transmitted signal differs from what is usually observed.
Hence, in the case of anomaly detection on compressed sig-
nals, the tradeoff is threefold as, together with rate and
distortion, also distinguishability comes into play.

To include this aspect in our model, each observable
instance x[t] has to be considered as a realization of two
different sources: one modeling the normal behavior xok and
one representing an anomaly xko. These two sources are mod-
eled as two discrete-time, stationary, n-dimensional stochastic
processes each generating independent and identically dis-
tributed (i.i.d.) vectors xok ∈ R

n and xko ∈ R
n with different

PDFs f ok : R
n → R

+ and f ko : R
n → R

+. As a result,
at any time t the observable process is either x[t] = xok[t] or
x[t] = xko[t] (visually represented in Fig. 2). Since we assume
the generated vectors as i.i.d., from now on we may drop the
time indication.

Coherently to the previous section, we here consider the
case in which both sources are Gaussian. In particular, we
focus on signals with zero-mean and covariance matrices
�ok, �ko ∈ R

n×n. In general, �ok 	= �ko, but we will assume
tr(�ok) = tr(�ko) = n, where tr(·) stands for matrix trace,
meaning that, on the average, each sample in the vector con-
tributes with unit energy. With the assumption of signals to
be zero-mean and of equal energy, we can focus our analysis
on one of the possible effects of anomalies, i.e., the distri-
bution of energy over the signal subspace. Moreover, with no
loss of generality, we assume �ok = diag(λok

0 , . . . , λok
n−1) with

λok
0 ≥ λok

1 ≥ · · · ≥ λok
n−1 ≥ 0.

Typically, a compressor aims to guarantee the best trade-
off between rate and distortion for the typical condition in
which the observed signal behaves normally, i.e., x = xok.
The optimal encoder for Gaussian sources is the one indicated
in (6) for which � = �ok and fx̂|x = f ok

x̂|x have to be consid-
ered. However, once deployed, the same encoder works on
anomalies, i.e., x = xko, for which performance is suboptimal.

The encoded signal y is then observed for anomaly detec-
tion. Since we assume the decoding stage to be injective, y
brings the same information of the reconstructed signal x̂ so
that, in abstract terms, processing y is equivalent to working
on x̂. As a result, the detector seeks to distinguish between
normal x̂ok ∼ f ok

x̂ and anomalous x̂ko ∼ f ko
x̂ reconstructed

signals.
Since the encoder is tuned on the normal signal, xok is opti-

mally compressed in the rate-distortion sense into x̂ok whose
distribution is reported in (5) with � = �ok, while the anoma-
lous signal xko is suboptimally transformed into x̂ko for which
f ko
x̂ is given by the following lemma, whose proof is in the

Appendix.
Lemma 2: If an anomalous source xko ∼ G(0, �ko

)

is
encoded with the compression scheme f ok

x̂|x of Lemma 1, then

x̂ko ∼ G
(

0, Sθ�
koSθ + θSθ

)

. (7)

Such a result has two noteworthy corner cases.
1) If θ → 0+ there is no distortion. In fact, since Sθ = In,

Lemma 2 gives x̂ko ∼ xko.
2) If xko ∼ xok there is no anomaly, �ok = �ko, and

Sθ�
koSθ + θSθ =

[

Sθ + θ
(

�ok
)−1

]

�okSθ = �okSθ

where the last equality holds since Sθ = max{0, In −
θ(�ok)−1}, the possible disagreements between Sθ +
θ(�ok)−1 and In correspond to components multiplied
by zero by the last Sθ factor. Hence, Lemma 2 can be
compared with Lemma 1 to confirm that x̂ko ∼ x̂ok.

Lemmas 1 and 2 imply that when the normal and anomalous
signals are Gaussian before compression, the performance of
anomaly detectors depends on how much we are capable of
distinguishing between the two distributions in (5) and (7).
We quantify the difference between them with two kinds of
information-theoretic measures, which model two distinct sce-
narios, one in which the detector knows both f ok

x̂ and f ko
x̂ and

one in which it knows only f ok
x̂ .
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To proceed further it is convenient to define the functional

L
(

x′; x′′) = −
∫

Rn
fx′(α) log2

[

fx′′(α)
]

dα (8)

that is the average coding rate, measured in bits per symbol,
of a source characterized by the PDF fx′ with a code opti-
mized for a source with PDF fx′′ , so that L(x; x) is equal
to the differential entropy of x [2, Ch. 8]. As an alterna-
tive statistical point of view, if fx′ is the PDF of the symbols
generated by a source x′, fx′′ is the PDF of the symbols gen-
erated by a source x′′ and 
x(α) = − log2 fx(α) is the negative
log-likelihood that the symbol α has been generated by the
sources x, then L(x′; x′′) = E[
x′′(α)|x′], i.e., the average neg-
ative likelihood that an instance is generated by the source x′′
when it is actually generated by the source x′.

Within the Gaussian assumption, we can derive the analyti-
cal expression for L in the following lemma whose derivation
is in the Appendix.

Lemma 3: If x′ ∼ G(0, �′) and x′′ ∼ G(0, �′′) then

L
(

x′; x′′) = 1

2 ln 2

{

ln
[

(2π)n
∣

∣�′′∣
∣

]+ tr
[

(

�′′)−1
�′]} (9)

where | · | indicates the determinant of its matrix argument.

A. Distinguishability in Anomaly-Agnostic Detection

When f ko
x̂ is unknown and only f ok

x̂ is given, we can only
consider the average coding rates referring to code optimized
for x̂ok, i.e., L(x̂ko; x̂ok) and L(x̂ok; x̂ok). One may quantify the
difference between a normal behavior and an anomalous one
by measuring the increase or decrease in the average coding
rate with respect to the expected case L(x̂ok; x̂ok) as follows:

ζ = L
(

x̂ko; x̂ok
)

− L
(

x̂ok; x̂ok
)

(10)

=
∫

Rn

[

f ok
x̂ (α) − f ko

x̂ (α)
]

log2 f ok
x̂ (α)dα. (11)

Since there may be anomalies whose encoding yields a
lower rate with respect to normal signals, ζ is not always
positive. As a result, a distinguishability measure is given by
considering its magnitude, i.e., |ζ |.

From a statistical perspective, ζ corresponds to the differ-
ence in the expectation of the negative log-likelihood for α to
be normal given either α is actually an instance of x̂ok or x̂ko

ζ = E
[


ok
x̂ (α)|x̂ko

]

− E
[


ok
x̂ (α)|x̂ok

]

.

The use of the quantity 
ok
x̂ (α) = − log2 f ok

x̂ (α) can be found
in other works related to anomaly detection, e.g., in [19] where
it is referred as a coding cost of α.

With the assumption of Gaussian sources, the optimal
encoder (in the rate-distortion sense) lets survive only the
components j for which λok

j > θ . Hence, f ok
x̂ and f ko

x̂ given
in (5) and (7) have only the first nθ components non-null with
nθ = arg maxj{λok

j > θ}. The other n − nθ components are
set to 0 and thus cannot be used to tell anomalous from nor-
mal cases. We therefore focus on the first nθ components of
x̂ok and x̂ko which are Gaussian with covariance matrices �̂ok

θ

and �̂ko
θ corresponding to the nθ × nθ upper-left submatrix of

�okSθ in (5) and of Sθ�
okSθ + θSθ in (7), respectively.

By properly combining the definition of ζ in (10) with
the expression of L within the Gaussian assumption in (9),
we obtain

ζ = 1

2 ln 2
tr
[

�̃θ − Inθ

]

(12)

where �̃θ = (�̂ok
θ )−1�̂ko

θ which corresponds to the nθ × nθ

upper-left submatrix of (�ok)−1�koSθ + Tθ . Note that, since
�̃θ is linear with respect to �̂ko

θ , so is ζ . In addition, ζ vanishes
when �̂ok

θ = �̂ko
θ .

As a noteworthy particular case, when the normal signal is
white, i.e., when �ok = In, we have that θ ∈ [0, 1] and that for
any θ < 1, Tθ = θ In and nθ = n. Hence, �̃θ = (1−θ)�ko+θ In

that leads to ζ = 0. This result is not surprising since the
distinguishability modeled by |ζ | depends only on the statistics
of xok that has no exploitable structure.

B. Distinguishability in Anomaly Aware Detection

When both f ok
x̂ and f ko

x̂ are known, the anomaly detec-
tion task reduces to a binary classification problem for
which we may resort to the Neyman–Pearson Lemma
[2, Th. 12.7.1], [29, Th. 3.1]. This lemma can be understood
in the sense that the cardinal quantity to observe is

r(α) = log2

[

f ko
x̂ (α)

f ok
x̂ (α)

]

which can be interpreted as a measure of abnormality of α,
i.e., a score that the detector employs to distinguish whether
the single α behaves normally or not. Consequently, one may
measure the distinguishability between the distributions f ok

x̂
and f ko

x̂ as the difference between the score observed in average
when x̂ = x̂ok and the score obtained in average when x̂ = x̂ko

κ = E
[

r(α)|x̂ko
]

− E
[

r(α)|x̂ok
]

(13)

=
∫

Rn
f ko
x̂ (α) log2

[

f ko
x̂ (α)

f ok
x̂ (α)

]

dα

+
∫

Rn
f ok
x̂ (α) log2

[

f ok
x̂ (α)

f ko
x̂ (α)

]

dα (14)

= L
(

x̂ko; x̂ok
)

− L
(

x̂ko; x̂ko
)

+ L
(

x̂ok; x̂ko
)

− L
(

x̂ok; x̂ok
)

(15)

= DKL

(

f ko
x̂ ‖f ok

x̂

)

+ DKL

(

f ok
x̂ ‖f ko

x̂

)

(16)

where given distributions f ′ and f ′′, DKL
(

f ′‖f ′′) refers to the
Kullback–Leibler divergence [2, Ch. 2], of which κ results
to be the symmetrized version. Note that, κ is similar to the
divergence defined in [30] and [31] for binary classification
problems.

The measure κ models a detector that knows the distribu-
tions of both normal and anomalous sources such that their
optimal codes are also known. From (15), it is evident that κ

may be interpreted as the sum of the differences in the average
coding rate for both distorted sources with a code optimized
for the normal source L(x̂ko; x̂ok) − L(x̂ok; x̂ok) and optimized
for the anomalous source L(x̂ok; x̂ko) − L(x̂ko; x̂ko). Since the
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average coding rate is expected to be shorter when employed
to code a source for which it is optimized, these differences
are expected to be greater when the difference between two
distributions f ok

x̂ and f ko
x̂ increases. As a result, large κ val-

ues correspond to system configurations with high detection
capability.

Differently from ζ , κ is a quantity that is always positive
and can be directly used as a distinguishability measure.

Within the Gaussian assumption, the distinguishability mea-
sure κ becomes

κ = 1

2 ln 2
tr
[

�̃θ + �̃−1
θ − 2Inθ

]

(17)

from which it is evident that κ is convex with respect to �̂ko
θ

and, as for ζ , κ vanishes for �̂ok
θ = �̂ko

θ .
As a final remark, coherently with the typical per use

analysis, distinguishability measures implicitly consider detec-
tors that scrutiny an increasing number of subsequent source
instances and scale their performance by such a number.
Hence, as rate and distortion coming from (2) are best-case
bounds that can be approximated by increasing the complex-
ity of the system, the distinguishability measures indicate how
fast a detector accumulates information to declare an anomaly.
The higher such a figure, the lower the number of subsequent
symbols needed to arrive at a conclusion or, alternatively, the
higher the confidence in a conclusion drawn after analyzing a
single instance.

IV. AVERAGE AND LARGE-WINDOW

DISTINGUISHABILITY

Once framework and metrics are defined, it is interesting to
analyze points of view from which white noise appears to be
important. First, it is the average over the set of all possible
anomalies. Second, it is the asymptotic behavior of anomalies
when the signal dimension increases.

A. Average on the Set of Possible Anomalies

Anomalies modeled as zero-mean Gaussian vectors with
fixed energy are completely defined by their covariance matrix
�ko where tr(�ko) = n. We decompose �ko = Uko�koUko�

with �ko = diag(λko
0 , . . . , λko

n−1) and Uko orthonormal.
The set of all possible λko = (λko

0 , . . . , λko
n−1)

� is

S
n =

⎧

⎨

⎩

λ ∈ R
+n|

n−1
∑

j=0

λj = n

⎫

⎬

⎭

while the set of all possible Uko is that of orthonormal matrices

O
n =

{

U ∈ R
n×n|U�U = In

}

.

By indicating with U(·) the uniform distribution in the argu-
ment domain, we will assume that when λko is not known
then λko ∼ U(Sn) and, similarly, when Uko is not known then
Uko ∼ U(On), independently of λko.

Note now that S
n is invariant with respect to any per-

mutation of the λj. Since λko ∼ U(Sn), also E[λko] must
be invariant with respect to the same permutations so that

E[λko
j ] = E[λko

k ] for any j, k. Since λok has a constrained sum
and is the diagonal of �ko we have E[�ko] = In. This implies

E
[

�ko
]

= E
[

Uko�koUko�]

= E
[

UkoE
[

�ko
]

Uko�]

= E
[

UkoUko�] = In. (18)

Hence, in our setting, the average anomaly is white and we
may compute the corresponding distinguishability measures ζI

and κI , i.e., ζ and κ when �ko = In. Note that, in this case,
�̃θ is the nθ × nθ upper-left submatrix of (�ok)−1Sθ + Tθ ,
which is a diagonal matrix whose diagonal elements are

uθ,j = 1

λok
j

(

1 − θ

λok
j

)

+ θ

λok
j

.

With these quantities, the expressions of the distinguisha-
bility measures become

ζI = 1

2 ln 2

nθ−1
∑

j=0

(

uθ,j − 1
)

(19)

κI = 1

2 ln 2

nθ−1
∑

j=0

(

uθ,j + 1

uθ,j
− 2

)

. (20)

Note that due to Jensen’s inequality, the linearity of ζ and
the convexity of κ , we have ζI = E[ζ ] and κI ≤ E[κ].

Moreover, the very simple structure of ζI allows the deriva-
tion of the following theorem whose proof is in the Appendix.

Theorem 1: If k̄ = arg maxk{λok
k ≥ λko

k = 1}, then ζI = 0
for at least one point 0 < θ < λok

k̄
.

Considering a white anomaly, the intuition behind this theo-
rem is the following. When distortion is null (no compression),
since x̂ko and x̂ok have the same average energy and the cod-
ing is tuned on x̂ok, L(x̂ko, x̂ok) > L(x̂ok, x̂ok) such that ζI is
positive. On the other hand, when distortion is so high that
only the first component of xok survives, i.e., �̂ok

θ = λok
0 − θ ,

a single component also survives in x̂ko. In this setting, ζI

depends on the difference between the two scalar quantities
�̂ok

θ and �̂ko
θ . With few numerical manipulations, it is possi-

ble to prove that �̂ok
θ > �̂ko

θ thus ζI results to be negative.
Since ζI is continuous in θ , it must pass through zero at least
once. Therefore, at least one critical level of distortion exists
that makes ineffective detectors not using information on the
anomaly.

B. Asymptotic Distinguishability

White signals are not only the average anomalies but are
also typical anomalies in a sense specified by the following
theorem whose proof is in the Appendix.

Theorem 2: If �ko = Ukodiag(λko
0 , . . . , λko

n−1)U
ko�

, where
λko ∼ U(Sn) and Uko ∼ U(On), then ∀β > 1/2, �F =
n−β‖�ko − In‖F , with ‖·‖F the Frobenius matrix norm, tends
to 0 in probability as n → ∞.

Hence, when n increases, most of the possible anomalies
behave as white signals. From an anomaly detection per-
spective, if the signal is characterized by a sufficiently large
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dimension n, the designer may consider the white anomaly as
a reference.

V. SIMULATION SETUP

In this section, we propose a framework in which we
define models for normal signal and anomalies, three dif-
ferent encoders, well-known detectors, and a practical figure
of merit to be compared with the proposed distinguishability
measures ζ and κ , i.e., a metric that can be computed in both
anomaly-agnostic and anomaly-aware scenarios.

A. Normal Signal and Anomalies

Normal signals are assumed to be xok ∼ G(0, �ok
)

where
�ok is the diagonal matrix of the eigendecomposition of
a given matrix K, such that K = U�okU� where U is
an orthonormal matrix. K is a semidefinite positive n × n
square matrix where the j, k-entry is equal to ω|j−k|, with
j, k = 0, . . . , n − 1. The parameter ω is set to yield a dif-
ferent degree of nonwhiteness measured with the so-called
localization defined as follows:

Lxok =
tr
(

�ok2
)

tr2
(

�ok
) − 1

n
. (21)

The localization goes from Lxok = 0 when the signal is
white to Lxok = 1 − (1/n) when the whole energy is concen-
trated along a single direction of the signal space (see [32] for
more details). To show the effect of realistic localization [33],
we consider values of ω corresponding to Lxok ∈ {0, 0.05, 0.2}.
We refer to this class of signals as GSs. We also consider two
alternative and more realistic settings in which the vectors
x contain samples of an ECG waveform and accelerometers
(ACC) signals coming from a structural health monitoring
system (see Section VI-D). Since these classes of signals can-
not be modeled as a stationary Gaussian process, we refer to
them as non-GSs (NGSs).

Anomalous signals are generated as xko ∼ G(0, �ko
)

where
�ko is randomly drawn according to the uniform distribution
defined in Section IV-A. In detail, �ko = Uko�koUko�

with
�ko = diag(λko) where the terms λko ∼ U(Sn) and Uko ∼
U(On) are generated independently. The former term λko is
drawn according to [34], i.e., we first draw ξj ∼ U([0, 1]) for
j = 0, . . . , n − 1 and then set

λko
j = n log ξj

∑n−1
k=0 log ξk

(22)

where λko
j > 0 and the sum of the entries of λko is n. For

the latter term Uko ∼ U(On), we follow [35]. First, the matrix
A is generated within the Ginibre ensemble [36], i.e., with
independent entries Aj,k ∼ G(0, 1) for j, k = 0, . . . , n − 1.
Then, Uko is obtained as the orthonormal factor in the QR-
decomposition of A.

The first use of this random sampling is to support
Theorem 2 with some numerical evidence. Fig. 3 reports the
vanishing trends of the average squared (�F with β = 1) and
uniform (intended as �max = ‖�ko − In‖max = maxj,k |�ko

j,k −

Fig. 3. Trends of �F and �max for n ∈ {2k}17
k=7. Solid lines are mean trends

over 2000 trials, while shaded areas contain 98% of the population.

(In)j,k|) deviations of uniformly distributed covariance matri-
ces �ko from In. The �F trend confirms the result of
Theorem 2 while the �max trend empirically generalizes it to
a stronger deviation measure. With this, we may safely think
that in the case of n sufficiently large, the white Gaussian
noise is a good candidate to represent the class of anomalies
coming independently of the statistics of the normal signal.

B. Encoders

We identify three possible compression techniques tuned
to the normal signal to be applied to normal and anomalous
instances. More specifically, x is first compressed and then
uncompressed to x̂.

1) The rate-distortion compression (RDC), identified by the
optimization problem in (2), which gives the lowest
possible transmission rate for a given level of distortion.

2) The principal component compression (PCC) which con-
sists of projecting x along the subspace spanned by
the eigenvectors of �ok with the largest eigenvalues.
PCC is a linear compressor minimizing distortion when
the n-dimensional vector x is represented in a lower
dimension [37], [38].

3) Auto-encoder compression (AEC) based on suitably
arranged deep neural structures [39, Ch. 14] that learn
a latent nonlinear representation of the signal general-
izing PCC [38]. The network is defined indicating with
p < n the dimension of the compressed representation,
to deploy a chain of fully connected layers of dimen-
sions n, 4n, 2n, and p, followed by a dual network whose
layers have dimensions p, 2n, 4n, and n. These networks
are trained to minimize distortion computed as in (1).2

These three schemes address in a different way the tradeoff
between compression and distortion. Since we refer to a theo-
retical model based on continuous quantities and for which the
rate is potentially infinite, the compressors have to be paired
with a quantization stage ensuring a finite rate. In particular,

2To smooth performance degradation in AEC, we first train an autoencoder
with p = n − 1. Then, the node of the latent representation along which we
measure the least average energy is dropped to produce a smaller network
with an (p − 1)-dimensional latent space. The obtained network is retrained
using the previous weights as initialization. This process is repeated with
decreasing p and thus considering larger distortion values. Trainings employ
ADAM optimizer [40] with batch-size 128, and an initial learning rate of
0.01.
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Fig. 4. Rate distortion curves for the three compression schemes we consider
and for different values of the localization of the original signal.

we consider n = 32 and we encode each component of x̂
with 16 bits so that rates are a maximum of 16n = 512 bits
per time step. We assume quantization fine enough to sub-
stantially preserve the Gaussian distribution of x̂ and thus
evaluate the mutual information between x and x̂ as if they
were jointly Gaussian with a covariance matrix estimated by
the Monte Carlo simulation [41]. Such estimation yields the
rate-distortion curves in Fig. 4 where on the x-axis is the nor-
malized distortion d = D/n in the range d ∈ [0, 0.5] as larger
values are usually beyond operative ranges. As expected, RDC
yields the lowest rates confirming the role of the theoretical
lower bound. Among the realistic compressors, PCC gives the
largest rates while AEC, being a nonlinear generalization of
PCC, better approaches the theoretical limit given by RDC.
Note that, only the results of Fig. 4 refer to the additional
quantization stage while in the remaining part of our analysis,
we consider continuous sources.

From the signals point of view, both RDC and PCC pre-
serve the Gaussian distribution so that when the input is
Gaussian so is the compressed output. Conversely, AEC
may alter the statistical distribution of a Gaussian source.
We refer to the output of a compressor as Gaussian com-
pressed signal (GC) when it is Gaussian, or non-GC (NGC),
otherwise.

As a final remark, we recall that the result in Theorem 1
is only guaranteed for RDC in the case of Gaussian sources.
However, we will show some numerical evidence that confirms
Theorem 1 also for PCC and AEC, which are two compres-
sors that adapt the encoder–decoder pair to the statistical
characterization of the signal.

C. Detectors

The compressed version of the signal is then passed to a
detector whose task is to compute a score such that high-
score instances should be more likely to be anomalous. The
final binary decision is taken by matching the score against a
threshold. We first consider two detectors not relying on the
information of the anomaly (anomaly-agnostic).

1) A likelihood detector (LD) whose score is the same con-
sidered for ζ , so that to each instance x we associate the
score 
ok

x̂ (x̂) = − log f ok
x̂ (x̂).

TABLE I
ADOPTED MODELS FOR INPUT SIGNALS, COMPRESSED

SIGNALS, AND DETECTOR FAMILIES

2) A one-class support-vector machine (OCSVM) [42] with
a Gaussian kernel,3 trained on a set of instances of
normal signals contaminated by 1% of unlabeled white
instances to help the algorithm in finding the envelope
of normal instances.

For what concerns the class of anomaly-aware methods, we
consider two detectors that are able to leverage information
on the anomaly.

1) A Neyman–Pearson detector (NPD), whose score is the
same considered for κ , so that to instance x we associate
the score r(x̂) = log f ko

x̂ (x̂) − log f ok
x̂ (x̂).

2) A deep neural network (DNN) with three fully connected
hidden layers with p, 2n, and n neurons, ReLu activa-
tions, and a final sigmoid neuron producing the score.
The network is trained4 with a binary cross-entropy
loss against a dataset containing labeled normal and
anomalous instances.

LD and NPD detectors rely on the statistical characterization
of the signals, hence they can only be employed with GSs
compressed by RDC or PCC. Conversely, OCSVM and DNN
are data-driven detectors that can also be applied to NGCs,
i.e., non-Gaussian sources compressed with any detector or
Gaussian sources compressed by AEC. We classify the for-
mer detectors as distribution-based detectors (DbDs) while the
latter as learning-based detectors (LbDs). Table I summarizes
the considered models for input and compressed signals along
with the adopted families of detectors. The table also reports
tags that will be used in future plots.

LbDs do not make assumptions on signals but require a
training set that in our case contains 105 normal signal exam-
ples. When OCSVM is considered, this set is contaminated
with a 1% of white noise instances while the training of

3The signal components are normalized by their variance and the scale
parameter of the Gaussian kernel is fixed to 1/nθ .

4DNN is trained by backpropagation with an ADAM optimizer [40], a batch-
size of 20 instances, and an initial learning rate of 0.01 that is scaled by
0.2 whenever the validation loss does not decrease for 5 epochs, where the
validation set consists of the 10% of the instances initially devoted to training.
This setting is the result of tuning.
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Fig. 5. Distinguishability measures ζ , κ , and Pdet against normalized distortion d in case of RDC.

DNNs requires additional anomalous examples. In this case,
we enlarge the training set with 105 anomalous examples
where 50 different �ko are generated such that for each one
a different model with the same architecture is trained.

D. Metrics

All our detectors generate a score for each instance x̂ that
must be compared with a threshold to classify x̂ as normal
or anomalous. To be independent of thresholds, detectors’
performance is assessed by the area-under-the-curve (AUC)

methodology [43]. AUC ∈ [0, 1] estimates the probability for
a score of a random normal instance to be lower than the one
computed for a random anomalous instance.

Clearly, detectors with AUC = 0.5 are no better than coin
tossing. Yet, AUC < 0.5 represents the case in which the
detector is more likely to score normal instances higher than
anomalous ones. Such scores can be still used to distinguish
normal from anomalous signals if they are interpreted in a
reverse way. Hence, it is convenient to set our probability of
detection defined as follows:

Pdet =
{

AUC, if AUC ≥ 0.5
1 − AUC, if AUC < 0.5.

(23)

Note that, if AUC must be estimated from samples, revers-
ing values lower than 0.5 is not always possible. There are
classes of estimators for which values less than 0.5 are not
reliable [44], [45]. From now on, we report results referring
to AUC estimated as in [43] for which reversing values lower
than 0.5 is possible.

In the following, the trends of Pdet are reported and matched
with the trends of |ζ | and κ to show how theoretical properties
reflect on real cases. Comparison is in part qualitative as ζ and
κ quantify the distinguishability with bits per symbol while

Pdet comes from the probability of correct detection. Note also
that ζ and κ refer to the difference between the average values
of the score in the normal and anomalous cases, while Pdet
takes into account the entire distributions of these scores.

VI. NUMERICAL EVIDENCE

Considering the framework described above, here we match
the theoretical derivations with the quantitative assessment of
the performance of the described anomaly detectors for both
anomaly-agnostic and anomaly-aware scenarios applied to sig-
nals compressed according to RDC, PCC, and AEC. Then, we
discuss the case of ECG and ACC signals.

In the following plots, Pdet is computed by considering 1000
normal signal and 1000 anomalous examples. The involved
anomalies are the white noise plus 1000 different distributions,
each characterized by a randomly generated �ko. For DNN, we
limit the analysis to 50 anomalies since the training process
must be repeated for each of them.

A. RDC

Fig. 5 summarizes the results we have in this case with
two rows of three plots each. The upper row of plots cor-
responds to detectors that do not exploit information on the
anomaly, while the lower row of plots concerns detectors that
may leverage information on the anomaly. Colors correspond
to different Lxok , dashed trends assume that the anomaly is
the average one, i.e., white, and shaded areas show the span
of 50% of the Monte Carlo population. The profiles of |ζ |
and κ on the left shall be matched with the profiles on the
right that correspond to the four detectors we consider. No
|ζ | profile appears for Lx = 0 as in that case ζ = 0 (as
anticipated in Section III-A). In Fig. 5 and in the successive
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Fig. 6. Distinguishability measures ζ , κ , and Pdet against normalized distortion d in case of PCC.

figures, we display above of each plot (or column of plots) a
tag corresponding to the setting as defined in Table I.

Numerical results confirm that ζI = E[ζ ], κI ≤ E[κ] as
discussed in Section IV-A. This corroborates the role of the
white anomaly as a reference case since it represents the aver-
age behavior in the case of an anomaly-agnostic detector or a
lower bound in anomaly-aware scenarios. The white anomaly
is not only a reference case but also the case to which any
possible anomaly tends when n increases as demonstrated in
Theorem 2.

The theory also anticipates that, in the anomaly-
agnostic scenario (upper row), the relation between detection
performance and distortion is nonmonotonic and there exists
a proper amount of distortion making distinguishability van-
ish and thus detectors fail. This critical point corresponds to
the distortion level for which |ζ | crosses zero and the relation
between normal and anomalous scores inverts. This behavior
can be observed for both detectors, such as LD and OCSVM.
The distortion level at which detectors fail depends also on
Lxok as predicted by Theorem 1. Overall, theoretical mea-
sures |ζ | and κ anticipate that in the low-distortion region,
more localized signals are more distinguishable from anomaly
though they cause detector failures at smaller distortions with
respect to less localized signals.

Detectors leveraging the knowledge of the anomaly (lower
row) fail completely only at the maximum level of distortion as
revealed by the abstract distinguishability measure κ . Also in
this case, by comparing the trend of κ with the zoomed areas
in the NPD and DNN plots, we see how theoretical measures
anticipate that, in the low-distortion region, more localized sig-
nals tend to be more distinguishable from anomalies but cause
more definite performance degradation of detectors when d
increases.

B. PCC

From the point of view of the rate-distortion tradeoff PCC
is largely suboptimal. Yet, due to its linear nature, x and x̂
are still jointly Gaussian, so that, also in this case, we can
compute the theoretical |ζ | and κ by means of (12) and (17).

Fig. 6 summarizes the results we have in this case with
plots of the same kind of Fig. 5. The qualitative behaviors
commented on in the previous section appear in the new
plots and are anticipated by the trends of the theoretical
quantities.

The distortion levels at which anomaly-agnostic detectors
fail to change with respect to the RDC case but are still
anticipated by the theoretical curves and Theorem 1.

In this case, the values of |ζ | beyond breakdown distortion
levels increase slightly more than in the optimal compression
scenario. Hence, by adopting a compression strategy that is
suboptimal in the rate-distortion sense one may obtain a bet-
ter distinguishability of the compressed normal signal from
the compressed anomalies. This is, indeed, what happens in
practice as highlighted by the LD and OCSVM plots in the first
row of Fig. 6.

C. AEC

In this case, compression is nonlinear so that x and x̂ may
not be jointly Gaussian. This prevents us from computing the
theoretical curves |ζ | and κ and from applying LD and NPD
that rely on the knowledge of the distribution of the signals.
For this reason, Fig. 7 reports only the performance of OCSVM
and DNN detectors.

Notice how the qualitative trends of those performances still
follow, though with a larger level of approximation, what is
indicated by the theoretical curves for PCC.
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Fig. 7. Distinguishability measure Pdet against normalized distortion d in
case of AEC.

D. Distinguishability in Real Applications

To further test the effectiveness of our theoretical frame-
work, we consider two realistic applications in which
signals and nonstationary and non-Gaussian: 1) ECG
and 2) ACC.

ECG signals are generated as in [46]5 with the same setup
as in [47] in which the heart-beat rate is randomly drawn in the
range 60–100 beats per minute, and the sampling rate is set to
256 samples per second. We generate 105 chunks containing
512 samples, from which we randomly pick vectors xok ∈ R

n

with n = 64.
ACC signals come from a viaduct along an Italian motor-

way [37], [38], which is monitored by means of 90 three-axis
accelerometers providing a stream of 100 samples per second
for each axis. Such signals report the elastic response of the
viaduct to external stimuli including car traffic or environmen-
tal factors. Here, we focus on the readings of a single sensor
and a single axis.

Both ECG and ACC instances are then compressed by PCC,
while OCSVM and DNN discriminate normal instances from
instances of white anomalies xko. Since the input x is NGS
then x̂ is NGC, independently of the adopted compression
mechanism.

Results in Fig. 8 confirm the trends seen in the previous
settings. In the agnostic-anomaly scenario, the performance
of OCSVM features a critical but not disruptive distortion for
which the white anomaly is undetectable. As observed in the
previous settings, different classes of signals exhibit different

5MATLAB and C code available at the Physionet website
https://physionet.org/content/ecgsyn/1.0.0/.

Fig. 8. Distinguishability measure Pdet against normalized distortion d in
case of PCC for ECG and accelerometers (ACC) signals considering windows
of n = 64 samples.

Fig. 9. Distinguishability measure Pdet against normalized distortion d in
case of a real anomaly in accelerometers (ACC) signals considering windows
of n = 64 samples.

critical distortion levels. In the anomaly-aware scenario, the
performance of DNN is monotonic in d. In particular, Pdet is
very close to 1 for all considered d values in the ECG case,
while for ACC, it decreases with d.

As the last case study, we consider a real-world anomaly
affecting the ACC signal. In particular, we refer to a nondisrup-
tive failure affecting the monitored civil structure [37], which
consists of a slight change in the modal frequencies. Hence,
the anomaly statistical characterization is not white. Results
in terms of Pdet in the case of LD detectors are depicted in
Fig. 9. The reported trend confirms the presence of a critical
and nondisruptive value of d in correspondence with the dis-
tortion level anticipated in Fig. 8 where anomalies are instead
generated as instances of white noise.
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E. Summary

Having as main focus the validation of both proposed
measures of distinguishability, we analyzed some numerical
evidence. First, a scenario matching the theoretical frame-
work has been considered, where Gaussian synthetic signals
are compressed using an optimal encoder in terms of rate-
distortion. Fig. 5 illustrates how the two metrics can predict
the performance of detectors that either leverage the knowl-
edge of the signal distribution or learn from data. Moreover,
in the anomaly-agnostic case, the results also confirm the exis-
tence of a critical level of distortion for which the anomaly is
undetectable, as predicted in Theorem 1.

Subsequently, we relax the assumptions on which the theo-
retical results were derived, one by one. In Fig. 6, the optimal
encoder is replaced with PCC, which is a realistic encoder
for which the compressed signals can still be modeled as
Gaussian. In Fig. 7, the encoder is AEC which alters the statis-
tical properties of the signals. In Fig. 8, GSs representing the
normal behavior are replaced with real signals ECG and ACC
which are not Gaussian. Finally, in Fig. 9, also the anomaly
is a real NGS.

This empirical evidence strongly supports how the presented
framework offers valuable guidance for real-world scenarios.
However, it is important to note that our analysis focused on
cases where the encoder was tuned to the statistical charac-
terization of the normal signal, and these results cannot be
directly extrapolated to different compression mechanisms that
may strongly differ from both Lemmas 1 and 2.

VII. CONCLUSION

Massive sensing systems may rely on lossy compression to
reduce the bitrate needed to transmit acquisitions to the remote
node while theoretically maintaining the relevant information.
At some intermediate point along their path to centralized
servers, compressed sensor readings may be processed for
early detection of anomalies. Such detection is therefore
carried out on compressed data.

In a framework approximating normal and anomalous sig-
nals with Gaussian sources, we revise the classical rate-
distortion theory to report the distributions of the distorted
signals and the mapping to obtain them (see Lemmas 1 and 2).

We define two information-theoretic metrics to measure
the distinguishability between normal and anomalous sources
in anomaly-agnostic and anomaly-aware scenarios. For these
metrics, we provide a statistical interpretation and we compute
their closed forms when GSs are involved.

We prove with Theorem 1 that, in the anomaly-agnostic
scenario, there exists at least one critical level of distortion
for which the detector is ineffective. We show that the white
anomaly is a reference case that can be employed in the design
of the system. Indeed, it provides information about the aver-
age and minimum performance in the anomaly-agnostic and
anomaly-aware scenarios, respectively. In addition, we demon-
strate with Theorem 2 that any possible anomaly tends to be
white in the asymptotic case.

All these results are confirmed with numerical examples
considering several settings. We first show that, in the case of

Gaussian sources, the theoretical measures of distinguishabil-
ity anticipate the performances of detectors well-aligned with
the Gaussian framework. The same capability of anticipating
the performance of a detector has been confirmed in the case
of generic data-driven detectors, i.e., when the detection mech-
anism is not based on the hypothesis of Gaussian sources, and
in the case of a compression mechanism altering the input sig-
nal distribution. Finally, we further confirm the effectiveness
of the proposed metric in the case of a realistic NGS.

APPENDIX

Proof of Lemma 1: Distortion is tuned to the normal case
that entails a memoryless source. Hence we may drop time
indications and concentrate on a vector x with independent
components xj ∼ G(0, λj

)

for j = 0, . . . , n − 1.
We know from [28] that for a given value of the parame-

ter θ , each component xj is transformed separately into x̂j. In
particular

x̂j =
{

0, if λj ≤ θ

xj + �j, if λj > θ
(24)

where to achieve the Shannon lower bound, �j must be an
instance of a Gaussian random variable independent of x̂j.
Hence, the three quantities x̂j, xj and �j must be such that

(x̂j, x,�j)
� ∼ G

(

0, �x̂j,xj,�j

)

with

�x̂j,xj,�j =
⎛

⎝

λj − θ λj − θ 0
λj − θ λj −θ

0 −θ θ

⎞

⎠. (25)

That explains in which sense x̂j encodes xj. In fact, the
nondiagonal elements λj − θ are positive, and thus x̂j and xj

are positively correlated.
From (25), if we agree to identify a Gaussian with 0 variance

with a Dirac’s delta we infer that x̂j ∼ G(0, max{0, λj − θ})
and thus x̂ ∼ G(0, �Sθ ).

Moreover, (x̂j, xj)
� ∼ G

(

0, �x̂j,xj

)

with �x̂j,xj the upper-left
2 × 2 submatrix of �x̂j,xj,�j in (25). If we assume that θ < λj,
from the joint probability of xj and x̂j, we may compute the
action of fx̂|x on the jth component of xj as the PDF of x̂j given
xj, i.e.,

fx̂j|xj(α, β) = fx̂j,xj(α, β)

fxj(β)
=

G0,�x̂j,xj

(

α

β

)

G0,λj(β)

= 1
√

2πλjτjsj
exp

(

−1

2

[

α − sjβ
]2

λjτjsj

)

where τj = min{1, θ/λj} ∈ [0, 1], and sj = 1 − τj. Note that,
fx̂j|xj(α, β) becomes δ(α) for τj → 1 (maximum distortion
of this component implies that the corresponding output is set
to 0) and δ(α−β) for τj → 0 (no distortion of this component,
the output is equal to the input).

We may collect the component-wise PDFs into a vec-
tor PDF by using the matrix Tθ = diag(τ0, . . . , τn−1) =
min{In, θ(�ok)−1}, and the matrix Sθ = In − Tθ thus yielding
the thesis.
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Proof of Lemma 2: The PDF of x̂ko distorted by means of
f ok
x̂|x can be computed as

f ko
x̂ (α) =

∫

Rn
f ko
x̂,x(α, β)dβ =

∫

Rn
f ok
x̂|x(α, β)f ko

x (β)dβ.

Assume first to be in the low-distortion condition θ < λok
n−1

that implies Tθ = θ(�ok)−1, and write

f ko
x̂ (α) =

∫

Rn
GSθ β,�okSθ Tθ

(α)G0,�ko(β)dβ

= G0,�okSθ Tθ
(α)

×
∫

Rn
e
− 1

2

[

β�Sθ

(

�okSθ Tθ

)−1
Sθ β−2α�(�okSθ Tθ

)−1
Sθ β

]

× G0,�ko(β)dβ

= G0,�okSθ Tθ
(α)

× 1
√

(2π)n det �ko

∫

Rn
e− 1

2

(

β�Qβ−2q�β
)

dβ

︸ ︷︷ ︸

g(α)

with Q = Sθ (�
okSθ Tθ )

−1Sθ +(�ko)−1 = (θ In)
−1−(�ok)−1+

(�ko)−1 and q = (�okSθ Tθ )
−1Sθα = α/θ . To compute g(α)

let Q = UDU� with D diagonal and U orthonormal, and set
β ′ = D1/2U�β so that β = UD−1/2β ′ and dβ = dβ ′/

√
det Q.

With this write

g(α) = 1√
det Q

∫

Rn
e
− 1

2

(

β ′�β ′−2q�UD−1/2β ′
)

dβ ′

at the exponent of which one may add and subtract q�Q−1q =
q�UD−1/2D−1/2U�q to yield

g(α) = 1√
det Q

∫

Rn
e
− 1

2

(

∥

∥

∥β ′−D−1/2U�q
∥

∥

∥

2−q�Q−1q

)

dβ ′

=
√

(2π)n

det Q
e

1
2 q�Q−1q.

Putting this back into f ok
x̂ we get

f ko
x̂ (α) = G

0,
[

(θIn)
−1−(�ok)

−1+(�ko)
−1
]

�ko�okSθ Tθ .
(α).

A straightforward expansion of the definitions under the
low-distortion assumption finally rearranges the covariance
matrix into
[

(θ I)−1 −
(

�ok
)−1 +

(

�ko
)−1

]

�ko�okSθ Tθ

=
[

(θ In)
−1 −

(

�ok
)−1 +

(

�ko
)−1

]

�ko�okθ
(

�ok
)−1

Sθ

=
[

�ko − θ
(

�ok
)−1

�ko + θ In

]

Sθ

=
[

In − θ
(

�ok
)−1

]

�koSθ + θSθ

= Sθ�
koSθ + θSθ (26)

as in the statement of the lemma.
To address the case in which θ exceeds λok

n−1 note that for
θ → (λok

n−1)
−, the last diagonal entry of Sθ tends to 0 and

thus by (26) the covariance tends to have zeros in its last

row and column. Since a Gaussian with vanishing variance
can be considered Dirac’s delta, this model the fact that the
last component of both x and xko is fully distorted and set
to 0. With this, (26) is valid also for λok

n−1 < θ < λok
n−2. Yet,

analogous considerations can be carried out for θ → (λok
j )−

and j = n − 2, n − 3, . . . , 0 so that (26) is valid for any value
of θ .

Proof of Lemma 3: Starting from the definition in (8), and
assuming x′ ∼ G(0,

∑′
) and x′′ ∼ G(0,

∑′′
) then

L
(

x′; x′′) = −
∫

Rn
G0,�′(α) log2

[

G0,�′′(α)
]

dα

= 1

2
log2

[

(2π)n
∣

∣�′′∣
∣

]

∫

Rn
G0,�′(α)dα

+ 1

2 ln 2

∫

Rn
α�(�′′)−1

α G0,�′(α)dα

= 1

2
log2

[

(2π)n
∣

∣�′′∣
∣

]+ 1

2 ln 2
tr
[

(

�′′)−1
�′]

where the last summand has been computed as the expectation
of a quadratic form in a Gaussian multivariate for which in
[48, Ch. 3 and Corollary 3.2b.1] gives a formula.

Proof of Theorem 1: From (19) we have that

ζI = 1

2 ln 2

nθ−1
∑

j=0

Aj(θ)

with

Aj(θ) = 1

λok
j

(

1 − θ

λok
j

)

+ θ

λok
j

− 1.

Note that Aj(θ) is continuous and its derivative is
(∂/∂θ)Aj = (1 − 1/λok

j )/λok
j .

For simplicity’s sake assume λok
0 > λok

1 > · · · > λok
n−1 > 0,

set λok
n = 0, and define �j = ]λok

j+1, λ
ok
j [ for j = 0, . . . , n − 1

so that if θ ∈ �j then nθ = j + 1.
As a function of θ , ζI is continuous. In fact, it is trivially

continuous in each �j. Yet, it is continuous also at any chosen
λok

j̄ with j̄ = 0, . . . , n − 1. To see why, note that

lim
θ→λok

j̄

− ζI = 1

2 ln 2
lim

θ→λok
j̄

−

j̄
∑

j=0

Aj(θ)

= 1

2 ln 2
lim

θ→λok
j̄

− Aj̄ (θ) +
j̄−1
∑

j=0

Aj(θ)

= 1

2 ln 2
lim

θ→λok
j̄

+

j̄−1
∑

j=0

Aj(θ) = lim
θ→λok

j̄

+ ζI

where we have exploited that the Aj(θ) are continuous
and thus their left and right limits coincide, and that
Aj̄ (λ

ok
j̄ ) = 0.

On the left-hand side of its domain, when θ = λok
n = 0

(no distortion), we have nθ = n and thus

ζI = 1

2 ln 2

n−1
∑

j=0

(

1

λok
j

− 1

)

≥ 0



36 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 54, NO. 1, JANUARY 2024

where the last inequality follows from the fact that
∑n

j=0 λok
j = n and thus

∑n
j=0

1/λok
j ≥ n.

On the right-hand side of its domain, when θ = λok
0 (max-

imum distortion), we have nθ = 0 and thus ζI = 0. Yet, we
also have that

∂

∂θ
ζI = 1

2 ln 2

nθ−1
∑

j=0

1

λok
j

(

1 − 1

λok
j

)

in which the summands are positive if λok
j > 1. Hence, if

k̄ = arg maxk{λok
k ≥ 1}, for θ ≥ λok

k̄
, all the summands in

the above expression are positive and thus (∂/∂θ)ζI > 0 for
λok

k̄
< θ ≤ λok

0 . Given that ζI = 0 at the end of that interval,
it must be negative in its interior.

Since we know that ζI is positive for θ = λok
n = 0 and

it is continuous for θ ∈ [λok
n , λok

0 ], it must pass through
zero at least once whenever it is not negative, i.e., for
0 < θ < λok

k̄
.

Proof of Theorem 2: We will use the following lemma
whose proof follows this one.

Lemma 4: If λko ∼ U(Sn), then for any integrable function
f : R → R and any j = 0, . . . , n − 1

E
[

f
(

λko
j

)]

= n − 1

nn−1

∫ n

0
f (p)(n − p)n−2dp.

To prove our thesis we start by writing �F = n−β‖�ko −
In‖F as follows:

�F = 1

nβ

√

tr
[

(

�ko − In
)�(

�ko − In
)

]

.

By noting that Uko is orthonormal and thus that �ko − In =
Uko(�ko − In)Uko�

we get

�F = 1

nβ

√

tr
[

Uko
(

�ko − In
)2

Uko�]

= 1

nβ

√

tr
[

(

�ko − In
)2

Uko�Uko
]

= 1

nβ

√

√

√

√

n−1
∑

k=0

(

λko
k − 1

)2
.

Starting from the above expression one has

E
[

�2
F

]

= 1

n2β

n−1
∑

k=0

E
[

(

λko
k − 1

)2
]

= 1

n2β

n−1
∑

k=0

n − 1

n + 1
= 1

n2β−1

n − 1

n + 1

where we have used Lemma 4 to compute the expectation.
Hence, when β > 1/2

E
[

�2
F

]

−−−→
n→∞ 0 (27)

that can be plugged into the Markov inequality to obtain

Pr
(

�2
F ≥ �̄

)

≤ E
[

�2
F

]

�̄
∀�̄ > 0

and thus that �F converges to 0 in probability with
increasing n.

Proof of Lemma 4: For any function f : R �→ R we have

I[f (p)
] =

∫

Sn
f (p0)dp0 . . . dpn−1

=
∫ n

0
f (p0)

∫ n−p0

0

∫ n−p0−p1

0
. . .

∫ n−p0−p1−···−pn−3

0
dp0 . . . dpn−2

=
∫ n

0
f (p0)

(n − p0)
n−2

(n − 2)!
dp0.

Since λko is uniformly distributed over S
n the probabil-

ity density is the constant 1/I[1] = n−(n−1)(n − 1)! and the
expectation of f is

E
[

f
(

λok
j

)]

= n−(n−1)(n − 1)!I[f (p)
]

= (n − 1)!

nn−1

∫ n

0
f (p)

(n − p)n−2

(n − 2)!
dp

= n − 1

nn−1

∫ n

0
f (p)(n − p)n−2dp.
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