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A B S T R A C T

New technologies, such as additive manufacturing combined with topology optimisation or
bio-inspired design, can produce lightweight structures with better dynamical properties but
more complex geometries. Analysing these components with the finite element method can
become time-consuming because of fine 3D meshes. By exploiting the node-dependent kinematic
approach of Carrera’s unified formulation and using Lagrange expanding functions, this work
presents the implementation of adaptive finite elements for the free-vibration analysis of
plates with an arbitrary thickness variation through the in-plane domain. In other words, the
kinematics of the 2D model on which the element is based can be adapted to the geometry
of the plate. The formulation is mainly based on the 3D integration of the approximating
functions and computation of a 3D Jacobian matrix inside the element for the derivation of
stiffness and mass matrices; substantially, the resulting elements are 3D elements in which the
order of expansion through the thickness can be different from that in the plane of the plate.
The free vibration analysis of some plates with different thickness variations is performed. The
results demonstrate that the present elements allow us to accurately study these innovative
2D structures by employing much fewer degrees of freedom with respect to classical 3D finite
elements.

. Introduction

New technologies in structural optimisation lead to new geometries and shapes. Additive manufacturing combined with topology
ptimisation or bio-inspired design can obtain and produce very disruptive structures with better dynamical properties and lower
eight. Nevertheless, there is still a lack of numerically accurate, flexible, and computationally cheap methods to study these newly
enerated structures. This gap increases if we consider unconventional structures as plates with variable thickness.

In this work, we focus on free vibrations of plates, where the possibility to optimise the structure’s thickness leads to variation
n the structure’s stiffness and mass [1]. The dynamic analysis of plates with a given thickness variation across the mid-surface can
e convenient for attenuating vibrations in thin-walled structures. Several structures can belong to this class of shells and plates,
uch as some aerodynamic surfaces or structural panels of aircraft (e.g., a fuselage panel in [2]) and spacecraft (e.g., a load-carrying
tructure in [3]), and others from several fields (e.g., a gas tank in [4] and a plate for ballistic impact application in [5]). However,
he thickness variation in a plate can play a key role in the acoustic behaviour of structures coupled to fluid cavities. The method
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presented and validated in this article may become very useful in investigating new solutions for noise reduction (e.g., sandwich
or generally multi-layer plates with varying thickness) in several fields, such as noise reduction in aircraft or acoustic loads in
spacecraft.

To extract the natural frequencies of a plate with a variable thickness, several numerical and analytic methods are proposed,
ot only in the FEM framework, for different types of thickness variation. Some of them will be discussed in the validation process,
nd they are summarised below:

• stepped variation of the thickness for a rectangular plate solved with an extended Kantorovich method by Cortinez et al. [6]
or by Singhatanadgid et al. [7];

• the linear variation of the thickness for a rectangular plate is studied by Sanzi et al. [8], and for an orthotropic plate by
Civalek [9] and Malhotra et al. [10], and for a symmetrically laminated plate with an extended Kantorovich method by Fallah
et al. [11]. Analytical solutions can be found in the work by Tash et al. [12];

• for a circular plate, there are several works on linear (or double linear) and exponential radial thickness variation, such as
those by Singh et al. [13,14] or Wu et al. [15] and Azimi [16,17]. Other works on circular plates with a variation in thickness
are those by Wang et al. [18], by Bahmyari et al. [19], and by Vasiliev et al. [20].

In this framework, the Finite Element Method (FEM) remains the most convenient tool to study the dynamic behaviour of
tructures with complex geometries due to its flexibility in the analysable range of geometry. Considering the current numerical
inite element methods, plates with variable thicknesses can be studied only using 3D elements, entailing a large computational
ffort due to the limits on the aspect ratio of the elements themselves. The method presented here aims to extend the advantages of
he so-called Carrera’s Unified Formulation (CUF) [21] to variable-thickness plates, thus using 2D elements and significantly reducing
he computational cost. This reduction becomes even more important in fluid–structure interfaces, as in the classical vibro-acoustic
roblem for studying noise reduction in the acoustic cavity.

The CUF was introduced to overcome the limitations of the classical 2D models in describing the through-the-thickness kinematics
f composite plate structures by employing a hierarchical, unified, and compact notation [21]. In particular, a new approach, called
ode-Dependent Kinematics (NDK), has been recently developed in this framework to improve the numerical efficiency of the CUF
odels while maintaining their accuracy very high [22,23]. Thanks to this formulation, FEM models with variable ‘nodal’ kinematics

an be built conveniently. However, all these CUF models, as well as classical plate models [24–27], are formulated on some basic
ssumptions of the initial undeformed body: constant thickness through all the in-plane domain of the 2D finite element. The FEM
tudy of plates with arbitrary thickness variation requires a new two-dimensional modelling approach.

This work aims to propose a reliable method to study plates with variable thickness independent of the type of thickness
ariation (analytical or numerical function, random, etc.). To obtain these results, we develop adaptive finite elements in the
ramework of CUF, which enables a wide class of plate elements thanks to the split of the three-dimensional displacement field
nto a two-dimensional one on the plate plane and a one-dimensional field along the thickness.

The adaptive finite elements are based on the following idea: the integrals computed inside the stiffness and mass matrices
f the dynamic governing equations involve new 3D approximating functions of the element that are the combination of two-
imensional shape functions of the FEM and through-the-thickness functions of the CUF. The main benefit of these elements is the
ossibility of refining the model where the geometrical features of the component – for example, where the thickness increases
or the kinematic behaviour of the plate requires that. Finally, these elements can be seen as 3D elements in which the order

f expansion in one direction (the thickness) can be different from that in the other two directions (the midsurface), allowing a
eduction of the computational cost with respect to classical 3D elements. Two preliminary works by the authors show the possible
dvantages of adaptive finite elements for variable-thickness plates and shells [28] and for multi-layer cylindrical shells for noise
eduction [29]. Therefore, the purpose of this work is to extend the adaptive finite elements, which have already been introduced
n [30,31], to the analysis of variable-thickness plates and to carry out an exhaustive validation of these elements by showing their
dvantages in comparison with classical 3D elements.

The article is arranged as follows: in Section 2, the 2D models based on CUF and Lagrange expansion are briefly recalled, and
hen the formulation of adaptive finite elements in the framework of the NDK approach is presented; the derivation of governing
quations from Hamilton’s principle is explained in Section 3; Section 4 contains the assessment of the models by comparison with
ome study cases from the literature that demonstrate the capabilities of the present elements; Section 5 reports the free-vibration
nalysis of some plates with complex variations of the thickness by highlighting the effect on natural frequencies; finally, Section 6
ummarises the conclusions of this work.

. Adaptive finite elements

This section presents the formulation of adaptive finite elements, starting from the presentation of the classical 2D CUF
pproximation along the thickness and the 2D FEM modelling in the framework of CUF. The combination of CUF and FEM in
ew 3D approximating functions gives rise to the present elements. In particular, Section 2.2 highlights the differences with respect
o the regular 2D finite elements formulated based on CUF.

As will be demonstrated by the results, these finite elements significantly reduce degrees of freedom in the modelling of variable-
hickness plates with respect to classical 3D finite elements. These last employ the same order of expansion in all the spatial
irections, and this limits the choice of the aspect ratio of the elements by leading to an excessive refinement of the mesh. On
he contrary, the present elements keep the same degrees of freedom as 2D elements but work as 3D elements and preserve the
ame accuracy.
2
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2.1. 2D kinematic models based on CUF

In two-dimensional models, Carrera’s unified formulation (see [21]) approximates the kinematic field along the thickness of the
late in a unified manner that is then used to derive the governing equations in a very compact way and makes the method very easy
o implement. This formulation represents a huge improvement with respect to classical theories, which hold several limitations in
he simulation of complex structures. Many of these limitations lay on the kinematic description that should be theoretically enriched
ith an infinite number of terms (see Washizu [32]) to avoid physical inconsistencies and take high-order effects into account. This
pproach is often not applicable to the study of real problems because of the computational cost. There is a need to truncate the
pproximating expansion of the primary mechanical variables along the thickness to a given order. Furthermore, the more terms in
he kinematics, the higher the analysis cost. Carrera’s unified formulation solves these issues, deriving the governing equations in a
ompact and unified manner and allowing a systematic formulation of a series of 2D models.

According to CUF 2D modelling, the displacement field of a generic plate structure, whose mid-surface lies on the plane 𝑥 − 𝑦
and the thickness goes along 𝑧, can be described as a generic expansion of the generalised displacements by employing arbitrary
functions of the thickness coordinate:

𝐬(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧)𝐬𝜏 (𝑥, 𝑦) 𝜏 = 1, 2,… ,𝑀 (1)

where 𝒔 = {𝑢, 𝑣,𝑤} is the 3D displacements field and 𝒔𝜏 = {𝑢𝜏 , 𝑣𝜏 , 𝑤𝜏} is the vector of generalised displacements, function of the
idsurface coordinates, M is the number of terms in the expansion, 𝜏 is a summation index, and the arbitrary functions 𝐹𝜏 (𝑧)

haracterise the 2D model. Indeed, depending on the choice of the thickness functions 𝐹𝜏 (𝑧), different classes of 2D theories can
e implemented among these classical theories, such as Kirchhoff–Love, Reissner–Mindlin, and so on. In this work, only Lagrange
olynomials are considered thickness functions, for reasons that will be clear later, but other types of functions, such as Taylor or
egendre polynomials, can also be conveniently adopted, as shown in many previous works by Carrera et al. [21,22].

Two-dimensional theories based on Lagrange expansion are formulated by employing 1D Lagrange polynomials as 𝐹𝜏 thickness
unctions:

𝑢 = 𝐹1(𝜁 ) 𝑢1 + 𝐹𝜏 (𝜁 ) 𝑢𝜏
𝑣 = 𝐹1(𝜁 ) 𝑣1 + 𝐹𝜏 (𝜁 ) 𝑣𝜏
𝑤 = 𝐹1(𝜁 ) 𝑤1 + 𝐹𝜏 (𝜁 ) 𝑤𝜏

(2)

here 𝜏 goes from 2 to 𝑝+1, where 𝑝 is the desired order of the thickness function 𝐹𝜏 , and 𝜁 is an adimensional coordinate along the
hickness direction that ranges from −1 to 1. According to this, two-node (linear) LW1, three-node (parabolic) LW2, and four-node
cubic) LW3 expansions can be used.

Displacement fields like Lagrange-based ones have been employed in previous authors’ works to implement layer-wise models.
agrange polynomials have also been used in the formulation of shell theories with variable kinematics by Kulikov and his
o-workers. The readers can refer to the papers [33,34] for more details about 2D models based on Lagrange expansions.

.1.1. 2D finite element approximation
In the case of plate models, the approximation of the generalised displacements on the mid-surface of the plate is performed

mploying the finite element method, according to 2D shape functions 𝐿𝑖(𝜉, 𝜂) and the unknown nodal displacements 𝐒𝜏𝑖:

𝐬𝜏 (𝑥, 𝑦) = 𝐿𝑖(𝜉, 𝜂)𝐒𝜏𝑖, 𝑖 = 1, 2,… , 𝑛𝑒𝑙𝑒 (3)

here 𝑛𝑒𝑙𝑒 is the number of nodes per element, and the vector of unknown nodal displacements is

𝐒𝜏𝑖 =
{

𝑈𝜏𝑖 𝑉𝜏𝑖 𝑊𝜏𝑖
}T (4)

Lagrange interpolating polynomials have been used in this work to define the finite element. Their expression is not provided
ere, but one can find it in the book by Carrera et al. [21], where four-node (Q4), nine-node (Q9), and sixteen-node (Q16) 2D
lements are described.

The FEM approximation can be combined with the kinematic assumptions of Carrera’s unified formulation in the following
xpression of the 3D displacement field:

𝐬 = 𝐹𝜏𝐿𝑖𝐒𝜏𝑖 (5)

he functions 𝐹𝜏 and 𝐿𝑖 depend on the 2D kinematic model and the element type, respectively.
In the above expression (Eq. (5)), the shape functions 𝐿𝑖 and the thickness functions 𝐹𝜏 are independent. Recently, Carrera

t al. [22] introduced a coupling between them by making the expanding function 𝐹𝜏 dependent on the shape function 𝐿𝑖, as
ollows:

𝐬 = 𝐹 𝑖
𝜏𝐿𝑖𝐒𝜏𝑖 (6)

he difference between Eqs. (6) and (5) is the additional superscript 𝑖 of the thickness function 𝐹𝜏 , which is also the index of the
hape function 𝐿𝑖. This fact introduces a dependency on the kinematic assumption from the FE node, namely the Node-Dependent
inematic (NDK) approach.

It is well known that increasing the polynomial order of expanding functions allows an accurate approximation of the structure
esponse. By exploiting the NDK, the kinematic model can be chosen on specific nodes with the possibility of performing a local
3

daptable refinement of the approximation without any compatibility requirement for the nodal kinematic.
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2.2. CUF and FEM combined in a new 3D approximation

In the framework of the NDK approach, it is possible to extend the 2D models of the CUF to the description of plates with variable
hickness by combining the CUF kinematic assumption and the FEM approximation in a unique 3D function, as follows:

𝐬 = (𝐹 𝑖
𝜏𝐿𝑖)𝐒𝜏𝑖 = 𝑁𝜏𝑖(𝜉, 𝜂, 𝜁 )𝐒𝜏𝑖 (7)

where 𝜉, 𝜂, 𝜁 are the natural coordinates corresponding to 𝑥, 𝑦, 𝑧. In this equation, 𝑁𝜏𝑖 = (𝐹 𝑖
𝜏𝐿𝑖) represents a 3D approximating func-

tion with different polynomial expansion orders in different spatial directions. Similarly, the virtual variation of 3D displacements,
which will be used later to derive the governing equations, can be expressed as:

𝛿𝐬 = (𝐹 𝑗
𝑠 𝐿𝑗 )𝛿𝐒𝑠𝑗 = 𝑁𝑠𝑗 (𝜉, 𝜂, 𝜁 )𝛿𝐒𝑠𝑗 (8)

where new summation indexes 𝑠 and 𝑗 have been introduced.
According to this formalism, the volume integrals of the 3D approximating functions involved in the governing equations are

not split into 1D and 2D integrals, as usual in 2D elements. Still, they are computed directly in the 3D domain. The 3D Gauss rule is
used to perform the integrals involved in the governing equations, and the Jacobian matrix from natural coordinates 𝜉, 𝜂, 𝜁 to global
coordinates 𝑥, 𝑦, 𝑧 is computed in 3D form.

Concerning the work [30], the Gauss rule for the numerical solution of volume integrals is here adapted to the maximum
polynomial order of approximating functions in the different spatial directions; that is, the number of Gauss points along a certain
coordinate (𝜉, 𝜂, or 𝜁) is chosen according to the maximum polynomial order in that coordinate. This allows us to consider any
arbitrary thickness variation without loss of accuracy. More details about governing equations and related integrals are provided
below.

3. Governing equations

As stated above, the CUF permits the writing of the governing equations and the related finite element arrays in a compact way
that is characterised by the definition of fundamental nuclei, which are formally invariant with respect to the 𝐹𝜏 and 𝐿𝑖 functions.
The mathematical derivation of the fundamental nuclei of the stiffness and mass matrix in the case of the present adaptive elements
is provided in detail.

The same reference system and notation as in Section 2.1 are used. According to Voigt notation, often adopted in classical
elasticity, stress and strain tensors can be arranged in six-term vectors that read, respectively:

𝝈T =
{

𝜎𝑦𝑦 𝜎𝑥𝑥 𝜎𝑧𝑧 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑥𝑦
}

𝜺T =
{

𝜀𝑦𝑦 𝜀𝑥𝑥 𝜀𝑧𝑧 𝛾𝑥𝑧 𝛾𝑦𝑧 𝛾𝑥𝑦
} (9)

Considering these expressions, the geometrical relations between strains and displacements can be defined using a compact
vectorial notation:

𝜺 = 𝐛 𝐮 (10)

where, in the case of geometrically linear problems (small deformations and angles of rotations), 𝐛 contains the following differential
operator:

𝐛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝜕
𝜕𝑦 0

𝜕
𝜕𝑥 0 0
0 0 𝜕

𝜕𝑧
𝜕
𝜕𝑧 0 𝜕

𝜕𝑥
0 𝜕

𝜕𝑧
𝜕
𝜕𝑦

𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

On the other side, the relationship between stresses and strains for isotropic materials is written through the well-known Hooke’s
law:

𝝈 = 𝐂 𝜺 (12)

where C is the matrix of the elasticity coefficients of the material

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(13)
4
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The coefficients of this matrix depend only on the Young’s modulus, E, and the Poisson ratio, 𝜈, and they are computed as:

𝐶11 =
(1−𝜈)𝐸

(1+𝜈)(1−2𝜈)

𝐶12 =
𝜈𝐸

(1+𝜈)(1−2𝜈)

𝐶44 =
𝐸

2(1+𝜈)

(14)

The governing equations for the free-vibration analysis are derived from Hamilton’s principle (or the dynamic version of the
rinciple of virtual displacements) that imposes, if the external forces are neglected, that the sum of the virtual variation of the
nternal work and the virtual variation of the inertial work has to be equal to zero:

𝛿𝐿int + 𝛿𝐿ine = 0 (15)

The internal work is equivalent to the elastic strain energy

𝛿𝐿int = ∫𝑉
𝛿𝜺T𝝈 𝑑𝑉 (16)

here V is the volume of the domain. By substituting the constitutive equations (Eq. (12)), the geometrical relations (Eq. (10)) and
he approximation of displacements given in Eqs. (7) and (8), the internal work can be rewritten as:

𝛿𝐿int = 𝛿𝐒T𝜏𝑖𝐊
𝜏𝑠𝑖𝑗𝐒𝑠𝑗 (17)

here 𝐊𝜏𝑠𝑖𝑗 is the 3 × 3 fundamental nucleus of the stiffness matrix.
According to Hamilton’s principle, the inertial work can be expressed as:

𝛿𝐿ine = ∫𝑉
𝛿𝐬T𝜌 �̈� 𝑑𝑉 (18)

y adopting the FEM discretisation in Eq. (8) and the CUF kinematic assumption in Eq. (7), the intertial work becomes:

𝛿𝐿ine = 𝛿𝐒T𝜏𝑖 𝐌
𝜏𝑠𝑖𝑗 �̈�𝑠𝑗 (19)

here 𝐌𝜏𝑠𝑖𝑗 is the 3 × 3 fundamental nucleus of the mass matrix.
The fundamental nucleus formulations of the stiffness matrix 𝐊𝜏𝑠𝑖𝑗 and the mass matrix 𝐌𝜏𝑠𝑖𝑗 are reported in Appendix.
One should note that the expressions of the matrix components in the fundamental nuclei are invariant with respect to the choice

f the thickness functions 𝐹𝜏 and the shape functions 𝐿𝑖, which both determine the numerical accuracy of the model. This means
hat any plate element can be automatically developed by simply expanding the fundamental nuclei according to the indexes 𝜏, s,
, and j.

.1. Acronyms

In this work, linear, quadratic, and cubic Lagrange-type shape functions are used for both 𝐹𝜏 and 𝐿𝑖 functions. By summarising,
he acronyms LW1 (linear, two nodes), LW2 (quadratic, three nodes), and LW3 (cubic, four nodes) indicate the 1D discretisation
hrough the thickness of the plate; the nodes must be equally spaced; on the other hand, the acronyms Q4 (linear), Q9 (quadratic),
nd Q16 (cubic) are used for the 2D approximation on the mid-surface of the plate. A visual summary of the different LWn approaches
s reported in Fig. 1. Thanks to the adaptive finite element formulations, it is possible to use a mixed approach, such as LW2-3,
hich combines quadratic (LW2) and cubic (LW3) Lagrange-type thickness functions in the same mesh. The merging of the nodes
n the plate’s plane and the plate’s thickness generates the 3D adaptive finite element.

In CUF coding, the expansion order is set as a free input of the model by determining the number of degrees of freedom to
e solved, and, thanks to the adaptive finite elements, the kinematic field along the thickness can be enriched only in the zone of
nterest, for example, where the plate is thicker.

. Numerical validation

Free vibration analysis is performed for different rectangular and circular plates to validate the adaptive finite element
ormulation for variable-thickness plates and compared to literature results. The function, which describes the thickness, is usually
alf the plate thickness. The natural frequency extraction is done with MUL2 software,2 developed by Politecnico di Torino. The
oftware exploits the CUF extended with adaptive finite elements.

.1. Rectangular plate

The validation process starts by studying a rectangular plate with a variable thickness. The constant thickness plate has already
een studied in the CUF framework [35–38]. The free vibrations are compared to two literature models. The plate is modelled with
0 × 20 Quad9 quadratic square elements as sketched in Fig. 3(a).

2 The software, based on the CUF, is available on the website: http://www.mul2.polito.it/. The version integrated with the adaptive finite elements is available
5
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Fig. 1. The different LWn approaches are reported for a plate with a linear thickness variation: LW1, LW2, LW3, and the mixed LW2-3.

The first model is a plate with a stepped variation of thickness, studied by Cortinez et al. [6] with a Kantorovich extended method
and by Sanzi et al. [8] with the finite element method. The plate geometry is reported in Fig. 2, and the thickness assumes two
different values, ℎ1 and ℎ2, on the 𝑥-coordinate for a total length 𝑎. Parameter 𝑐 defines the length of the first thickness value ℎ1.

The second plate has a linear variation in thickness, and it was studied by Bhat et al. [39] with a model based on the Rayleigh–Ritz
method with characteristic orthogonal polynomial shape functions. The plate geometry and structure are reported in Fig. 2, and the
following equation describes the thickness:

ℎ(𝑥) = ℎ0
[

(𝛼∕𝑎)𝑥 + 1
]

(20)

in which 𝑎 is the plate length over which the thickness is increased with respect to the 𝑥-coordinate, 𝛼 is the rate of increase, and ℎ0
is the minimum thickness of the plate. A similar plate has already been studied and compared to a 3D element model in the work
by Cinefra [30].

The two plates are studied for two boundary conditions applied to the four edges, simply supported and clamped. The two
analyses extract the non-dimensional natural frequency coefficients of the two systems:

𝛺2 =
𝜌ℎ
𝐷0

𝜔2𝑎4 (21)

where 𝜌 is the material density, and 𝐷 = 𝐸ℎ3∕
[

12(1 − 𝜈2)
]

is the bending stiffness, which depends on Young’s modulus 𝐸 and the
Poisson’s ratio 𝜈 = 0.3. The reference thickness ℎ corresponds to ℎ1 for the first case and to ℎ0 for the second case.

4.2. Circular plate

The circular plate in Fig. 4 with variable thickness is studied by comparing the natural frequency coefficients in Eq. (21) with
two literature cases, including three different thickness variations. The circular plate is modelled with 1874 Quad9 elements, as
sketched in Fig. 3(b).

The first case is based on the work by Wu et al. [15], where the authors study the free vibrations of a plate with two variable
thickness functions exploiting a generalised differential quadrature rule and compare the results with those obtained with the
Rayleigh–Ritz-based method and by Azimi [16,17] with a receptance method. The two thicknesses are a function of the plate radial
coordinate 𝑟:

• a linear function

ℎ(𝑟) = ℎ0(1 + 𝜂𝑟) (22)

• an exponential function

ℎ(𝑟) = ℎ e𝜂𝑟 (23)
6
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Fig. 2. The rectangular plate geometries used in the validation for the simply supported case. (a) Top view (where the dotted line indicates the thickness change
in the stepped plate). (b) Thickness section for the two plates: the stepped thickness plate in [6] and the plate with a linear increase in thickness in [39].

Fig. 3. The Quad9 element distribution on the plate plane. (a) Square plate. (b) Circular plate.

The plates are tested for different boundary conditions (free, simply supported, and clamped) and the rate of increase (or decrease)
parameter, 𝜂. Therefore, ℎ0 is the reference thickness, and, depending on the sign of 𝜂, it can be the maximum or minimum thickness.
According to [15], we studied the two cases with 𝜂 = ±0.3 for the linear function and 𝜂 = ±1 for the exponential function.

The second case studies a plate with a parabolic variation of the thickness based on the work by Harris [40], where the frequencies
are calculated by the mean of an exact solution. The thickness varies according to the following parabolic law:

ℎ = ℎ0
(

1 − 𝜄2
)

(24)

and 𝜄 = 𝑟∕𝑟0, which is the adimensional radial coordinate of 𝑟 normalised on the plate radius 𝑟0. In this case, ℎ0 is the maximum
thickness, while on the edges there is a sharp corner. The plate has a free-edge boundary condition.

The natural frequency coefficients are defined for the rectangular plate case.
7
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Fig. 4. The circular plate geometries used in the validation. (a) Top and half of the side view. (b) The different thickness sections defined on half of the circle
studied in [15,40].

4.3. Comparison with 3D elements

We extract the natural frequencies for two plates with a variable thickness based on sinusoidal functions to show the advantages
of adaptive finite elements. The two examples presented in this section, the square plate with a double sine variation and the circular
plate with a sine wave, have never been studied in the literature, as far as the authors know. Therefore, the only possible comparison
of the results is with commercial software that exploits 3D elements. The purpose of these two examples is to demonstrate the
computational advantage of adaptive finite elements. The choice of the sinusoidal variations in thickness is due more to the shape
assumed by the plates themselves than to the possibility of a real application. Indeed, they present a periodic and significant variation
in thickness, an extreme case to demonstrate the potential of the method presented in the article and the limitations of 3D elements.

For the rectangular plate in Fig. 5, the thickness is defined by a double sine function:

ℎ(𝑥, 𝑦) = 𝛼 sin(𝛽𝑥) sin(𝛽𝑦) + ℎ0 (25)

where ℎ0 is the reference thickness, 𝛼 a scale parameter, and 𝛽 defines the number of periods of the sine function. A simply supported
boundary condition is applied to the four edges. In this case, the choice of different 𝛽 leads to different thicknesses at edges where
the boundary conditions are used, as shown by comparing Fig. 5(c) and Fig. 5(d) for 𝑥 = ±0.5 m.

For the circular plate in Fig. 6, the thickness is defined by a circular wave function:

ℎ(𝑟) = 𝛼 sin
(

𝛽𝜋𝑟2
)

+ ℎ0 (26)

where the term 𝛽 is multiplied by 𝜋 to have a full or half period in the radius length. A simply supported boundary condition is
applied at the edge. In this case, the number 𝜋 guarantees always having the same thickness at the edges. The number of half
periods is a whole number, as shown in Fig. 6(c), where the sine develops for half a period along the radius, and in Fig. 6(d), where
it develops for three periods.

The plates are made of the same material, aluminium (Young’s modulus 𝐸 = 70 GPa, Poisson’s ratio 𝜈 = 0.35, and density
𝜌 = 2700 kg/m3). The reference thickness is equal to ℎ0 = 0.0105 m and the scale parameter to 𝛼 = 0.01 to have an important
thickness variation, from ℎ𝑚𝑖𝑛 = 0.0005 m to ℎ𝑚𝑎𝑥 = 0.0205 m (we are as before referring to the half thickness). The parameter 𝛽 is
considered a variable in order to study the different dynamic behaviour of the plates for a different number of sinusoidal periods.

According to previous validations, the two structures are studied through the LW2 and LW3 approaches, and thanks to the
adaptive finite element formulation with a mixed approach, LW2-3, if it is necessary.
8
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Fig. 5. The rectangular plate with a double sinusoidal thickness for two different periods according to the parameter 𝛽. (a) Top and bottom surface 𝛽 = 3. (b)
Top and bottom surface 𝛽 = 9. (c) Section at 𝑦 = 0.1 m for 𝛽 = 3. (d) Section at 𝑦 = 0.1 m for 𝛽 = 9.

Fig. 6. The circular plate with a radial sinusoidal thickness for two different periods according to the parameter 𝛽. (a) Top and bottom surface 𝛽 = 1. (b) Top
and bottom surface 𝛽 = 6. (c) Section for 𝛽 = 1. (d) Section for 𝛽 = 6.
9
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Table 1
Fundamental frequency coefficient 𝛺 of a simply supported square plate with discontinuously varying thickness.
ℎ2∕ℎ1 𝑐∕𝑎 = 0.5 𝑐∕𝑎 = 0.8

LW2 LW2–3 LW3 [6] [8] LW2 LW2–3 LW3 [6] [8]

0.8 17.58 17.58 17.57 17.77 17.67 18.91 18.83 18.83 18.99 18.95
0.6 15.31 15.30 15.30 16.11 15.38 17.90 17.66 17.66 18.23 17.79

Table 2
Fundamental frequency coefficient 𝛺 of a clamped square plate with discontinuously varying thickness.
ℎ2∕ℎ1 𝑐∕𝑎 = 0.5 𝑐∕𝑎 = 0.8

LW2 LW2–3 LW3 [6] [8] LW2 LW2–3 LW3 [6] [8]

0.8 32.31 32.31 32.30 32.3 32.4 34.65 34.60 34.59 34.5 34.7
0.6 28.17 28.17 28.16 28.9 28.3 33.04 32.87 32.87 33.3 32.02

Table 3
Frequency coefficients 𝛺𝑖 of a plate with linear thickness and simply supported boundary conditions.
𝛺𝑖 𝛼 = 0 𝛼 = 0.2 𝛼 = 0.4

LW2 LW3 Analyt. [39] LW2 LW2-3 LW3 [39] LW2 LW2-3 LW3 [39]

𝛺1 19.7049 19.6975 19.7392 19.7392 21.6444 21.6398 21.6348 21.6920 23.5445 23.5366 23.5323 23.6092
𝛺2 49.3479 49.3271 49.3480 49.3481 54.1751 54.1661 54.1071 54.1607 58.8635 58.6951 58.6783 56.7687
𝛺3 49.3479 49.3271 49.3480 49.3481 54.1325 54.1257 54.1494 54.2047 58.7087 58.8494 58.8321 58.9283
𝛺4 78.8342 78.7905 78.9568 78.9569 86.5560 86.5367 86.5009 86.7528 94.0947 94.0613 94.0267 94.3773
𝛺5 99.0110 98.9483 98.6960 99.3042 108.3528 108.6175 108.5591 108.7610 116.9178 116.8959 117.8427 117.4410
𝛺6 99.0114 98.9490 98.6960 99.3042 108.6339 108.3447 108.2788 108.9320 117.9305 117.8892 116.8331 118.1150

Table 4
Frequency coefficients 𝛺 of a plate with linear thickness and clamped boundary conditions.
𝛺𝑖 𝛼 = 0 𝛼 = 0.2 𝛼 = 0.4

LW2 LW3 [39] LW2 LW2–3 LW3 [39] LW2 LW2-3 LW3 [39]

𝛺1 36.2161 36.2059 35.9855 39.7488 39.7468 39.7365 39.5097 43.1569 43.1518 43.1422 42.9088
𝛺2 74.0204 73.9824 73.3947 81.1459 81.2007 81.1006 80.5194 87.9083 88.1374 87.8555 87.2835
𝛺3 74.0204 73.9824 73.3947 81.2143 81.1431 81.1691 80.5857 88.1584 87.8950 88.1051 87.5259
𝛺4 109.0440 108.9835 108.2180 119.6663 119.6503 119.5926 118.8650 129.9869 129.9469 129.8984 129.2150
𝛺5 133.2354 133.1199 131.7790 145.8779 145.8650 145.7419 144.4620 157.4929 157.4627 157.3377 156.1420
𝛺6 133.8653 133.7501 132.4100 146.6304 146.6017 146.4944 145.1900 158.9078 158.8398 158.7494 157.4210

5. Results

5.1. Rectangular plate

For the multi-step square plate in [6,8], different geometries are studied, changing the thicknesses of the two steps and the length,
o the parameters ℎ2∕ℎ1 and 𝑐∕𝑎. The fundamental frequencies for the two boundary conditions, simply supported and clamped,
re reported in Tables 1 and 2, respectively. The results are very similar to those from the literature, both for LW2 (DoF 15129),
W3 (DoF 20172), and the mixed approach LW2-3 (DoF 17589 for 𝑐∕𝑎 = 0.5 and 19065 for 𝑐∕𝑎 = 0.8). The mixed approach uses
W2 expansion in the thinnest step and LW3 in the thickest.

For the second case in [39], the first six frequency coefficients 𝛺 are calculated for the two boundary conditions ( Table 3 for
imply supported edges and Table 4 for clamped edges), using LW2, LW3, and a mixed approach LW2-3. The criterion depends on
he parameter 𝛼 in Eq. (20), which corresponds to the percentage of plate length modelled with an LW3 approach, corresponding to
he thickest portion. Three cases are studied: 𝛼 = 0, so a constant thickness plate, in this case for SS boundary conditions, the results
re compared to the well-known analytical solution; 𝛼 = 0.2, so in the mixed approach, the 20% of the plate length is modelled
ith an LW3 expansion (DoF 16236); 𝛼 = 0.4 with 40% of LW3 in the mixed approach (DoF 17220). The results are very similar to

hose from the literature for all three approaches.

.2. Circular plate

For the circular plate, the baseline structure with constant thickness is validated because, to the authors’ knowledge, there is
ot any work that studies this kind of plate in the CUF framework. The validation is performed by comparing the results based on
he analytical solution based on Bessel functions with those obtained by Wu et al. [15] and Azimi [16]. The results are reported in
able 5 for three boundary conditions applied on the edges (free, simply supported, and clamped). The LW2 (68607 DoF) and LW3
10
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Table 5
The first six natural frequency coefficients 𝛺𝑚,𝑘 (the symmetrical modes are merged) comparison
for the constant thickness plate with different boundary conditions. In the table, 𝑚 is the number
of radial nodal lines and 𝑘 is the number of circumferential nodal lines, according to [15].

𝑚, 𝑘 Analytical [15] [16] LW2 LW3

Free

0, 2 5.382 5.358 5.358 5.359 5.359
1, 0 9.003 9.003 9.003 9.007 9.006
0, 3 12.461 12.439 12.439 12.437
1, 1 20.475 20.475 20.475 20.484 20.482
0, 4 21.835 21.836 21.832
0, 5 34.716 33.495 4.935 33.499 33.491

Simply supported

0, 0 4.935 4.935 4.935 5.018 5.017
0, 1 13.898 13.898 13.898 13.976 13.974
0, 2 25.613 25.613 25.613 25.680 25.694
1, 0 29.720 29.720 29.720 29.816 29.811
0, 3 39.957 39.957 40.033 40.023
1, 1 48.481 48.479 48.479 48.602 48.591

Clamped

0, 0 10.211 10.216 10.216 10.237 10.232
0, 1 21.261 21.260 21.260 21.313 21.299
0, 2 34.881 34.877 34.877 34.948 34.927
1, 0 39.771 39.771 39.771 39.903 39.875
0, 3 51.022 51.030 51.172 51.131
1, 1 60.824 60.829 60.829 61.047 60.998

Table 6
The first six natural frequency coefficients 𝛺𝑚,𝑘 comparison (the symmetrical modes are merged) for a plate with a linear variation of the thickness for different
boundary conditions. In the table, 𝑚 is the number of radial nodal lines and 𝑘 is the number of circumferential nodal lines, according to [15].

𝜂 = −0.3 𝜂 = 0.3

𝑚, 𝑘 [15] [17] LW2 LW3 𝑚, 𝑘 [15] [17] LW2 LW3

Free

0, 2 4.380 4.647 4.647 0, 2 5.973 6.167 6.166
1, 0 7.951 7.951 7.955 7.954 1, 0 10.132 10.134 10.136 10.136
0, 3 9.786 10.034 10.033 0, 3 14.791 14.946 14.943
0, 4 16.978 17.036 17.034 1, 1 23.533 23.584 23.581
1, 1 17.281 17.355 17.354 0, 4 26.592 26.726 26.721
0, 5 25.380 25.641 25.637 2, 0 44.064 44.090 44.083

Simply supported

0, 0 4.116 4.116 4.202 4.202 0, 0 5.748 5.748 5.828 5.827
0, 1 11.194 11.368 11.367 0, 1 16.368 16.490 16.487
0, 2 20.539 20.743 20.741 0, 2 30.413 30.535 30.544
1,0 24.727 24.728 24.845 24.842 1,0 34.562 34.562 34.641 34.635
0, 3 31.639 31.891 31.886 0, 3 47.934 48.052 48.037
1, 1 40.162 40.361 40.354 1, 1 56.364 56.488 56.469

Clamped

0, 0 7.779 7.778 7.807 7.806 0, 0 12.663 12.663 12.693 12.690
0, 1 16.638 16.783 16.781 0, 1 25.607 25.726 25.716
0, 2 27.611 27.823 27.819 0, 2 41.762 41.920 41.906
1,0 32.462 32.463 32.638 32.631 1,0 46.780 46.784 46.925 46.906
0, 3 40.256 40.597 40.588 0, 3 61.313 61.554 61.529
1, 1 49.852 50.194 50.180 1, 1 71.196 71.449 71.426

Table 7
The first six natural frequencies coefficient 𝛺𝑚,𝑘 comparison (the symmetrical modes are merged) for a plate with an exponential variation of the thickness for
different boundary conditions. In the table, 𝑚 is the number of radial nodal lines and 𝑘 is the number of circumferential nodal lines, according to [15].

𝜂 = −1 𝜂 = 1

𝑚, 𝑘 [15] [17] LW2 LW3 𝑚, 𝑘 [15] [17] LW2 LW3

Simply supported

0, 0 2.846 2.845 2.952 2.952 0, 0 9.005 9.007 9.082 9.076
1, 0 17.224 17.224 17.403 17.401 1, 0 51.290 51.331 51.310 51.296
2, 0 43.354 43.357 43.739 43.727 2, 0 123.985 124.630 123.835 123.772
3, 0 81.271 81.288 80.803 80.775 3, 0 228.178 236.800 227.584 227.377

Clamped

0, 0 4.765 4.764 4.791 4.784 0, 0 23.235 23.239 23.259 23.220
1, 0 22.052 22.051 22.229 22.204 1, 0 72.457 72.505 72.487 72.324
2, 0 51.127 51.129 51.748 51.690 2, 0 152.914 153.450 152.765 152.355
3, 0 91.986 91.995 91.100 90.991 3, 0 264.980 271.180 264.214 263.380

two different variable-thickness plates is performed and compared to literature results [15,17]. The differences between the LW2
and LW3 approaches are small; therefore, the mixed approach is not used. In Table 6, the results are reported for a linear variation,
and in Table 7, for an exponential one.
11
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Fig. 7. The nodal maps of the different LW approaches exploited in a mixed LW2-3 model for the circular plate with a parabolic thickness (red for the LW2
and blue for the LW3). The maps report the percentage of the plate studied with an LW3 approach. (a) 20%. (b) 80%.

Table 8
The first ten natural frequency coefficients 𝛺𝑚,𝑘 comparison for a plate with a parabolic
variation of the thickness and free edges. In the table, 𝑚 is the number of radial nodal
lines and 𝑘 is the number of circumferential nodal lines, according to [40].
𝑚, 𝑘 [40] LW2 LW2-3 20% LW2-3 80% LW3

1, 2 5.80 5.80 5.79 5.79 5.79
1, 0 9.67 9.67 9.66 9.66 9.66
0, 3 10.04 10.04 10.03 10.03 10.03
0, 4 14.20 14.20 14.18 14.18 14.18
1, 1 17.80 17.79 17.76 17.76 17.76
0, 5 18.33 18.34 18.30 18.30 18.30
0, 6 22.45 22.47 22.42 22.42 22.42
1, 2 25.88 25.89 25.80 25.80 25.80
2, 0 29.83 29.82 29.72 29.71 29.71
1, 3 33.94 33.96 33.83 33.82 33.82

Finally, the adaptive finite elements are validated by comparing the results with those obtained by Harris [40]. The particularity
of the plate in Harris’ work is the presence of a corner on the edge of the circular plate. Therefore, at the edge, the expansion nodes
collapse on the mean surface. In this case, we also use two different mixed approaches, LW2-3 (73456 DoF for the 20% of the radius
of the plate and 87702 for the 80%), where the criterion is the percentage of the plate radius, that uses an LW3 expansion. The
nodal maps show the different approaches distribution and are reported in Fig. 7. The results are documented in Table 8.

The results are, in general, in good agreement with the literature results for both the LW2 and LW3 approaches. This conclusion
validates the formulation. Nevertheless, the increase in accuracy with respect to the square plate is also due to the smaller size of
the elements. We use almost 68000 DoF with an LW2 approach to mesh a surface of 𝜋 m2 while for the plate, around 15000 DoF
are used for 1 m2 surface. The high number of DoF in the circle model is used to not deform the Q9 elements. In other studies, the
formulation is expanded for deformed elements too [31].

5.3. Comparison with 3D elements

The first case studies a plate with a thickness based on a double sine function, Eq. (25). The analysis is split into three steps:

• upstream of the comparisons, a convergence analysis was performed for the 3D elements in order to understand for which
DoF number the solid FEM model converged to a solution. The results for 𝛽 = 9 are reported in Table 9, and the case with
46968 is chosen thanks to the convergence analysis;

• a comparison of the first six frequency coefficients between the LW approaches and a 3D element model for 𝛽 = 9. The 3D
element model is built and solved by the commercial software Ansys,3 and made of 20-node hexahedral elements, Hexa20.
The mixed approach LW2-3 uses a criterion based on the plate’s maximum thickness. If the local thickness is higher than a
percentage of the maximum one, it switches from three to four-node expansion, as shown in Fig. 8, where the plate is mapped

3 https://www.ansys.com/
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Table 9
Results in terms of 𝛺 of the convergence analysis for the square plate with 𝛽 = 9 and
modelled with solid elements. The result used in the following comparisons is highlighted.

DoF 7689 19 893 31 023 46 968 72 051 231 552
1 19.39 17.94 17.80 17.48 17.48 17.48
2 51.47 46.74 46.16 45.18 45.17 45.17
3 57.74 51.55 50.98 49.99 49.99 49.98
4 91.98 79.83 78.81 76.81 76.79 76.78
5 104.64 88.36 86.41 83.26 83.25 83.23
6 105.18 88.69 86.73 83.52 83.50 83.48

Fig. 8. The nodal maps of the different LW approaches exploited in a mixed LW2-3 model for the square plate with a double sinusoidal thickness (red for the
LW2 and blue for the LW3). The maps report the two criteria for the thickness used in the analysis. (a) 50% with LW3. (b) 75% with LW3.

Table 10
The first six frequencies coefficients 𝛺 of a simply supported plate with a double sine function
(𝛽 = 9) for the thickness. The results are compared between LW approaches and 3D elements.

Modes LW2 LW2-3 50% LW2-3 75% LW3 3D

1 17.48 17.48 17.48 17.56 17.53
2 45.18 45.17 45.17 45.37 45.32
3 49.99 49.99 49.98 50.47 50.35
4 76.81 76.79 76.78 77.56 77.36
5 83.26 83.25 83.23 84.33 84.42
6 83.52 83.50 83.48 84.57 84.16
DoF 15 129 18 006 19 320 20 172 46 968

according to the different LW approaches in the two studied cases (50% and 75% of the maximum thickness). The results are
reported in Table 10. The 3D model, despite the increase in the number of elements (and DoF), converges to values similar
to those of the shell model for almost three times the DoF of the LW2 model and more than two times for the LW3 model.
The reason is the plate thickness variation, which starts from 0.001 m to 0.041 m, forcing the use of very small 3D elements.
The differences between the different LW approaches are small. Nevertheless, with a mixed approach, which uses four nodes
(LW3) for thickness higher than 50% of the maximum one, it is possible to have almost the same accuracy as an LW3 model,
saving more than 10% of DoF;

• the influence of the parameter 𝛽 on the plate’s dynamic behaviour is studied by comparing the first three frequency coefficients
for different values of 𝛽. The results are reported in Table 11 and compared to a plate with a constant thickness equal to the
average. The specific volume of each model is reported as the ratio between the variable-thickness plate volume 𝑉 and the
constant-thickness plate volume 𝑉0. The fundamental frequency coefficient changes according to the different stiffnesses and
masses. For the case 𝛽 = 5, it is possible to obtain a high value of 𝛺, with the lowest volume (and mass), while for 𝛽 = 3, the
mass is equal to the mass of a constant thickness plate, but there is an increase in 𝛺. The first mode for 𝛽 = 9 is compared to
the constant thickness plate in Fig. 9.

In the second case, the circular simply supported plate with a sinusoidal thickness is studied similarly to the square plate. The
convergence analysis is reported in Table 12. However, due to the high complexity of the thickness variation and circular shape,
the convergence is not completely obtained despite the high number of DoF. The results from a 3D model are compared to those
13
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Table 11
The first three frequency coefficients 𝛺 and volumes for different 𝛽 of a square plate with a
double sinusoidal thickness variation. A mixed LW2-3 approach is used (except for the constant
thickness plate), switching from LW2 to LW3 when half of the thickness is reached.

Modes 𝛽 Constant

3 5 7 9

1 14.21 14.25 12.90 12.10 19.60
2 27.17 31.09 36.13 31.28 49.03
3 37.60 36.66 52.58 34.74 78.10
𝑉 ∕𝑉0 0.9979 0.9650 0.9916 0.9980 1

Fig. 9. The first mode for a simply supported square plate with 𝜈 = 0.35. (a) Double sinusoidal thickness with 𝛽 = 9. (b) Constant thickness equal to the average
of the double sinusoidal one.

Table 12
Results in terms of 𝛺 of the convergence analysis for the circular plate with 𝛽 = 2𝜋
and modelled with solid elements. The result used in the following comparisons is
highlighted.

DoF 31 179 51 078 78 861 157 860 194 637
1 2.64 2.14 1.88 1.58 1.49
2 6.71 5.47 4.88 4.15 3.84
3 7.03 5.66 4.96 4.16 3.89
4 26.89 25.73 24.87 23.52 20.04
5 27.22 25.80 24.95 24.20 23.42
6 33.39 29.64 25.88 24.21 23.80

obtained with the proposed formulation for 𝛽 = 2𝜋. Moreover, the influence of the parameter 𝛽 in Eq. (26) is studied. The parameter
varies from 𝜋 to 6𝜋. According to the previous results, due to the small differences between the LW2 and LW3 approaches, the mixed
expansion LW2-3 is not exploited for this problem. The comparison with 3D elements is reported in Table 13. The 3D model, despite
the high number of DoF due to the deformation of the Hexa20 elements, is not completely able to understand the dynamic behaviour
of the plate. The reason for the square plate is the thickness variation, which varies from 0.001 m to 0.041 m. In Table 14 is reported
the comparison of the different natural frequency coefficients for different periods of thickness function Eq. (26). The fundamental
frequency is strongly influenced by the shape of the thickness, which influences both the mass and stiffness of the structure. The
first mode for 𝛽 = 6𝜋 is compared to the constant thickness plate in Fig. 10.

6. Conclusions

The adaptive finite elements can accurately describe the dynamic behaviour of variable-thickness plates without being influenced
by the shape of the plate or the thickness pattern, wisely choosing the different numbers of expansion points along the thickness
(e.g., the LWn approach) according to the local requirements and shape of the structure (local thickness, type of material, local
loads, etc.). Moreover, they allow us to save thousands of degrees of freedom with respect to 3D elements, usually implemented
by conventional FEM approaches. Finally, the adaptive finite elements are used to analyse the free vibration of two plates with a
14
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Table 13
The first six frequency coefficients 𝛺 of a simply supported plate
with a sinusoidal function (𝛽 = 2𝜋) for the thickness. The results
are compared between LW approaches and 3D elements.

Modes LW2 LW3 3D

1 1.51 1.50 1.49
2 3.56 3.56 3.84
3 3.58 3.57 3.89
4 16.92 16.87 20.04
5 20.13 20.06 23.42
6 20.37 20.31 23.80
DoF 68 607 91476 194 637

Table 14
The first three frequency coefficients 𝛺 and volumes for different 𝛽 and LW approaches of a circular plate with a radial sinusoidal
thickness variation. The expansion uses three nodes on the thickness and a quadratic functions (LW2).

Modes 𝛽 Constant

𝜋 2𝜋 3𝜋 4𝜋 5𝜋 6𝜋

1 8.35 1.51 4.46 2.33 5.16 3.48 5.02
2 23.85 3.56 10.22 4.57 12.00 6.90 13.97
3 41.45 16.92 12.69 11.26 17.48 14.04 25.70
𝑉 ∕𝑉0 1.1930 1 1.0643 1 1.0386 1 1

Fig. 10. The first mode for a simply supported circular plate with 𝜈 = 0.3. (a) Radial sinusoidal thickness with 𝛽 = 6𝜋. (b) Constant thickness equal to the
average of the sinusoidal one.

sinusoidal thickness to demonstrate the formulation’s power. The effect of the period of the sinusoidal function on the dynamics
of the plate is assessed. In fact, in the first part of the article, the method presented is validated by comparing the results with
those available in the literature, while in the second part, a comparison is made with 3D elements. Sinusoidal functions for the
plate’s thickness are chosen to have a periodic variation of thickness, starting from a minimum of a few millimetres to a maximum
in the order of centimetres. Beyond the results on the dynamic behaviour of these structures, this research aimed to show how
adaptive finite elements can study any plate with varying thickness in a simple and computationally cheap way (compared to 3D
elements, less than 50% of the DoF were used). Unlike 3D elements, adaptive finite elements, in addition to using less DoF, allow
a simpler mesh generation process, being entirely similar to that used for 2D elements in the case of constant plates. In contrast to
3D elements, variable thickness plates may present convergence problems due to the significant variation in thickness.

The formulation presented in this article is limited to flat plates; however, an extension to shells with curvature using curvilinear
elements, such as the cylinder studied in [29], is possible. Furthermore, the formulation can be extended for vibro-acoustic problems
in the creation of fluid–structure interfaces [31,38], or with the application of the method of Rayleigh integrals [41] to study the
transmission loss of plates with variable thickness [42]. Finally, the adaptive finite element formulation can work for beams with a
variable section.
15



Journal of Sound and Vibration 577 (2024) 118336M.C. Moruzzi et al.

f
o
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V

In conclusion, this work demonstrates, through case studies, how it is possible to use this new class of elements, the adaptive
inite elements, to study the mechanical behaviour of any type of variable-thickness plate, from those obtainable by topological
ptimisation to some aerodynamic surfaces of an aircraft or rocket, up to the bulkheads of gas tanks, aircraft, or spacecraft.
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Appendix. Stiffness and mass matrices in the governing equations

The fundamental nuclei of the stiffness and mass matrices are reported according to the previous notation in Section 3.
The 3 × 3 fundamental nucleus of the stiffness matrix 𝐊𝜏𝑠𝑖𝑗 is defined by its nine terms:

𝐊𝜏𝑠𝑖𝑗
𝑥𝑥 = 𝐶22 ∫𝑉

(
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)
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(
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)

,𝑥 𝑑𝑉 + 𝐶44 ∫𝑉
(
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)

,𝑧
(

𝐿𝑗𝐹𝑠
)
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)

,𝑦
(

𝐿𝑗𝐹𝑠
)
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)
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)
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)
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(27)

where the partial derivatives with respect to 𝑥, 𝑦 or 𝑧 will be applied to the 3D function resulting from the product of the thickness
function 𝐹 and the shape function 𝐿, depending on the model.

The 3 × 3 fundamental nucleus of the mass matrix 𝐌𝜏𝑠𝑖𝑗 is defined by its non-zero components:

𝐌𝜏𝑠𝑖𝑗
𝑥𝑥 = 𝐌𝜏𝑠𝑖𝑗

𝑦𝑦 = 𝐌𝜏𝑠𝑖𝑗
𝑧𝑧 = 𝜌∫𝑉

(

𝐿𝑖𝐹𝜏
) (

𝐿𝑗𝐹𝑠
)

𝑑𝑉 (28)

where 𝜌 is the density of the plate.
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