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The focus of this work is the solution of a fundamental problem that arises 
in non–dissipative nonlinear oscillators and related applications, namely the rare 
possibility of explicitly inverting the associated time–integral. Here, the inversion 
issue is treated by near–minimax approximation of the restoring force via fifth–
order Čebyšëv polynomials on a normalised integration interval: this gives rise to 
a Duffing–type quintic oscillator, whose solutions effectively represent those of the 
original problem. Indeed, when an odd function describes the restoring force, the 
elliptic time–integral associated with the quinticate oscillator can be inverted in 
closed form. This is obtained here, by observing that the integrand involves a 
quadratic polynomial, built on the quinticate oscillator coefficients, and by studying 
its discriminant. Based on these findings, we provide a novel solution procedure, 
implemented within the Mathematica scientific environment, that exploits elliptic 
integrals of the first kind and whose effectiveness is tested on three well–known 
conservative nonlinear oscillator models.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this work, we focus on differential equations governing non–dissipative non–linear oscillators; these 
arise in different physical models such as the treatment of relativistic oscillators, from the first contribution 
due to [33] and the further analysis in [36], up to generalizations to Duffing’s relativistic oscillators [55]; they 
also appear in non–relativistic models as that in [49], which deals with cables with an attached midpoint 
mass, or some harmonic Duffing oscillators discussed in [37,44,51]. From a purely mathematical viewpoint, 
all these models, further than describing the one–dimensional motion of a particle, share being governed 
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by the autonomous problem (4) with odd restoring force f and displacement a, illustrated in the following 
§ 2, and the consequent problem of inverting the associated time–integral; the latter can rarely be solved 
in explicit terms, excluding the well–known cases of the pendulum and Duffing equations, both unforced.

Here, we tackle the inversion problem by approximating the original differential equation with one yielding 
an integral equation that is invertible and that admits an exact solution in terms of Jacobi elliptic functions. 
This also offers the possibility to investigate, albeit through its approximate form, how the displacement a
influences the behaviour of the solution; a straightforward solution of the original problem via numerical 
methods would not allow this.

In this way, we develop a new solution procedure, which revises and refines previous results on exact an-
alytic solutions of quintic oscillators [9,11,15,17,40], as well as on approximate models obtained via Čebyšëv 
polynomials up to degree five [13,18,27]. Our new approach allows us to study and solve further wave con-
figurations, not considered in the cited papers, and generated by the sign of the discriminant of a certain 
second–degree polynomial, as described in Theorems 1–2 of this work. A third wave configuration will be 
presented in a forthcoming communication by the authors [45], as will the results of higher order approx-
imations, also under analysis. Indeed, the particular choice of fifth–order truncation is functional to the 
inversion of the elliptic integral which describes the time evolution of the oscillatory systems considered in 
this paper; higher order approximations lead, instead, to the inversion of hyperelliptic integrals [28,39], pos-
sibly through Lauricella functions [32,47] i.e. hypergeometric functions of three or more variables, implying 
a further layer of complexity beyond the scope of the current study.

In this work, our method is applied to the relativistic oscillator proposed by McColl [33] and studied in 
depth and with different techniques in [7,12,25,36]. More precisely, § 2 details the construction of the nor-
malised quinticate oscillator (12) associated with the original one, whose treatment with our new procedure 
is then described in § 3, leading to the determination of its exact period and solution. In § 4, the solution 
process is illustrated on the relativistic oscillator (1); the quality of the results obtained is also validated. 
In § 5, a similar application to oscillators (2) and (3) confirms both feasibility and robustness of our new 
solver. Some final comments and indications for future work are reported in the concluding § 6.

Before leaving this section, we briefly mention the most popular techniques in the study of nonlinear 
oscillatory phenomena: the Lindstedt–Poincaré perturbation and multiple time–scale methods [35,41,42]; 
the generalised averaging Krylov–Bogoliubov–Mitropolski method [31,35]; the approximate variational or 
energy–balance method [4,24] to evaluate angular frequencies of nonlinear oscillators; the harmonic–balance 
method [5,20,21,35,38,54]. A notable source for Duffing oscillators is [30], while [16,30,38] offer an overview 
of all these methods. The period–amplitude dependence problem was analysed in [46] through the classic 
thermodynamic equilibrium theory, and an asymptotic period estimate was obtained for the particular case 
of the predator–prey Volterra–Lotka model, which is a Hamiltonian system, after an appropriate change of 
variable. The latter approach was extended to a large class of Hamiltonian systems in [19] via the Laplace 
transform and asymptotic expansions.

2. General quintic oscillator

The differential models examined in this work are the following:

ẍ = −x√
1 + x2

, (1)

ẍ = −x− b x√
1 + x2

, (2)

ẍ = −x− x3 − b x√
2
. (3)
1 + x
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Equation (1) relates to the relativistic oscillator introduced in [33] and analysed in–depth in [36]. It is 
obtained from ẍ+(1 − ẋ2)3/2 x = 0 studied in phase–space after a change of variable; details are well–known 
and reported in several papers, such as [2,6,7,33,36].

Dynamics of cables with an attached midpoint mass are modelled by (2). We highlight the contributions 
of [3,26,34,37,44,55,56], where classic approximate analytic methods are employed through some algebraic 
procedures, such as an adapted variant of harmonic–balance.

The Duffing relativistic oscillator (3) is treated in [55] using He’s energy–balance method.
The differential equations (1)–(3) are all of the form ẍ = f(x), where f : [−a , a] → R is an odd continuous 

function. Assuming motion starts from rest, i.e. ẋ(0) = 0, and choosing an initial displacement a > 0 so 
that f(x) �= 0 ∀x ∈]0 , a] , the resulting motion is periodic and the particle satisfies −a ≤ x(t) ≤ a , ∀ t ∈ R. 
In other words, we study an initial value problem (IVP) of the form:

{
ẍ = f(x) ,
x(0) = a , ẋ(0) = 0 .

(4)

Without loss of generality, we can assume f(a) < 0 . Now, consider the even function:

Φ(x) := −2
a∫

x

f(s) ds , (5)

where Φ(±a) = 0, both roots being simple zeroes in the cases of our interest. Moreover:

T = 2
a∫

−a

1√
Φ(s)

ds (6)

is the period of the solution to (4). This solution is implicitly defined for |x| ≤ a by the time–integral:

t = Ψ(x) , Ψ(x) :=
a∫

x

1√
Φ(s)

ds . (7)

From a theoretical point of view, problem (4) is solved. But, in practice, the integral in (7) can rarely be first 
evaluated in closed form and then inverted to yield x = Ψ−1(t) , since its inversion often involves unknown 
functions, the knowledge of which would be indispensable for the explicit description of the motion.

To arrive at a time–integral that can be exactly inverted, we describe f in terms of a near–minimax 
approximation given by its fifth–order Čebyšëv polynomial of the first kind.

As it is well–known, Čebyšëv’s are a numerable family of polynomials, orthogonal with respect to the 
weight function w(u) = 1/

√
1 − u2 and defined for −1 ≤ u ≤ 1 by:

Tn(u) = cos
(
n arccos(u)

)
= 2F1

(
n ,−n

1
2

∣∣∣∣ 1
2 (1 − u)

)
n ∈ N ,

where 2F1 denotes the Gauss hypergeometric function [23].
Čebyšëv polynomials form a complete orthogonal set on [−1 , 1] in the appropriate Sobolev space, thus a 

function g can be expressed on its domain [−1 , 1] via the expansion g(u) = g̃(u) + Er(u), where:

g̃(u) := 1
2 α0 T0(u) +

r∑
αn Tn(u) , Er(u) :=

∞∑
αn Tn(u) . (8)
n=1 n=r+1
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If g is Lipschitz continuous on [−1 , 1], then it has a unique representation as the infinite Čebyšëv series (8), 
which is absolutely and uniformly convergent, with coefficients defined using the weighted inner product 
[50]:

α0 = 1
π

1∫
−1

g(s)√
1 − s2

T0(s) ds , αn = 2
π

1∫
−1

g(s)√
1 − s2

Tn(s) ds for n ≥ 1 .

Recall that |Tn(u)| ≤ 1 ∀u ∈ [−1 , 1 ]. Moreover, Tn has n distinct real roots in ] −1 , 1 [ and n +1 extrema in 
[−1 , 1 ] at which it takes alternating values ±1. Thus, if the coefficients αn decrease in magnitude sufficiently 
rapidly (which depends on the regularity of g), then Er(u) 	 αr+1 Tr+1(u) equioscillates r + 2 times on 
[−1 , 1 ], implying that g̃ is a near–minimax approximant for g [43].

Coefficients αn can be determined explicitly for some functions, otherwise they need discretisation via 
quadrature formulae. Even so, among methods yielding minimax or near–minimax approximations, Čebyšëv 
series is effective and easy to handle.

To apply Čebyšëv’s approximation to the nonlinear oscillators under investigation, the displacement a is 
normalised to the interval [−1 , 1 ] via a change of dependent variable u = x/a, and the following equivalent 
IVP is considered in place of (4):

⎧⎨
⎩ü = fa(u) , fa(u) := 1

a
f(a u) .

u(0) = 1 , u̇(0) = 0 .
(9)

The normalised force fa, which is an odd function, can now be described in terms of polynomials Tn. For 
our purposes, fa is expanded in Čebyšëv series truncated (or projected) at fifth–order:

fa(u) 	 f̃a(u) := α1 T1(u) + α3 T3(u) + α5 T5(u) , (10)

where T1(u) = u , T3(u) = −3 u + 4 u3 , T5(u) = 5 u − 20 u3 + 16 u5, and:

αn = 2
π

1∫
−1

fa(s)√
1 − s2

Tn(s) ds , n = 1 , 3 , 5 . (11)

Expressing the projected force f̃a in the monomial base, a new IVP replaces (9):

{
ü = −(c1 u + c3 u3 + c5 u5) ,
u(0) = 1 , u̇(0) = 0 ,

(12)

where, setting C = −25/π:

c1 = −(α1 − 3α3 + 5α5) = C
1∫

−1

1√
1 − s2

(35
16s− 7s3 + 5s5) fa(s) ds ,

c3 = −4(α3 − 5α5) = C
1∫

−1

1√
1 − s2

(−7s + 26s3 − 20s5)fa(s) ds,

c5 = −16α5 = C
1∫ 1√

1 − s2
(5s− 20s3 + 16s5) fa(s) ds .

(13)
−1
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Fig. 1. Plot of the solution to IVP (12) for c1 = 1, c3 = 2, c5 = 3, over a period interval.

3. Time–integral

Consider the family of IVPs (12). We highlight several contributions for problems of this type [1,8–11,15,
17,29,40]. Application of (5) and (7) to the restoring force in (12) shows that, after an appropriate change 
of variable, the (squared) solution of this IVP is based on the evaluation of an elliptic integral:

t =
√

3
2

1∫
u2

1√
s (1 − s) h2(s)

ds , (14)

with

h2(s) = (6 c1 + 3 c3 + 2 c5) + (3 c3 + 2 c5) s + 2 c5 s2 .

The discriminant of polynomial h2 is, discarding a factor of value 3:

Δ = 3 c23 − 4 c5 (4 c1 + c3 + c5) . (15)

Given the physical nature of the restoring forces acting in the models of interest, coefficients c1, c3, c5 can 
be assumed to be such that h2(s) > 0 ∀s ∈]0, 1[. This property is assured if c5 > 0 together with one of the 
two conditions:

(i) Δ ≤ 0 ; (ii) Δ > 0 and 6 c1 + 3 c3 + 2 c5 > 0 . (16)

We mention that at least a third quintic scenario exists [45], linked to the sign of Δ and c1 , c3 , c5, untreated 
here, as it is not relevant nor necessary for the study of oscillators (1)–(3).

We provide closed–form solution and period for the IVP (12) in Theorems 1 and 2, under conditions (i) 
or (ii), respectively. Notice that, in the latter case, the roots of h2, in addition to being real and distinct, are 
both negative due to Descartes’ sign rule. Solution of (12) has a cosine wave behaviour, as Fig. 1 illustrates 
for the sample case c1 = 1, c3 = 2, c5 = 3.

Theorem 1. Given the time–integral equation (14), assume c5 > 0 and Δ ≤ 0 in (15) and define:

A =
4
√

6
2

1
4
√
P Q

, B = 1
6

Q
P , k2 = 1

2 −
√

6
8

K√
P Q

, (17)

with
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P = c1 + c3 + c5 , Q = 6 c1 + 3 c3 + 2 c5 , K = 4 c1 + 3 c3 + 2 c5 . (18)

Then, the solution of IVP (12) is:

u2(t) =
√
B

√
B + cot2

(
1
2 am

(
2 K(k) − t

A
, k

)) , (19)

where cot() and am() are the cotangent and Jacobi amplitude functions. The latter is the inverse of the 
elliptic integral of the first kind F (ϕ , k), meaning that ϕ = am(s , k) if and only if s = F (ϕ , k), with:

F (ϕ , k) :=
sin(ϕ)∫
0

1√
(1 − s2) (1 − k2 s2)

ds , −π

2 < ϕ <
π

2 , (20)

while K(k) := F (π2 , k) is the complete elliptic integral of the first kind, and k is the elliptic modulus.
Solution (19) is periodic, with period:

T = 8 A K(k) , (21)

and it is positive for 0 ≤ t ≤ 1
4 T , 3

4 T ≤ t ≤ T , negative for 1
4 T < t < 3

4 T .

Proof. The integral in (14) can be evaluated using entry 3.145–2 in [22], recalled here for ease of reading:

v∫
β

1√
(η − s) (s− β)

(
(s−m)2 + n2

) ds = 1
√
p q

F (ϕ(v) , k) , (22)

where:

β < v < η , p2 := (m− η)2 + n2 , q2 := (m− β)2 + n2 ,

and

ϕ(v) = 2 arccot

√
q (η − v)
p (v − β) , k2 = 1

4
(η − β)2 − (p− q)2

p q
.

In the case of (14), it is β = 0 , η = 1 , v = u2, and polynomial h2 is rearranged as follows:

1
2 c5

h2(s) =
(
s +

(3 c3
4 c5

+ 1
2

))2

+
(

3 c1
c5

−
(3 c3

4 c5

)2
+ 3 c3

4 c5
+ 3

4

)
.

To apply formula (22), the integral in (14) must be rewritten further as the difference of integrals of the 
same integrand on intervals [0 , 1] and [0 , u2]. Equation (14) thus becomes:

t = 2 A K(k) −A F

(
2 arccot

(
4
√
B

√
Υ(u2)

)
, k

)
, (23)

where Υ(v) = (1 − v)/v.
Due to the invertibility of the elliptic integral of the first kind, inversion of the time–integral equation (23)

is possible and yields solution (19). In a similar way, (21) can be proved to supply the motion period. �
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Theorem 2. Given the time–integral (14), assume c5 > 0 and condition (ii) in (16), that is h2(s) = (s −
s1) (s − s2) with s1 < s2 < 0. Now, define:

k2 = s2 − s1

s1 (s2 − 1) . (24)

Then, the solution of IVP (12) is:

u2(t) = s1 + s1 (s1 − 1)

sn2

(√
c5 s1 (s2 − 1)√

3
t , k

)
− s1

, (25)

sn() being the Jacobi sine amplitude function, i.e. sn(s, k) = sin(ϕ) with ϕ = am(s, k).
Solution (25) is periodic, with period:

T = 4
√

3√
c5 s1 (s2 − 1)

K (k) , (26)

and it is positive for 0 ≤ t ≤ 1
4 T , 3

4 T ≤ t ≤ T , negative for 1
4 T < t < 3

4 T .

Proof. To evaluate the integral in (14), entry 3.147–7 of [22] is used, recalled below:

η∫
v

ds√
(η − s) (s− β) (s− γ) (s− δ)

= 2√
(η − γ) (β − δ)

F (ϕ(v), k) ,

where δ < γ < β ≤ v < η and:

ϕ(v) = arcsin

√
(β − δ)(η − v)
(η − β)(v − δ) , k2 = (η − β)(γ − δ)

(η − γ)(β − δ) .

In the case of (14), it is β = 0 , η = 1 , v = u2 , γ = s2 , δ = s1. Therefore, the motion period is given by (26), 
while (25) provides the solution after the relevant computations, not reported here as they are similar to 
those performed in the proof of Theorem 1. �

We observe that, if Δ = 0, integral (14) degenerates into an elliptic integral of the third kind, which is 
tabulated as entry 3.138–6 of [22]. Here, the related computations are omitted for two reasons. First of all, 
condition Δ = 0 is linked to a very particular value of the initial displacement a. Secondly, even though 
the occurrence of elliptic integrals of the third kind makes it impossible to invert the time–integral and 
compute the solution explicitly, thanks to the continuous dependence on data, the relevant solution can be 
approximated at arbitrary precision with the solutions obtained in Theorems 1 and 2.

4. Application to the relativistic oscillator

In the case of the relativistic oscillator ruled by (1), the normalised equation is:

⎧⎪⎨
⎪⎩
ü = − u√

1 + a2 u2
,

u(0) = 1 , u̇(0) = 0 .

(27)
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Here, functions Φ, Ψ, defined in (5), (7), respectively, become as follows, after some algebraic adjustments 
and with, obviously, 0 < 1√

1+a2 <
√

1+a2 u2

1+a2 < 1:

Φ(u) = 2
a2

(√
1 + a2 −

√
1 + a2 u2

)
, (28)

Ψ(u) = a√
2 4

√
1 + a2

1∫
u

1√
1 −

√
1+a2 s2

1+a2

ds

=
4
√

1 + a2
√

2

1∫
√

1+a2 u2
1+a2

z√
(1 − z)

(
z2 − 1

1+a2

) dz . (29)

The integral in (29) can be expressed in explicit form, for example via entry 3.132–5 of [22], through which 
the time–integral equation t = Ψ(u) becomes:

t =
√

2
(
A E (ϕ, k) − F (ϕ, k)

A

)
, A =

√√
1 + a2 + 1 , (30)

being F (ϕ, k) and E (ϕ, k) elliptic integrals of the first and second kind, with:

ϕ = ϕ(u2) = arcsin

√√
1 + a2 −

√
1 + a2 u2

√
1 + a2 − 1

, k =
√

1 + a2 − 1
a

. (31)

Note that, for any a > 0, the elliptic modulus k satisfies the requirement k < 1.
Calculation of the integral in (29) also leads to the exact determination of the period of oscillation:

T = 4
√

2
(
A E(k) − K(k)

A

)
, A =

√√
1 + a2 + 1 . (32)

K(k) and E(k) are complete elliptic integrals of the first and second kind, whose modulus k is as in (31).
Formula (32) provides, explicitly, the period of the relativistic oscillator, which is useful in itself, and also 

because it allows a comparison with the period of the approximated quintic oscillator we are to obtain.
As regards the u sought, the solution obtained implicitly in (30) does not allow the inversion in closed 

form; therefore, we replace the normalised force in (27) by its fifth–order Čebyšëv–projected force, expressed 
in the monomial base through coefficients c1 , c3 , c5 given by (13): according to the sign of the discriminant 
Δ, built on such coefficients as shown in (15), the solution to IVP (12) is given by (19) or by (25).

Application of formulae (13) to problem (27) suggests to introduce three elliptic integrals:

Jn(a) =
1∫

−1

sn√
(1 − s2) (1 + a2 s2)

ds , n = 2 , 4 , 6 .

Due to the form of the normalised force in (27), in fact, coefficients (13) become:

c1 = C
( 35

16 J2(a) − 7 J4(a) + 5 J6(a)
)
,

c3 = C (−7 J2(a) + 26 J4(a) − 20 J6(a)) , (33)
c5 = C ( 5 J2(a) − 20 J4(a) + 16 J6(a)) ,
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Fig. 2. Discriminant Δ = Δ(a) given by (15) and associated to the quinticate form of oscillator (1).

where C = 25/π. Using entries 236.16 and 331.01–03 of [14], it follows:

J2(a) = 2
a2

(
J E(h2) − 1

J K(h2)
)
,

J4(a) = 2
3 a4

(
2 (a2 − 1) J E(h2) − (a2 − 2) 1

J K(h2)
)
,

J6(a) = 2
15 a6

(
(8a4 − 7a2 + 8)J E(h2) − (4a4 − 3a2 + 8) 1

J K(h2)
)
,

(34)

where J =
√

1 + a2 and the elliptic modulus is given by h = a/J .
In other words, inserting values (34) of integrals J2 , J4 , J6 into (33), it becomes possible to identify 

closed–form expressions for coefficients c1 , c3 , c5 of the quinticate form of oscillator (1).
The consequent expression (15) of the discriminant Δ is complicated, but still tractable using computer 

algebra systems such as Mathematica [52], that provides symbolic and numeric functionalities and their 
hybrid use [48,53], and graphics tools enabling a visual analysis as that shown in Fig. 2.

It is verified that the assumptions of Theorem 1 are fulfilled, although proving c5 positive involves 
computational difficulties which we faced using symbolic calculus.

It is important to note that, to use the procedure presented, what is ultimately needed is to calculate the 
integrals expressing the orthogonal projection onto the space of Čebyšëv polynomials. From that point on, 
through the coefficients of the quintic polynomial replacing the normalised restoring force and by Theorem 1
(or Theorem 2, if appropriate), one arrives at the quinticate solution and its period.

To validate the quality of the obtained solution, we study the behaviour of the following differential 
operator:

Lu = ü − fa(u) . (35)

Here, it is fa(u) = −u/
√

1 + a2 u2, since we are studying oscillator (1), while fa(u) = fa(u, b) = −u −
b u/

√
1 + a2 u2 for oscillator (2) and finally fa(u) = fa(u, b) = −u −a2 u3− b u/

√
1 + a2 u2 for oscillator (3), 

as we will see in § 5.1 and § 5.2 respectively.
For the quinticate form of oscillator (1), Fig. 3 reports the graph of the deviation from zero produced 

in (35) by solution u in the first quarter of the period, and at initial displacements equal to a = 1, 2, 3, and 
a = 8, 20, 30; plots are kept separate for effective rendering reasons.

It is reasonable for the quinticate solution behaviour to initially get worse as the displacement a increases, 
given the normalisation of the integration interval. However, computation of the maximum norm ‖L u‖∞ in 
the first quarter of the period yields results in Table 1, showing that an upper bound is given by the value 
0.0375439 reached at a = 8, from where a monotonic decrease can be observed.
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Fig. 3. Behaviour of Lu, where u is solution (19) with coefficients (33), for the quinticate form of oscillator (1).

Table 1
Uniform norm of L u, where u is solution (19) with coefficients (33), for the quinticate 
form of oscillator (1).

a 1 2 3 8 20 30
‖Lu‖∞ .0013005 .0109030 .0219219 .0375439 .0278857 .0216839

Fig. 4. Period ratio in the case of the quinticate form of oscillator (1).

Here and in the following § 5.1 and § 5.2, all results are obtained working in machine precision, and 
are displayed rounded to their first seven significant digits. Arbitrary precision was also employed, and 
showed that the order of magnitude of the quinticate solution remains stable even with increased precision. 
In particular, we asked for up to fifty significant decimal digits, with which an improvement on the fourth 
decimal digit was obtained on average; as an example, it is ‖L u‖∞ = 0.0373455 in the worse case of a = 8
and working with precision 50. As already mentioned in § 1, results from orthogonal projections of order 
higher than five, and their further computational cost, are still under investigation.

The validity of the obtained solution is further testified by the ratio between exact period (32) of the 
gravitational oscillator and period (21) of its quinticate form: this ratio remains close to 1, and bounded 
above by the value 1.00058 for large values of a. Fig. 4 illustrates the ratio behaviour for displacements up 
to a = 30.

5. Quinticate oscillators: further results and discussion

The procedure introduced in § 2–3 is now applied to the conservative nonlinear oscillatory system (2) and 
the Duffing relativistic oscillator (3). Results obtained are wholly analogous to those seen for the relativistic 
oscillator (1). In particular, it is still possible to determine closed–form expressions for the coefficients of 
the Čebyšëv quintic approximant, in terms of complete elliptic integrals of the first kind.

5.1. Nonlinear oscillator (2)

Here, the normalised IVP is:
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⎧⎪⎨
⎪⎩
ü = −u− b u√

1 + a2 u2
,

u(0) = 1 , u̇(0) = 0 ,

(36)

thus function Φ defined in (5) becomes:

Φ(u) = 1 − u2 + 2 b
a2

(√
1 + a2 −

√
1 + a2 u2

)
, (37)

so that forming Ψ(u) as in (7) requires 2 b >
√

1 + a2 −
√

1 + a2 u2 > 0, being a > 0 and 0 < u < 1.
In this case, the exact period, obtained using entry 3.148–7 in [22], is:

T = 4√
A

(
(1 +

√
1 + a2) Π (N , K) − K(K)

)
, (38)

with

A =
√

1 + a2 + b , N = 1 −
√

1 + a2

2 , K = N (b−N )
A .

K(K) is the complete elliptic integral of the first kind, while Π(N , K) is the elliptic integral of third kind, 
N is the elliptic characteristic, and the modulus satisfies K < 1 for a , b > 0.

As for the relativistic oscillator, also for system (36) the three coefficients of the quinticate force can be 
computed explicitly, using again (13) recalled here for reading convenience:

c1 = −(α1 − 3α3 + 5α5) , c3 = −4 (α3 − 5α5) , c5 = −16 α5 ,

where, in this case:

α1 = C
(
w2 + b J2(a)

)
,

α3 = −3 C
(
w2 + b J2(a)

)
+ 4 C

(
w4 + b J4(a)

)
,

α5 = 5 C
(
w2 + b J2(a)

)
− 20 C

(
w4 + b J4(a)

)
+ 16 C

(
w6 + b J6(a)

)
,

(39)

having set C = −2/π. The form of the normalised force in (36), in fact, suggests to use again the exactly 
computable J2(a) , J4(a) , J6(a) in (34), and to introduce the following integrals that can also be computed 
exactly:

wn =
1∫

−1

sn√
1 − s2

, n = 2 , 4 , 6 , 8 , (40)

that is w2 = π/2 , w4 = 3π/8 , w6 = 5π/16 , w8 = 35π/128, the last one being needed in § 5.2.
Fig. 5 depicts discriminant Δ = Δ(a , b) and coefficient c5 = c5(a , b) for varying a > 0 and 0 < b ≤ 1, 

showing that condition (i) of (16) is verified. Theorem 1 thus applies.
The qualitative and quantitative behaviour of solution and period for the quinticate approximant to 

oscillator (2) is analogous to that seen in § 4 for the quinticate relativistic oscillator. The period ratio stays 
close to 1, as shown in Fig. 6 (left). As regards the differential operator (35), results were obtained with 
parameters a > 0 and 0 < b ≤ 1 and are not reported here, since they exhibit, precisely, same behaviour 
and equal order of magnitude as those summarised in Fig. 3 and Table 1 for the relativistic oscillator.
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Fig. 5. Discriminant Δ = Δ(a , b) ≤ 0 (left) and coefficient c5 = c5(a , b) > 0 (right) for the quinticate form of oscillator (2) for 
(a , b) ∈]0 , 30]×]0 , 1].

Fig. 6. Period ratio in the case of the quinticate form of oscillator (2) (left) and oscillator (3) (right).

5.2. Duffing relativistic oscillator (3)

The normalised IVP, in this case, is:
⎧⎨
⎩ü = −u− a2 u3 − b u√

1 + a2 u2
,

u(0) = 1 , u̇(0) = 0 ,
(41)

so that function Φ defined in (5) becomes:

Φ(u) = 1
2 (1 − u2) (2 + a2 + a2 u2) + 2 b

a2

(√
1 + a2 −

√
1 + a2 u2

)
, (42)

and forming Ψ in (7) requires 4b > (2 + a2 + a2u2)(
√

1 + a2 −
√

1 + a2u2) > 0, being a > 0 and 0 < u < 1.
Setting C = −2/π and exploiting formulae (34) and (40), we have:

α1 = C
(
w2 + a2 w4 + b J2(a)

)
,

α3 = −3 C
(
w2 + a2 w4 + b J2(a)

)
+ 4 C

(
w4 + a2 w6 + b J4(a)

)
α5 = 5 C

(
w2 + a2 w4 + b J2(a)

)
− 20 C

(
w4 + a2 w6 + b J4(a)

)
+ 16 C

(
w6 + a2 w8 + b J6(a)

)
,

(43)

on which c1 = −(α1 − 3 α3 + 5 α5) , c3 = −4 (α3 − 5 α5) and c5 = −16 α5 are built.



M. Boschi et al. / J. Math. Anal. Appl. 533 (2024) 128015 13
Fig. 7. Discriminant Δ = Δ(a , b) for the quinticate form of oscillator (3) for various couples (a , b).

Fig. 8. Lu, where u is solution (19) with coefficients built on (43), for the quinticate form of oscillator (3).

Table 2
Uniform norm of L u, with u solution (19) and coeffi-
cients built on (43), for the quinticate form of oscilla-
tor (3).

a 0.95 1.3 1.69
b 0.5 0.7 1
‖Lu‖∞ 0.000487249 0.00229373 0.00724625

Fig. 9. Lu, where u is solution (25) with coefficients built on (43), for the quinticate form of oscillator (3).

Fig. 7 depicts the discriminant Δ = Δ(a , b) for varying a , b > 0 and illustrates how the values of a and 
b that satisfy either condition (i) or (ii) of (16) are closely related. As an example, it is Δ(a , 0.5) ≤ 0 and 
c5(a , 0.5) > 0 for a � 0.95; similarly, Δ(a , 1) ≤ 0 and c5(a , 1) > 0 for a � 1.7; therefore, in both of these 
cases, Theorem 1 applies. In particular, we observed that condition (i) starts being significantly verified 
when b ≥ 0.4, where b ≈ 0.4 requires a � 0.7. Conversely, for b � 0.4 and any a, condition (ii) is verified 
and Theorem 2 comes into play.

The qualitative and quantitative behaviour of solution and period for the quinticate approximant to 
oscillator (3) is analogous to those commented in § 4 and § 5.1. The period ratio stays close to 1, as shown 
in Fig. 6 (right). As for the differential operator (35), Fig. 8 and Table 2 report results achieved with 
couples (a , b) requiring the solution u given by Theorem 1, while Fig. 9 and Table 3 present the outcome 
related to couples (a , b) for which the u defined in Theorem 2 must be used; in both cases, we attain the 
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Table 3
Uniform norm of L u, with u solution (25) and coeffi-
cients built on (43), for the quinticate form of oscilla-
tor (3).

a 1 1.4 1.7
b 0.5 0.7 1
‖Lu‖∞ 0.00064411 0.00298016 0.00737777

same behaviour and equal, or improved, order of magnitude as in the previously studied quinticate forms 
of oscillators (1) and (2).

6. Conclusions and future work

In this work we exploit Čebyšëv’s fifth-order approximations by applying them to three popular nonlinear 
oscillator models, which share the fact that the integrals obtained in the projection are expressible in closed 
form by means of elliptic integrals. The quinticate systems obtained, which by their nature constitute very 
good approximations of the considered models, are, in turn, explicitly solved in terms of Jacobi elliptic 
functions.

The procedure outlined in this work is new, and accounts for wave configurations that have not been 
considered in the related literature. The quality of the solutions obtained is confirmed in terms of the norm 
of the deviation of the solution, and in terms of the ratio between the periods of the quinticate systems and 
the periods of the correspondent non–approximate systems solutions, which admit a closed–form expression 
in two out of the three cases considered. All simulations are performed in machine precision and within the 
scientific environment of Mathematica, Version 13; arbitrary precision arithmetics were also employed, and 
confirmed the results obtained in machine precision.

More wave configurations are currently under investigation, together with a generalisation to approx-
imations of order higher than five, which require the inversion of hyperelliptic integrals, and related 
functionalities, not yet available and under development.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or 
not-for-profit sectors.

Publishing ethics

The authors declare that they comply with the Journal policies and Ethics in publishing.

CRediT authorship contribution statement

Authors’ contributions: the authors share the content of this work, which is original and unpublished and 
is not being submitted to other journals; all authors contributed equally to this work.

Declaration of competing interest

The authors declare no conflict of interest.



M. Boschi et al. / J. Math. Anal. Appl. 533 (2024) 128015 15
Acknowledgments

The authors would like to thank Dr. Mark Sofroniou for many helpful discussions.

References

[1] G. Alves, F. Natali, Periodic waves for the cubic–quintic nonlinear Schrodinger equation: existence and orbital stability, 
arXiv :2110 .01978v2, 2022, pp. 1–21.

[2] R. Azami, D. Ganji, H. Babazadeh, A. Davodi, S. Ganji, He’s max–min method for the relativistic oscillator and high 
order Duffing equation, Int. J. Mod. Phys. B 23 (2009) 5915–5927.

[3] A. Beléndez, A. Hernández, T. Beléndez, M. Alvarez, S. Gallego, M. Ortuno, C. Neipp, Application of the harmonic balance 
method to a nonlinear oscillator typified by a mass attached to a stretched wire, J. Sound Vib. 302 (2007) 1018–1029.

[4] A. Beléndez, T. Beléndez, A. Márquez, C. Neipp, Application of He’s homotopy perturbation method to conservative truly 
nonlinear oscillators, Chaos Solitons Fractals 37 (2008) 770–780.

[5] A. Beléndez, D. Méndez, T. Beléndez, A. Hernández, M. Alvarez, Harmonic balance approaches to the nonlinear oscillators 
in which the restoring force is inversely proportional to the dependent variable, J. Sound Vib. 314 (2008) 775–782.

[6] A. Beléndez, C. Pascual, E. Fernández, C. Neipp, T. Beléndez, Higher–order approximate solutions to the relativistic and 
Duffing–harmonic oscillators by modified He’s homotopy methods, Phys. Scr. 77 (2008) 025004.

[7] A. Beléndez, D. Méndez, M. Alvarez, C. Pascual, T. Beléndez, Approximate analytical solutions for the relativistic oscillator 
using a linearized harmonic balance method, Int. J. Mod. Phys. B 23 (2009) 521–536.

[8] A. Beléndez, M. Alvarez, J. Francés, S. Bleda, T. Beléndez, A. Nájera, E. Arribas, Analytical approximate solutions for 
the cubic–quintic Duffing oscillator in terms of elementary functions, J. Appl. Math. 2012 (2012) 1–17.

[9] A. Beléndez, T. Beléndez, F. Martinez, C. Pascual, M. Alvarez, E. Arribas, Exact solution for the unforced Duffing 
oscillator with cubic and quintic nonlinearities, Nonlinear Dyn. 86 (2016) 1687–1700.

[10] A. Beléndez, A. Hernandez, T. Beléndez, C. Pascual, M. Alvarez, E. Arribas, Solutions for conservative nonlinear oscillators 
using an approximate method based on Chebyshev series expansion of the restoring force, Acta Phys. Pol. A 130 (2016) 
667–678.

[11] A. Beléndez, E. Arribas, T. Beléndez, C. Pascual, E. Gimeno, M. Álvarez, Closed–form exact solutions for the unforced 
quintic nonlinear oscillator, Adv. Math. Phys. 2017 (2017) 1–14.

[12] J. Biazar, M. Hosami, An easy trick to a periodic solution of relativistic harmonic oscillator, J. Egypt. Math. Soc. 22 
(2014) 45–49.

[13] A. Big-Alabo, Approximate period for large–amplitude oscillations of a simple pendulum based on quintication of the 
restoring force, Eur. J. Phys. 41 (2019) 015001.

[14] P. Byrd, M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer Berlin, New York, USA, 1971.
[15] M. Citterio, R. Talamo, The elliptic core of nonlinear oscillators, Meccanica 44 (2009) 653.
[16] L. Cvetićanin, Strong Nonlinear Oscillators, Springer, Cham, New York, USA, 2014.
[17] A. Elias-Zuniga, Exact solution of the cubic–quintic Duffing oscillator, Appl. Math. Model. 37 (2013) 2574–2579.
[18] A. Elias-Zuniga, Quintication method to obtain approximate analytical solutions of non–linear oscillators, Appl. Math. 

Comput. 243 (2014) 849–855.
[19] S. Foschi, G. Mingari Scarpello, D. Ritelli, Higher order approximation of the period–energy function for single degree of 

freedom Hamiltonian systems, Meccanica 39 (2004) 357–368.
[20] H. Gottlieb, Harmonic balance approach to periodic solutions of non–linear jerk equations, J. Sound Vib. 271 (2004) 

671–683.
[21] H. Gottlieb, Harmonic balance approach to limit cycles for nonlinear jerk equations, J. Sound Vib. 297 (2006) 243–250.
[22] I. Gradshteyn, J. Ryzhik, Table of Integrals, Series and Products, 6th ed, Academic Press, New York, USA, 2000.
[23] R. Graham, D. Knuth, O. Parashnik, Concrete Mathematics, 2nd ed., Addison–Wesley, Reading, MASS, USA, 1994.
[24] J. He, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun. 29 (2002) 107–111.
[25] M. Hosen, M. Chowdhury, M. Ali, A. Ismail, A novel analytical approximation technique for highly nonlinear oscillators 

based on the energy balance method, Results Phys. 6 (2016) 496–504.
[26] N. Jamshidi, D. Ganji, Application of energy balance method and variational iteration method to an oscillation of a mass 

attached to a stretched elastic wire, Curr. Appl. Phys. 10 (2010) 484–486.
[27] R. Jonckheere, Determination of the period of nonlinear oscillations by means of Chebyshev polynomials, Z. Angew. Math. 

Mech. 51 (1971) 389–393.
[28] S. Joshi, D. Ritelli, Hypergeometric identities related to Roberts reductions of hyperelliptic integrals, Results Math. 75 

(2020) 1–26.
[29] H. Khalil, M. Khalil, I. Hashim, P. Agarwal, Extension of operational matrix technique for the solution of nonlinear system 

of Caputo fractional differential equations subjected to integral type boundary constrains, Entropy 29 (2021) 1154.
[30] I. Kovacic, M. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, John Wiley & Sons, New York, 

USA, 2011.
[31] N. Krylov, N. Bogoliubov, Introduction to Non–linear Mechanics, Princeton University Press, Princeton, NJ, USA, 1949.
[32] G. Lauricella, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893) 111–158.
[33] L. MacColl, Theory of the relativistic oscillator, Am. J. Phys. 25 (1957) 535–538.
[34] J. Marion, Classical Dynamics of Particles and Systems, Academic Press, New York, USA, 2013.
[35] R. Mickens, Oscillations in Planar Dynamic Systems, World Scientific, Singapore, 1996.
[36] R. Mickens, Periodic solutions of the relativistic harmonic oscillator, J. Sound Vib. 212 (1998) 905–908.

http://refhub.elsevier.com/S0022-247X(23)01018-1/bibE00FF138CAE572F16E02C17FA144E273s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibE00FF138CAE572F16E02C17FA144E273s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib71916EC5698CD7F7101B60C7CE5B45D0s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib71916EC5698CD7F7101B60C7CE5B45D0s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibE3413B2142D83686DEEE909138A5DD85s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibE3413B2142D83686DEEE909138A5DD85s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib0498C98F07CE6AB04E76C816CD4ABEDFs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib0498C98F07CE6AB04E76C816CD4ABEDFs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC2C3120EBCCD9769A5AD7846E7242FB9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC2C3120EBCCD9769A5AD7846E7242FB9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibD688AB1BA7C849031E988A962D222AADs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibD688AB1BA7C849031E988A962D222AADs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib18BE8FE18220A8DDD8CB62F1F47A2DD1s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib18BE8FE18220A8DDD8CB62F1F47A2DD1s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib6C6F2AA2BC2A4CCEA60C681841F48F3Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib6C6F2AA2BC2A4CCEA60C681841F48F3Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibEB38969B9AD400B1A0B0A38829CE3925s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibEB38969B9AD400B1A0B0A38829CE3925s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib49B61C0FC9DCCE900732BECE10532FB5s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib49B61C0FC9DCCE900732BECE10532FB5s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib49B61C0FC9DCCE900732BECE10532FB5s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib60E72F64E39A2974DAD399A298F76D38s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib60E72F64E39A2974DAD399A298F76D38s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib32CF0DA8300F436A14F6EB9A9A3D5E08s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib32CF0DA8300F436A14F6EB9A9A3D5E08s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2F29452E362144D2FBE156CF8751B063s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2F29452E362144D2FBE156CF8751B063s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib75F5579D3F2190EF7D679D0457DF3A61s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib20A752C792F32DAE8A3E6769E36976D9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib409120B495ECC708590257F87036A6A6s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib5635B02F7EB6371946ED9091892B5E41s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibDEEB4070557AAC97F971508EA7C26BA9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibDEEB4070557AAC97F971508EA7C26BA9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib502698A53E7A14D255651DF1A4AFB059s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib502698A53E7A14D255651DF1A4AFB059s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib809B229924F0DE812D91CEFD233B076Bs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib809B229924F0DE812D91CEFD233B076Bs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib343C50709ACEED169818A343D86183F1s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibA0FD65D58D51EA0CEE0E0F71266034CBs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib53B9A426D883503FBB5AD837811FB878s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibCA22B511D7EE9BE7557AD07BB481DB48s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2C4130E579C81388B5D620C7C991B202s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2C4130E579C81388B5D620C7C991B202s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC53960B612892FE1D78D1B1BD819BA3As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC53960B612892FE1D78D1B1BD819BA3As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib753439DA8340005833C4C069D6508937s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib753439DA8340005833C4C069D6508937s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibF61ACF3C730EB28DD685BB02F2E5D76Fs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibF61ACF3C730EB28DD685BB02F2E5D76Fs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib57EA44DBED4FF20E4647257B2AE85F7Fs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib57EA44DBED4FF20E4647257B2AE85F7Fs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibA6FAC1C51CC6FD5D43099AA3B3EC4408s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibA6FAC1C51CC6FD5D43099AA3B3EC4408s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib036ECE0F3312EB0489FF7A6549C92566s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC23E4FC32C117B4BA93AA102B0CCE4D8s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib4158A04A335F85A8BB7327CC99A45070s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib7B9F93C8949273B2111C7772C27CDA8Fs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibE6E0234C5D88D8C241CD3814D9C0ABB6s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib6605DC7CF9EE6818BC488488DED816E2s1


16 M. Boschi et al. / J. Math. Anal. Appl. 533 (2024) 128015
[37] R. Mickens, Mathematical and numerical study of the Duffing–harmonic oscillator, J. Sound Vib. 244 (2001) 563–567.
[38] R. Mickens, Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods, 

World Scientific, Singapore, 2010.
[39] G. Mingari Scarpello, D. Ritelli, The hyperelliptic integrals and π, J. Number Theory 129 (2009) 3094–3108.
[40] G. Mingari Scarpello, D. Ritelli, Exact solution to a first–fifth power nonlinear unforced oscillator, Appl. Math. Sci. 4 

(2010) 3589–3594.
[41] A. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, USA, 1973.
[42] A. Nayfeh, D. Mook, Nonlinear Oscillations, Wiley & Sons, NY, USA, 1979.
[43] G. Phillips, P. Taylor, Theory and Applications of Numerical Analysis, 2nd ed., Academic Press, Elsevier Science & 

Technology, Boston, MASS, USA, 1996.
[44] M. Razzak, An analytical approximate technique for solving cubic–quintic Duffing oscillator, Alex. Eng. J. 55 (2016) 

2959–2965.
[45] D. Ritelli, G. Spaletta, Modeling odd nonlinear oscillators with fifth–order truncated Chebyshev series, 2023, in preparation.
[46] F. Rothe, The periods of the Volterra–Lotka system, J. Reine Angew. Math. 355 (1985) 129–138.
[47] S. Saran, Hypergeometric functions of three variables, Ganita 5 (1954) 77–91.
[48] M. Sofroniou, G. Spaletta, Precise numerical computation, J. Log. Algebraic Program. 64 (2005) 113–134.
[49] W. Sun, B. Wu, C. Lim, Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire, 

J. Sound Vib. 300 (2007) 1042–1047.
[50] L. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, USA, 2019.
[51] D. Van Hieu, A new approximate solution for a generalized nonlinear oscillator, Int. J. Appl. Comput. Math. 5 (2019) 

1–13.
[52] S. Wolfram, An Elementary Introduction to the Wolfram Language, 2nd ed., Wolfram Media, Inc., Urbana–Champaign, 

ILL, USA, 2017.
[53] WRI, Mathematica quick revision history, https://www .wolfram .com /mathematica /quick -revision -history.html, 2023.
[54] B. Wu, C. Lim, W. Sun, Improved harmonic balance approach to periodic solutions of non–linear jerk equations, Phys. 

Lett. A 354 (2006) 95–100.
[55] D. Younesian, H. Askari, Z. Saadatnia, M. KalamiYazdi, Analytical approximate solutions for the generalized nonlinear 

oscillator, Appl. Anal. 91 (2012) 965–977.
[56] L. Zhao, He’s frequency–amplitude formulation for nonlinear oscillators with an irrational force, Comput. Math. Appl. 58 

(2009) 2477–2479.

http://refhub.elsevier.com/S0022-247X(23)01018-1/bibEC28E1F100CEADAEB2884AEB54DDF6F8s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib180C1D852F05601F80E91BAC30AD4F24s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib180C1D852F05601F80E91BAC30AD4F24s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib3E7838888EA1C7EA756C3748EE9AC02As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC5A20AD65937405859BDBA6D77038762s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC5A20AD65937405859BDBA6D77038762s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib9DEB7B4911F58E0FFF1A137F0CB2F70Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibCFA0289E251C09F973B4BE829983302As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib4B79D5E58B778F4489B53894CA008F8As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib4B79D5E58B778F4489B53894CA008F8As1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib4AB7F72B1A45613BEAD2E99B6CAFE1B2s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib4AB7F72B1A45613BEAD2E99B6CAFE1B2s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibF1177F90CE3AD120222B37EFC797B6B0s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibB909309E1C6660824E4F5557E23DD7BFs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC922B6F42294FE2CF451E30FB187D794s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib8887F084216BA1E2993854E53765834Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib8887F084216BA1E2993854E53765834Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib46843730EFEBBDFF037204BC00D3BC46s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib5EA8477FA928992F5AF9D8C4B110C46Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib5EA8477FA928992F5AF9D8C4B110C46Cs1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib43EEFCA5056D5410F16CA0AA84F29EC8s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib43EEFCA5056D5410F16CA0AA84F29EC8s1
https://www.wolfram.com/mathematica/quick-revision-history.html
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC8455BD7F13E411D0034B12ED21E173Ds1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bibC8455BD7F13E411D0034B12ED21E173Ds1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2E676CA36AED182FB6C426206C0A1A10s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib2E676CA36AED182FB6C426206C0A1A10s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib7403073094374B2BCD010B85A1E4B3A9s1
http://refhub.elsevier.com/S0022-247X(23)01018-1/bib7403073094374B2BCD010B85A1E4B3A9s1

	Exact time--integral inversion via Čebyšëv quintic approximations for nonlinear oscillators
	1 Introduction
	2 General quintic oscillator
	3 Time--integral
	4 Application to the relativistic oscillator
	5 Quinticate oscillators: further results and discussion
	5.1 Nonlinear oscillator (2)
	5.2 Duffing relativistic oscillator (3)

	6 Conclusions and future work
	Funding
	Publishing ethics
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


