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Macroscopic hyperpolarization enhanced with quantum optimal control
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Hyperpolarization of nuclear spins enhances nuclear magnetic resonance signals, which play a key role
for imaging and spectroscopy in the natural and life sciences. This signal amplification unlocks previously
inaccessible techniques, such as metabolic imaging of cancer cells. In this paper, electron spins from the
photoexcited triplet state of pentacene-doped naphthalene crystals are used to polarize surrounding protons. As
existing strategies are rendered less effective by experimental constraints, they are replaced with optimal control
pulses designed with REDCRAB. In contrast to previous optimal control approaches, which consider one or two
effective nuclei, this closed-loop optimization is macroscopic. A 26% improvement in signal and 15% faster
polarization rate are observed. Additionally, a strategy called autonomously optimized repeated linear sweep
(ARISE) is introduced to efficiently tailor existing hyperpolarization sequences in the presence of experimental
uncertainty to enhance their performance. ARISE is expected to be broadly applicable in many experimental
settings.

DOI: 10.1103/PhysRevResearch.4.043179

I. INTRODUCTION

Sensitive nuclear magnetic resonance (NMR) spectroscopy
and magnetic resonance imaging (MRI) are key drivers in
research areas from life sciences through material science to
quantum computing. The feasibility and sensitivity of such
experiments critically depend on the polarization of the uti-
lized spins. Dynamic nuclear polarization (DNP) techniques
have been shown to increase NMR signals by multiple orders
of magnitude [1], enabling previously inaccessible imaging
techniques [2]. DNP transfers the polarization from highly
polarized electron spins to a target species of nuclear spins
[3] used for NMR protocols. Electron spins are polarized, for
example, by thermalization at low temperatures and high mag-
netic fields or by optical polarization of atoms and suitable
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molecules in gases, liquids, and solids [1,4–11]. In this paper,
the electron spins of photoexcited triplet states in pentacene
are used as the source of polarization, and the proton spins
of naphthalene are used as the target. The final polarization
of the sample is enhanced via the application of quantum
optimal control (QOC) techniques to a dynamic nuclear po-
larization scheme in a closed-loop fashion. The efficiency of
the overall proton polarization process is increased by op-
timizing the DNP transfer process using closed-loop QOC.
To guide the algorithm towards a solution which produces
a strongly increased signal, it is helpful to provide a good
initial guess. Consequently, a new multistep protocol is intro-
duced called autonomously optimized repeated linear sweep
(ARISE). It provides a systematic approach to the improve-
ment of “integrated solid effect”-like (ISE-like) linear sweep
DNP sequences in the presence of an unknown experimental
transfer function. The macroscopic properties of the polarized
crystals have been further investigated in a separate publica-
tion [12] confirming an improved sample polarization of 25%.

Some background regarding the target quantum system
and existing DNP strategies, as well as an introduction to
QOC, is given in Sec. II. In Sec. III A the measurement tech-
niques are explained in more detail, and a description of the
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FIG. 1. Experimental realization. (a) Schematic of the in-house polarizer device. The sample (red) is mounted on a sample stick, which
allows it to be moved between a MW cavity and an NMR coil inside a magnetic field at cryogenic temperatures. The laser is coupled to the
system via an optical fiber. (b) Level scheme of pentacene (electron spin) and naphthalene-based protons (nuclear spins), including the effect
of laser excitation (green) and natural decay (blue). Spin diffusion to external nuclear spins [17] is indicated. (c) 30 s of hyperpolarization
show a clear signal enhancement compared with a 1-h thermal buildup; the thermal signal is scaled by a factor of 50 to emphasize its faint
polarization peaks. (d) Schematic of the pulse sequence, consisting of a laser pulse for electron spin initialization and a MW pulse (of variable
frequency) for polarization transfer to the nuclear spins. This basic block is repeated with a repetition rate of 1 kHz (i.e., 30 000 repetitions are
performed in 30 s). After the polarization, the sample is shuttled into the NMR coil, where the magnetization is measured. An integral over the
detected proton polarization is passed to REDCRAB, which provides the shape of the next MW pulse.

experimental setup is given in Sec. III B. The polarization
results are introduced in Sec. IV A, and a description of the
ARISE protocol is given Sec. IV B. The model used in the
simulation is introduced in Sec. V, and details of the simula-
tion are given in Sec. V A. In Sec. VI the results of the paper
are put into context.

II. BACKGROUND

A. Pentacene-doped naphthalene crystals as a target

The system of naphthalene doped with pentacene, shown
in Fig. 1(b), exhibits unique properties. In its ground state,
the electron spin is in a singlet state, and therefore the host
crystal is free of paramagnetic defects. Consequently, proton
relaxation times of 50 h and above have been demonstrated at
77 K and 0.5 T [13].

In its metastable triplet state, the pentacene molecule
exhibits a highly polarized electron spin with favorable life-
times. Together with surrounding nuclear spins, this forms a
central spin system that resembles other well-known systems
such as nitrogen vacancy (NV) centers in diamond or phos-
phorus in silicon. This quantum resource for DNP leads to
record values of 80% proton polarization [14], which amounts
to a polarized proton concentration of 50 M. Exemplary appli-
cations of these nuclear-spin-polarized crystals are portable

neutron spin filters in neutron scattering experiments [13,15]
and polarization agents for NMR spectroscopy [12,16].

Under typical operating conditions (e.g., high magnetic
field), electron and nuclear spins are mutually off-resonant,
prohibiting direct polarization transfer. Advanced spin control
methods, such as DNP, can be used to transfer polarization.
Real-world experimental constraints such as material quality,
field inhomogeneities, and limited power and bandwidth com-
monly impair the ideal performance of existing DNP methods.
Under such constraints, the maximum achievable polariza-
tion is reduced, and the time to reach a certain polarization
increases.

B. Existing DNP strategies

In the case where the heterogeneity among spins is suf-
ficiently small, they are all equally well controllable. As a
result, techniques such as nuclear orientation via electron-
spin locking (NOVEL) [18,19] can be employed to transfer
polarization. As the environmental complexity and inhomo-
geneity increase, other techniques are needed. Transferring
polarization while counteracting a broad electron spin res-
onance (ESR) is done with the so-called “integrated solid
effect” (ISE) [20,21]: After the electron spin initialization,
either a linear magnetic field sweep is performed, while the
sample is driven by a constant microwave (MW) field B1, or a
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linear MW frequency sweep is performed at a static magnetic
field. The ISE method is notable for both its simplicity and
its robustness and has been shown to reach up to 80% total
nuclear polarization in naphthalene under optimized condi-
tions (e.g., liquid He cooling, sample quality) [14]. It has also
been applied to NV centers in diamond at room temperature
[11,22–24]. While optimizing DNP sequences on a model,
i.e., performing open-loop quantum optimal control, is one
method to recover some of their performance [25–27], another
is to employ closed-loop QOC by allowing an algorithm to
directly control the experiment [shown in Fig. 1(d)] [28–32].
The latter approach is particularly appealing when the exper-
imental setting is very complex or impossible to accurately
model. Due to the complex molecular environment, coupled
with experimental constraints, the system’s true transfer func-
tion is obscured, making accurate simulation difficult.

C. Quantum optimal control

Many advances in quantum technology were only possible
due to the design of sophisticated control strategies using
methods of QOC [28–32]. Established methods of QOC in-
clude gradient-based algorithms such as gradient ascent pulse
engineering (GRAPE) [33,34], the Krotov algorithm [35,36],
or gradient-based algorithms based on automatic differenti-
ation [37], as well as algorithms based on an expansion of
the control pulse into a truncated basis such as the dressed
chopped random basis (dCRAB) algorithm [32,38,39], typ-
ically coupled with direct search maximization algorithms.
This pulse expansion ansatz can also be combined with the
gradient approach [40–42]. The dCRAB algorithm is read-
ily applicable to closed-loop control as it can be integrated
directly with an experiment, allowing the user to treat the
system as a black box. For this purpose, the dCRAB al-
gorithm was implemented in the QOC software packages
Remote-dCRAB (REDCRAB) [43–46] and its open-source ver-
sion, Quantum Optimal Control Suite (QUOCS) [47]. Recently,
REDCRAB enabled automatic calibration of quantum gates
[45] and robust sensing operations [48] with NV centers in
diamond, optimization of Bose-Einstein condensate (BEC)
creation in ultracold atoms [46], and the creation of a 20-
atom Schrödinger cat state with Rydberg atoms in an optical
lattice [49].

III. METHODS

A naphthalene crystal doped with pentacene-d14 grown
in-house provides the electron spin system used as the po-
larization target. The crystal is placed in a magnetic field
of 230 mT at around 130 K. This temperature is chosen
because this is the limit of the polarizer. A series of laser
pulses initialize the pentacene molecules into their metastable
spin-polarized triplet state T2 [see Fig. 1(a)] via the singlet
state S1, from which it decays to the lower T1 triplet via
intersystem crossing (ISC) [50]. Depending on the occupation
of the T1 states, the pentacene returns to its ground state S0

after 80–180 μs. During this intermediate time, a MW DNP
sequence transfers electron spin polarization to the densely
packed proximal proton spins. Strong dipolar coupling among
protons distributes polarization throughout the entire crystal

FIG. 2. Optimization procedure. Comparison between the linear
sweep pulse (top left) and the pulse after optimization (top right). The
MW amplitudes are shown in orange, and the detuning from cavity
resonance is shown in blue, representing the control pulses, which
are shaped during the optimization. Bottom: The change in the final
polarization after the pulse over different sub- and superiterations
during the optimization.

via spin diffusion. The macroscopic proton polarization is
measured via NMR spectroscopy after a 30-s buildup [see
Fig. 1(c)].

Starting from an external linear sweep (similar to ISE),
and altering the amplitude and phase of the MW pulse using
REDCRAB, this polarization is optimized (for more details, see
Sec. IV B). The optimization starting from a linear sweep is
shown in Fig. 2. Closed-loop QOC implicitly accounts for
all experimental conditions influencing the transfer from opti-
cally initialized pentacene spins to macroscopic polarization.
These could be, for example, the different lifetimes in the
metastable state for different electron spin states or variations
of the pentacene lifetimes throughout the crystal which might
impact the final polarization.

Another potential source of uncertainty could be the strong
variation of couplings between the electron and surrounding
proton spins or the distribution of polarization via spin diffu-
sion during and after the MW DNP sequence. Fluctuations in
the experimental setup might also play a role, as bandwidth
limitations of microwave equipment, spatial and spectral MW
field variation inside the MW resonator, and spatial variation
of laser intensity can also impact the efficiency. Addition-
ally, it is challenging to control the amplitude of the MW
field while its frequency is scanned across the resonance.
Black-box (closed-loop) QOC does not directly incorporate
variations in these parameters, whose role in polarization
transfer is not understood; however, if they play a role, it can
be captured by such an optimization. Importantly, some of
these influences are very hard to predict theoretically.

A. Measurement technique

The crystal grown in-house is cleaved along the ab crys-
tallographic plane and mounted on a sample holder [see
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Fig. 1(a)] oriented along the b crystallographic axis. The
sample holder is then attached to a motorized stage, enabling
it to be shuttled into the MW cavity, where it is cooled to
130 K. Optically detected magnetic resonance (ODMR) can
be observed in pentacene-doped naphthalene crystals, where
the triplet state is created using a 556-nm laser pulse. By
observing the fluorescence of the crystal under constant MW
illumination, while changing the magnetic field, the electron
spin resonance of pentacene can be found. The high-field
transition of the pentacene triplet is used for both alignment
and polarization. The crystal is then aligned by monitoring the
ODMR spectrum while the sample is rotated; the best align-
ment is found when the resonance field is maximized. Rabi
oscillations are observed with a maximum Rabi frequency of
19.3 MHz, by varying the duration of a resonant MW pulse.

B. Experimental realization

The experimental results are obtained in an in-house po-
larizer device, shown in Fig. 1(a), consisting of an optically
accessible MW cavity inside an electromagnet operating at
fields up to 800 mT. The experimental sequence used to hy-
perpolarize the sample is shown in Fig. 1(d). Within the MW
cavity, photoexcited triplet states are created using a 556-nm
pulsed laser with a repetition rate of 1 kHz delivering 0.35 mJ
optical power in a 600-ns laser pulse every 1 ms and setting
the timing of experiments. The spin state is then manipulated
using a MW pulse in between laser pulses. Sophisticated pulse
shapes can be sampled and uploaded to an arbitrary waveform
generator (AWG) using the experiment control software QUDI

[51]. The sample is attached to a holder that allows it to
be shuttled into an NMR coil, which is located next to the
MW cavity. Here, an NMR spectrometer (Magritek Kea2) is
used to read out the polarization of the proton spins using a
1Pulse measurement. This round trip takes approximately 40 s
from the pulse engineered by the REDCRAB software to the
NMR measurement, and the optimizations typically ran for
12 h. Integrating over the peak of the resulting NMR spectrum
provides a relative estimate of the proton polarization. The
REDCRAB algorithm is fed with this integrated signal and its
estimated uncertainty to produce the next guess pulse.

An optional 532-nm continuous wave laser additionally
allows the readout of the pentacene’s electronic spin state
optically; it is not used during closed-loop optimizations,
but during the pentacene spin characterization experiments.
Cooling of the sample is provided by a nitrogen gas flow
system, which allows precise control of the temperature from
130 K to above room temperature; as previously mentioned
the experiments are carried out at this lower limit.

IV. RESULTS

A. Polarization buildup

The optimization directly adjusts the pulse phase for ex-
perimental convenience, but as the detuning modulation �

contains the same information and connects directly to the
system dynamics, it is displayed in Fig. 3 instead. The first
row of Fig. 3 shows the detuning modulation � as a function
of time during the pulse. In the second row, the y axis shows
the amplitude � during the pulse for both the externally ap-

plied field and the internal cavity field. The Hartmann-Hahn
resonance [52], shown in orange, is calculated using the time-
dependent detuning assuming the target spin is a proton. In
the third row of Fig. 3, experimental data and simulation are
compared, showing how the polarization builds up during the
pulse.

The first initial guess pulse is an ISE-like linear sweep
whose parameters (amplitude, sweep rate, and duration) had
already been manually tuned in the experimental setup. The
externally applied amplitude is kept constant, while the fre-
quency is swept across the resonance. This pulse serves as the
benchmark against which the optimized pulses are compared
both in the experiment and in the simulation.

During the experiment, the polarization plateaus at the
center of the pulse before continuing to rise in the second
half of the pulse. The simulation results contain the same
features. However, the plateau is shorter and the initial rise is
slightly delayed compared with the experimental data. These
differences might be caused by the lack of a full analytical
model that extends the existing description of the cavity with
distortions due to electronics and other components of the
setup. It should be noted that polarization plateaus occur in
the simulated results across all pulses when the detuning is
above the resonance condition.

The optimization of this guess results in the pulse la-
beled “optimal (linear),” which shows a relative polarization
improvement of approximately 19%. The evolution of the
figure of merit (FoM) during the search for an optimized pulse
and the comparison between the initial and the optimized
version are shown in Fig. 2.

The “optimal (linear)” pulse transfers the majority of its
polarization during the first 10 μs. It is notable that the de-
tuning is oscillating during that time, and it crosses the cavity
resonance several times. The algorithm slows the sweep down
as the detuning approaches the resonance. Both features ap-
pear in multiple optimization outcomes. Arguably, if some
electron population is left untransferred, subsequent sweeps
through the resonance in both directions (from positive to neg-
ative detuning and back) can serve as additional opportunities
for the polarization of more weakly coupled nuclear spins.

The relative speedup of the polarization transfer during
this pulse is visible in both the simulation and the experi-
ment. However, a divergence between the measurement and
the simulation arises in the latter part of the pulse. This
could be explained by the very fast oscillations in cavity
field amplitude, which are not captured in full detail in the
simulation, due to the unknown transfer function of the setup’s
electronics.

After analyzing the effect of the amplitude and phase of
the pulse independently (see Appendix A for more details),
the MW amplitude is kept constant in later optimizations.
To further explore the idea that repeated sweeps through the
resonance are beneficial, pulses with phase oscillations that
use a range of frequencies and pulse durations are tested;
see Appendix B for more details. The “sinusoidal” pulse
shown in the third column of Fig. 3 is guessed in this man-
ner. It outperforms the linear sweep by approximately 14%.
The “sinusoidal” protocol in Fig. 3 then becomes the new
guess pulse for the optimal control algorithm. After adding
more frequency components, REDCRAB obtains the “optimal
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FIG. 3. Implementation of a selection of polarization pulses. From left to right, the figure presents the following MW pulse schemes on
the resonator: The externally applied linear sweep, a linear sweep-based QOC-generated pulse, a sinusoidal sweep of the detuning, and a
corresponding QOC-generated pulse. The first row gives the detuning applied by the drive with respect to time. The orange area comprises
the window in which the Hartmann-Hahn resonance condition lies (�2 = ω2

0I − �2). The second row shows the Rabi frequency as applied
externally (dashed line), the field inside the cavity (solid blue line), and the resonance condition for the given detuning (thin orange line). The
last row shows how the polarization builds up over the course of the pulse. Experimental values (expt.) are shown in blue, and theoretical
values (sim. for simulation) are shown in gray. To make the comparison between the panels easier, we inserted a solid black line representing
each pulse’s final polarization. Optimal (Sin.), Optimal (sinusoidal).

(sinusoidal)” pulse. It outperforms all other pulses in both
final polarization (approximately 28% higher with respect
to the linear sweep for the short-buildup measurement) and
polarization rate in our setup. When the pulse is significantly
detuned from the resonance, as in the first 5 μs, the energy
gap between the spins is large, and so very little polariza-
tion can be transferred. As this gap closes, the nuclei are
more likely to be polarized, and the pulse slows down to
allow for an extended transfer period. The detuning “slow-
down” was re-created with an analytical polynomial function.
(For details, see Appendix C.) The resulting “fitted optimal”
pulse largely retains the polarization capability of the opti-
mized pulse. The comparable efficiency corroborates that the
“slowdown” feature contributes to the substantial polarization
buildup during the first 30 μs. This behavior is reminiscent
of optimal adiabatic passages with Landau-Zener protocols
and optimal controlled crossings of quantum phase transi-
tions. Both have been investigated in different theoretical and
experimental scenarios [53–57] providing a basis for further
exploration.

The simulated polarization of both the “sinusoidal” pulse
and the “optimal (sinusoidal)” pulse matches the experimental
data closely. Again, the initial step-plateau-step shape of the
“sinusoidal” pulse is reduced after optimization. Almost all
the performance gained by optimizing the pulses arises from
the behavior during the first 40–50 μs of the pulse. This is on
a timescale similar to that of the electron’s decay to the singlet
state. In the simulation, the polarization of the longer pulses

slowly decreases after approximately 80 μs. This was not seen
in the experiment, most likely due to spin diffusion. Many
weakly coupled nuclear spins could lead to a slow distribution
of polarization away from the electron spin. Spin diffusion is
expected on a timescale of approximately 100 μs according
to calculations of the dipolar interaction strength between the
protons [17].

The key result of the paper is shown in Fig. 4, where
the REDCRAB-optimized “optimal (sinusoidal)” pulse demon-
strates two clear improvements over the linear sweep. Firstly,
the magnitude of polarization increases by 26% when using
the optimized pulse. Secondly, the optimized pulse reaches,
in only 3.35 h, the same polarization that the linear sweep
approach obtains after 9 h of continuously repeating the pro-
tocol, making it a factor of 2.6 faster. These times correspond
to ∼ 98% of the maximum polarization of the linear sweep,
which is within the error margin of the polarization mea-
surements. The rate of polarization buildup is 15% faster
compared with the linear sweep. This allows for more than
doubling the number of polarized crystals in a given time.
Previously, crystals were left to polarize overnight to reach
sufficiently high polarization. Using the optimal protocol, it
is now possible, in the current experimental setup, to polarize
several crystals per day. Due to its increased performance, the
“optimal (sinusoidal)” pulse was also applied as the hyperpo-
larization method of choice by Eichhorn et al. [12]. In that
paper, a bulk crystal polarization of 25% is achieved using the
optimized pulse.
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expt.

expt.

FIG. 4. Long-term polarization buildup: Comparing the polar-
ization buildup using the optimal settings for the linear sweep and
the REDCRAB-optimized pulse, shown in Fig. 3. Using closed-loop
optimal control, a higher final polarization is reached in a shorter
buildup time before saturation. The vertical dashed lines mark the
times at which the polarization reaches 98% of the maximum polar-
ization of the linear sweep pulse. This level is reached in 3.35 h using
the optimized pulse, in contrast to 9 h with the linear sweep. The
formulas placed in the figure correspond to the exponential fits, POpti

and PLinear, of the polarization buildup during the optimized pulse and
the linear sweep, respectively.

The saturation of the polarization at this higher level is
likely due to an equilibrium being reached between the po-
larizing sequence and the competing T1 decay process of
the nuclear spins [17]. The lifetime of the nuclear states is
measured to be approximately 3–4 h under laser illumina-
tion, considering the specific values for the magnetic field B0

and temperature. In this case, it is limited due to the laser
illumination and MW fields causing, for example, additional
heating. While this is the limit for the lifetime during polar-
ization transfer, the polarization can be stored in the sample
afterwards for much longer. Lifetimes between 50 h [12] and
800 h [13] have been reported for similar crystals at different
temperatures and magnetic fields.

Additionally, by examining the shape of the optimized
pulse and fitting its main features, a simplified analytical func-
tion is obtained describing the pulse (shown in Appendix C),
labeled “fitted optimal”). This retains most of the enhanced
performance of the optimized sweep.

B. ARISE

Generalizing the steps taken to achieve the results of the
previous section, the autonomously optimized repeated linear
sweep (ARISE) procedure is introduced. Each step provides
a recipe for finding a good initial guess for the proceeding
optimization. While this should be unimportant for an infinite-
dimensionally parametrized optimization without limits and
infinite measurement precision, in practice those restrictions
apply, leading the algorithm to local instead of global op-
tima. Despite the dCRAB algorithm’s approach allowing it
to escape local minima under certain circumstances, the op-
timization time is also drastically reduced if the initial guess
is chosen carefully [32]. The protocol consists of three steps:

(i) Tune the linear sweep. Do a parameter search for the
sweep range �max and duration tLinear producing the most
efficient polarization transfer.

(ii) Construct a multisweep. Set up a protocol which
sweeps the detuning repeatedly between �max and −�max for
Nosc times with a period τ . Do a parameter search for Nosc and
τ , starting from τ = tLinear.

(iii) Apply quantum optimal control. Search the full func-
tion space of the detuning �(t ) using an optimal control
algorithm. The initial guess is provided by the multisweep
protocol from the previous step.

In this paper, steps (i) and (ii) are accomplished through
a simple parameter sweep. During step (ii), the detuning is
swept with the function −�max cos(2πt/τ ); however, this
could be replaced by linear sweeps. As the setup requires the
pulse phase ϕext(t ) as an input, all detunings are translated
to phase modulations (see Sec. V). In general, experimental
feedback determines the best solution for the respective step.
Here, it took the form of the proton NMR signal after 30 000
repetitions of the sequence. The third step is implemented
using the REDCRAB software, which suggests different shapes
for the phase of the pulse (see Appendix H).

V. THEORY

The spin system is modeled as an electron spin coupled to
three nuclear spins. Both the electron and nuclear spins are
considered to be spin- 1

2 particles. A strong, constant magnetic
field B0 = B0ẑ is aligned along the long axis of the pentacene
molecule, representing the z axis. The total spin Hamiltonian
of the electron can be written as

Hel = h̄

2
ω0Sσz + h̄2

4

[
D

(
σ 2

z − 1

3
σ(σ + 1)

)

+ E
(
σ 2

x − σ 2
y

)]
, (1)

where σ = {σx, σy, σz} are the Pauli matrices. The Zeeman
interaction is described by ω0S = −γSB0, where γS is the
electron spin’s gyromagnetic ratio. The factors D and E cor-
respond to the zero-field splitting [50,58]. The exact transition
frequency is determined experimentally, and the magnetic
field is aligned such that the splitting is symmetric.

As shown in Fig. 1(b) the electron spin of the pentacene
molecule is excited to the S1 state with a short laser pulse.
From there it decays to the triplet states T2 and subsequently
T1 via intersystem crossing (ISC) [50]. T1 then couples to the
nuclear spins in the vicinity of the molecule. The three states
of the triplet correspond to spin quantum numbers ms = 0
and ms = ±1. An external magnetic field induces a Zeeman
splitting of the ms = ±1 levels, allowing for a two-level ap-
proximation. As the pentacene is deuterated, the resonances
of the pentacene’s own nuclear spins are shifted far enough
from the other protons in the crystal that they can be neglected.
The electron spin is assumed to have its origin at the center
of the pentacene molecule. To extract the parallel and per-
pendicular dipolar coupling to the pentacene’s electron spin,
574 protons of the nearest naphthalene molecules contained
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in the 3 × 3 × 3 unit cells around the pentacene molecule are
modeled.

The driving field has a carrier frequency which is resonant
with the electron spin ωres = D − ω0S . Its amplitude �ext(t )
and phase ϕext(t ) are modulated to control the system. It is
then transformed into the field inside the cavity �int [the
details are given below in Eq. (4)].

Coupling between the electron and nuclear spins is de-
scribed by the hyperfine interaction tensor Ai with the
nuclear spin indices i = {1, 2, 3}. A detuning �es is intro-
duced, describing the deviation of the field inside the cavity
from the electron resonance frequency. In the rotating frame of
the MW, and after applying the rotating wave approximation,
the Hamiltonian is given by [59]

H = h̄

(
Re[�int(t )]Sx + Im[�int(t )]Sy + �esSz

+ ωL

3∑
i=1

I i
z +

3∑
i=1

S · Ai · Ii

)
, (2)

where S = {Sx, Sy, Sz} with Sk = 1
2σk ⊗ 1 ⊗ 1 ⊗ 1 (k ∈

{x, y, z}) are the electron’s spin operators. Ii and I i
k are the

equivalent operators for the nuclear spin with index i, �int

is the complex, time-dependent field inside the cavity, and
ωL ≈ 9.2 MHz corresponds to the Larmor frequency of the
nuclei. The voltage signal, which is fed into the AWG, is
given by

Vext = V (t ) cos ((ωres + �cs) t + ϕext(t )). (3)

The conversion between V (t ) and �ext(t ) is determined di-
rectly from experimental data. The phase modulation ϕext(t )
can be translated into the drive detuning �(t ) = ϕ̇ext(t ).

The effect of the cavity on the external driving field is
characterized by the cavity response factor γcav and given by
the differential equation

∂

∂t
�int(t ) = γcav(�ext(t ) · e−iϕext (t ) − �int(t ))

− i�cs�int, (4)

where �cs describes the constant detuning of the cavity from
the resonance of the electron spin transition frequency [60].

In the secular approximation [61], only the dominant cou-
pling terms along z are kept, giving

S · Ai · Ii ≈ Sz · (
Ai

zxI i
x + Ai

zyI i
y + Ai

zzI
i
z

)
. (5)

They are calculated for the respective position of the nucleus
in the crystal structure by considering a purely dipolar inter-
action [62].

The static detuning values �es for the Hamiltonian shown
in Eq. (2) are drawn from a normal distribution with a full
width at half maximum (FWHM) of 10 MHz to mimic addi-
tional frequency shifts due to magnetic field inhomogeneities
and other impurities.

The system description includes the dephasing of the elec-

tron spin via a Lindblad operator R1 =
√

�el
2 Sz, where �el is

the dephasing rate [63]. The only electron states that interact
with surrounding nuclei are the |0〉 and |1〉 states in the T1

triplet (see Fig. 1). To account for the decay from T1 to S0,

the model includes a shelf state, which does not interact with
the drive. It is only coupled via the loss rates �loss,0 and �loss,1

from the respective triplet states. The corresponding Lindbla-
dians are given by R2 = √

�loss,0 σ−,0 and R3 = √
�loss,1 σ−,1

with σ−,0 = |s〉〈0| and σ−,1 = |s〉〈1|.
The evolution of the density matrix is then solved using the

Lindblad master equation

ρ̇ = − i

h̄
[H, ρ] +

∑
j=1,2,3

(
RjρR†

j − 1

2
R†

j R jρ − 1

2
ρR†

j R j

)
,

(6)

where ρ is the density matrix of the system.

A. Simulation

The solutions to the differential equations in Eqs. (6)
and (4) are calculated numerically using DIFFERENTIALEQUA-
TIONS.JL [64] and other JULIA packages [65–78]. To obtain a
realistic polarization buildup, Eq. (6) is solved for and aver-
aged over 1000 instances. For each instance, three random but
distinct nuclei are picked from the 30 most strongly coupled
nuclei, and the detuning �es is sampled from a Gaussian
distribution. This way, mechanisms which are neglected in
the common weighted-sum single-nucleus approximation are
captured. Examples include the repolarization of the electron
spin through partially polarized nuclei or the redistribution
of polarization from one nucleus to another. The mean over
many runs with different coupling combinations takes into
account the variety of couplings in the system with reasonable
computational resources.

The cavity response γcav is determined by repeatedly ap-
plying constant external drive fields with different cavity
detunings �cs, obtaining a photon count that corresponds to
the electron state.

B0 is adjusted such that the spin always stays resonant with
the drive frequency. Oscillations are recorded for times up
to 0.6 μs from the start of the drive pulse. The detuning is
swept through a range of ±25 MHz around the resonance.
The maximum of the Fourier transform of the photon count
then corresponds to the Rabi frequency � for a detuning
�cs. The cavity dynamics are complex, leading to a response
similar to the example shown at the top right of Fig. 5.
These measurements are modeled for an electron spin inside
a cavity with a response factor γcav between 5 and 14 MHz
(range suggested by response time based on the measured
Q factor of the resonator using a spectrum analyzer). The
resulting Fourier transforms are compared with the experi-
mental values. The comparison was done by calculating the
overlap of the normalized measurement and simulation grids,
as shown in Fig. 5. The minimum of the sum of the absolute
difference between each grid point of the measurement and
simulation data is obtained by a Gaussian fit resulting in
γcav = 9.24 MHz.

The values for the decoherence rate, �el, of the elec-
tron spin and the loss rates to the shelf state, �loss,0 and
�loss,−1, are found by performing a Hahn echo measurement
and state-dependent lifetime measurements. For the dephas-
ing time of the electron, 1/�el = 10 μs is obtained, and the
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FT of expt. data

FIG. 5. Characterization of the setup via response factor γ . The
agreement between experiment and simulation, �I , is calculated
via the Fourier transform � of the driven Rabi signal for varying
cavity detunings (top). The integral indicates the overlap of measured
and simulated distributions, which is shown for different values of
cavity response fed to the simulation in the bottom plot. The dashed
black line indicates the minimum of the error in overlap between
simulation end experiment at γcav = 9.24 MHz (bottom). FT, Fourier
transform.

triplet-state decay times are measured to be 1/�loss,0 = 80 μs
and 1/�loss,−1 = 180 μs.

VI. DISCUSSION AND OUTLOOK

The use of closed-loop optimal control provides a strat-
egy for improving hyperpolarized NMR signals in complex
experimental setups despite the unknown transfer function. A
concern often raised about numerically optimized sequences
is that they lose generality and only apply to a specific setup
or sample. In contrast, the “optimal (sinusoidal)” protocol has
been successfully applied on different crystals with varying
spin relaxation times across an extended period of time [12].
It is now the gold-standard pulse in the laboratory.

The combination of a 15% faster polarization rate and a
26% higher polarization level provides a factor of 2.6 reduc-
tion in the time taken to polarize crystals to within the margin
of error of the previous method. As a result, multiple crystals
can be polarized per day to be used in external hyperpolariza-
tion experiments [12]. Furthermore, these improvements lead
to higher levels of polarization in a shorter time, resulting in
an overall polarization within the crystal of about 25% [12].
Such strongly polarized crystals are necessary to transfer po-
larization to external nuclear spins. By operating under liquid
helium conditions and with improved crystal quality, even
higher values are anticipated [14]. Mimicking the features
of the optimized pulse by fitting an analytical function to it
(as shown in Appendix C) retains almost all the improved
performance. It represents a good starting point not only for
future optimization, but also for further investigations of the
system dynamics.

A key feature of all the sequences that outperform the
linear sweep is that they repeatedly sweep through the cavity
resonance. Hence the sequences are given an extra opportu-
nity to transfer polarization, suggesting that the first sweep
leaves some electron polarization untransferred. The simula-
tion shows that the first sweep primarily transfers to one of the
most strongly coupled nuclear spins, while subsequent sweeps
redistribute the polarization to a wider range of couplings.
This type of dynamics can only be accounted for when mul-
tiple nuclear spins are considered or the optimization is done
on a macroscopic system.

The ARISE protocol offers a starting point for future
optimizations of DNP sequences using both open- and closed-
loop protocols. Inherently flexible, the protocol is easily
customized to fit any number of setups, including the complex
molecular environment seen here.

In conclusion, the application of the ARISE protocol re-
sults in a 26% improvement in the polarization level and 15%
faster polarization rate. Consequently, crystals were efficiently
polarized to 25% bulk proton polarization. These crystals
were then used as the polarization source for an external
hyperpolarization experiment [12] which demonstrated strong
transfer to external spins.
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APPENDIX A: AMPLITUDE VERSUS PHASE VARIATION

To separate the respective effects of amplitude and phase
modulation, these two parameters are investigated indepen-
dently (Fig. 6). The first test was a basic linear sweep and
the “optimal (linear)” pulse, where it was observed that the
optimized pulse leads to higher polarization. To test only
the optimized amplitude modulation, the optimized phase is
reset to the initial guess while the phase modulation was kept
(“optimal amplitude + linear phase”). Similarly, to test the
optimized phase modulation, the amplitude is held constant,
as in the linear sweep, and the optimized phase is applied
(“linear amplitude + optimal phase”).

By comparing those four pulses, it becomes clear that the
amplitude modulation plays no role in the polarization transfer
and only the pulses with optimally controlled phase modu-
lation lead to enhanced polarization (highlighted in Fig. 6).
Testing the phase of the optimized pulses with different
constant MW amplitudes shows that using a higher MW am-
plitude always leads to better polarization transfer (see Fig. 8
in Appendix C).

APPENDIX B: SINE OSCILLATION FREQUENCY TESTS

Following the idea that subsequent sweeps through the
resonance in alternating directions further enhance the
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FIG. 6. Amplitude vs phase variations: Comparing the linear sweep (“linear”) with the corresponding QOC-generated pulse [“optimal
(linear)”], as well as combinations of both. In the third and fourth columns the amplitude array of one is combined with the phase array of
the other (“optimal amplitude + linear phase” and “linear amplitude + optimal phase”). The increase in polarization over the optimization is
caused solely by the changes in phase rather than amplitude (compare highlighted plots).

polarization, a sinusoidal pulse is tried. To find the optimal
pulse, both the frequency of the oscillation and the number
of resonance passages were varied. For better comparison, the
length of a half oscillation is used as a parameter instead of
the frequency, which means passing through the resonance
once, similar to a basic ISE-like linear sweep [Fig. 7(a)]. The
second parameter, which describes the passages through the
resonance, is then given by the number of half oscillations
[examples given in Fig. 7(c)].

In Fig. 7(b) the polarization for different parameter sets
(length and number of half oscillation) is compared with the
standard linear sweep (dashed line). Increasing the number of
resonance passages leads to an increase in polarization for all
lengths. While most of the applied pulses beat the standard
linear pulse, a maximum polarization for a length of 20 μs
and eight half oscillations was found [Fig. 7(d)]. This pulse
was characterized in the main text and used a new starting
point for the sinusoidal-based optimal control.

APPENDIX C: FITTED OPTIMIZED PULSE

The “fitted optimal” pulse shown on the right-hand side
in Fig. 8 was designed by modeling the shoulder feature
of the sinusoidal-based optimal control (OC) pulse resulting
from closed-loop optimizations of the sinusoidally varying
pulse in the detuning regime. Repeating mirrored polynomial
functions emulate the slowdown of the detuning sweep around
resonance. A variation of the externally applied voltage kept
constant during the pulses displays an improvement of polar-

ization transfer for higher external drive amplitude. Except for
the highest driving amplitudes, at the limit of the experimental
capabilities, the fitted pulse is equal to or outperforms the
pulse resulting from the closed-loop iterations. Therefore it
serves as a good starting point for use in other, similar setups
and further optimizations as well as theoretical and analytical
transfer calculations and numerical simulations.

APPENDIX D: NAÏVE SWEEP CORRECTIONS

While a linear sweep is applied outside the cavity, the
mentioned effects lead to a nonlinear sweep inside the cavity.
However, the drive would appear faster when passing through
the cavity resonance, compared with the part of the sweep far
outside the resonance. Measuring the cavity linewidth and Q
factor allows the calculation of the expected deviation from
the linear sweep. Calculating an input function with modified
amplitude that takes the cavity properties into account would
be the first naïve approach to overcome this issue. Trying this
did not, however, improve the polarization values.

APPENDIX E: COHERENCE MEASUREMENTS

The nuclear spin relaxation time T1 and the electron spin
coherence time T2 were measured. For the nuclear spin relax-
ation time T1 measured under experimental conditions (e.g.,
temperature, laser illumination), a value of around 223 min
(Fig. 9, top) was recorded. For the coherence time of the
electron spin, T2, a standard Hahn-echo sequence [79] was
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(a)

(b)

(c)

(d)

FIG. 7. Comparing different sinusoidal pulses. (a) Half oscilla-
tions with different frequencies comparable to different speeds of
the ISE-like linear sequences. (b) For all six frequencies in (a),
the polarization after up to eight half oscillations is measured and
compared with the polarization after the linear sweep (dashed line).
(c) Example pulses to visualize the idea of the measurement. (d) Si-
nusoidal pulse that gave the highest polarization.

used, and a value of around 9 μs was obtained (Fig. 9, bot-
tom).

APPENDIX F: POLARIZATION BUILDUP

Polarization p in the crystal is built up by iteratively ap-
plying the basic polarization sequence many times (see Fig. 3
in the main text). The final polarization will be given at the

FIG. 8. Polarization performance of the linear sweep (“linear”),
the QOC pulse generated from a sinusoidal initial guess [“optimal
(sinusoidal)”], and its fit (“fitted optimal”) for increasing constant
drive amplitudes. Guided by the outcome of the optimal control
algorithm, the first ∼20 μs of the “optimal (sinusoidal)” pulse are
remodeled analytically by tuning polynomial functions to match the
detuning’s shoulder feature. Even for lower Rabi frequencies, the
optimized pulses outperform the initial ISE-like linear approach.

equilibrium of two competing effects: Each time the basic
sequence is applied, a fraction α(1 − p) of the remaining
unpolarized nuclear spins will be polarized, where α is the
polarization power of the sequence. At the same time, the
polarized nuclear spins decay at a constant rate γ .

d p

dt
= α(1 − p) − γ p. (F1)

Solving Eq. (F1) leads to the equation

p(t ) = pmax(1 − e−γ̃ t ), (F2)

where pmax = α/(γ + α) and the parameter γ̃ = γ + α can
be obtained from a fit to the data. From the polarization
built up while applying a linear sweep, γ̃ ≈ 0.0061 min−1

and pmax ≈ 14 140 arb. units are obtained. When applying the
optimal sequence, γ̃ ≈ 0.0071 and pmax ≈ 17 850 arb. units
are obtained. An additional measurement, T1, gives 1/γ ≈
223 min (Fig. 9, top). This translates into estimates for the fi-
nal polarization of pmax ≈ (27.8 ± 1.3)% for the linear sweep
and pmax ≈ (35.1 ± 1.7)% for the optimal sequence. Note that
the true value of γ is probably slightly larger than in the T1

measurement due to the polarization pulse sequences. If, for
example, 1/γ ≈ 200 min (or 1/γ ≈ 180 min) is considered,
the polarization for the optimal sequence drops to pmax ≈
(26.2 ± 3.4)% [or pmax ≈ (16.5 ± 5.2)%] and similarly for
the linear sweep.

APPENDIX G: EFFECT OF THE NUMBER OF NUCLEI
ON THE MODEL

Each electron spin is surrounded by a large number of pro-
tons, forming the nuclear spin bath. As only a limited number
can be simulated at a time, subgroups of nuclei are considered
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FIG. 9. Top: T1 measurement of the nuclear spins under experi-
mental conditions. Bottom: T2 measurement of the electron spin via
Hahn echo.

and averaged over. Fortunately, the molecular and crystallo-
graphic properties of the naphthalene-h8 specimen doped with
pentacene-d14 are well known. Hence the orthogonal (Ai

zx, Ai
zy)

and parallel (Ai
zz) parts of the hyperfine tensor can be directly

calculated [62] for the surrounding protons in the crystal.
Instead of including the entire bath as a single effective nu-
clear spin [59], several nuclei are considered individually in
the polarization dynamics. This step is necessary to reflect
the effects caused by complex pulse shapes obtained by the
optimization, as well as the distortion by the cavity. Since the
pulses cross the resonance line multiple times and are repeated
successively for polarization buildup, strongly coupled nuclei
are usually polarized first but can be depolarized again so
that excitation is transferred to other nuclear spins. Because
the electron spin is reinitialized before each pulse application,
each iteration can polarize different nuclei. Up to six nuclei
were considered during the initial investigation. However, for
the figures presented in this paper, the following combination
of spins was used to keep computational resources within
an acceptable range: The electron spin is coupled to three
nuclear spins, where the hyperfine coupling values are ran-
domly selected from the top 30 most strongly coupled protons.
This simulation is repeated and averaged for 1000 sets using
three different random nuclei in each run. This captures the

dynamics of multiple protons coupling to the electron at the
same time, as well as the repetition of the transfer operation
in the experiment.

APPENDIX H: QUANTUM OPTIMAL CONTROL

Optimal control methods aim to optimize a functional f
by modifying time-dependent control functions ui(t ). This
functional is the figure of merit (FoM); it includes all the
relevant information contributing to the quality of an opera-
tion. To simplify the optimization problem, the controls can
be parametrized in terms of Nbe basis functions v�(t ) with
corresponding parameters c�

ui(t ) =
Nbe∑
�=1

c�v�(t ). (H1)

The FoM therefore depends on the coefficients of these
basis functions:

FoM(ui ) = f (c�, v�, t ). (H2)

The solution to the problem is found using an iterative
optimization algorithm, which takes in the FoM for a defined
set of parameters and returns a new set of parameters. Closed-
loop control involves the algorithm directly interacting with
the experimental setup. Hence it automatically takes into ac-
count real-world imperfections. Specifics of the measurement
technique can be found in Sec. III A of the main text. The
algorithm improves the FoM by comparing the results from
different iterations. It follows the direction of improvement,
while exploring the parameter landscape and exploiting its
features. An optimal set of controls is eventually obtained
after a number of iterations and FoM evaluations.

Limiting the size of the parameter landscape reduces the
number of experimental runs and hence the total optimization
time. The dCRAB algorithm [32,38,39,80], in combination
with the Nelder-Mead [81,82] simplex optimization algo-
rithm, is a good choice for this. A small parameter space is
created by randomly picking a number of basis functions,
finding the optimal parameters for them, and then switching to
a new basis set. An optimization in a single parameter space
is called a superiteration. This allows the optimization to start
afresh and continue, even if it temporarily gets stuck in a local
optimum.

For the parametrization the Fourier basis is chosen, which
provides a simple method to restrict the bandwidth of the
controls by limiting their maximum oscillation frequency
component through a capping of ωd,� in

u(t ) =
NSI∑

d=1

Nbe∑
�=1

[
Aopt

d,�
sin(ωd,�t ) + Bopt

d,�
cos(ωd,�t )

]
. (H3)

Nbe represents the number of basis elements (i.e., the size
of the parameter space in each superiteration), while NSI

corresponds to the number of superiterations. The parameter
space of the optimization is spanned by cd,� = {Aopt

d,�
, Bopt

d,�
},

while ωd,� is randomly initialized with frequencies within a
predefined interval for each superiteration defining the ba-
sis functions vd,� = {sin(ωd,�t ), cos(ωd,�t )}. Meanwhile, the
length of the pulses is kept constant.
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The combination of this limited search space for ef-
ficient closed-loop optimization together with the three-
step ARISE protocol (see Sec. IV B in the main text)

enables the encoding of a sufficient amount of infor-
mation in the control pulse to substantially increase its
performance [83].
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