SUPPORTING INFORMATION

Effect of the preparation methods on the physicochemical properties of indium-based catalysts and their catalytic performance for CO₂ hydrogenation to methanol

Phuoc Hoang Ho,^a Giovanni Tizzanini,^b Sreetama Ghosh,^c Wei Di,^a Jieling Shao,^a Oleg Pajalic,^d Lars Josefsson,^e Patricia Benito,^{b,**} Derek Creaser, ^a Louise Olsson ^{a,*}

^a Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

^b Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Bologna, 40136, Italy

^c CO₂ Research and Green Technologies Centre, Vellore Institute of Technology (VIT), Vellore 632014 Tamil Nadu, India

^d Perstorp Specialty Chemicals AB, Perstorp, 284 80, Sweden

^e Josefsson Sustainable Chemistry AB, Skomakarviksvägen 23, 444 48 Stenungsund, Sweden

Corresponding author: <u>louise.olsson@chalmers.se</u> (Louise Olsson), patricia.benito3@unibo.it (Patricia Benito)

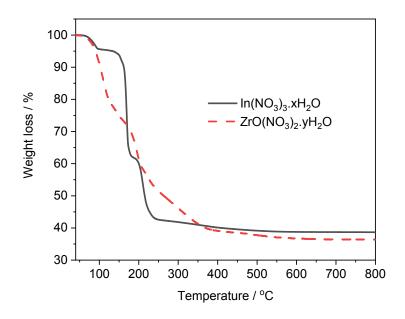


Figure S1. TGA profiles of In(NO₃)₃·xH₂O and ZrO(NO₃)₂·yH₂O precursors.

Figure S2. Optical image of In₂O₃ prepared by urea combustion method.

Section: Criteria for estimation of transport effects

The mass and heat transfer limitations were evaluated based on the total rate of consumption of CO₂ as guided in the textbook Catalysis From Principles to Applications (Edited by Matthias Beller, Albert Renken and Rutger A. van Santen, Wiley-VCH, 2012, pages 102 and 548). The reaction rates (taken as an average over the bed) at the standard reaction condition of 40 bar, WHSV = 6000 mL g_{cat}^{-1} h⁻¹ and

feed molar $H_2:CO_2 = 3:1$ have been used. The calculation was performed for In_2O_3 -ZrO₂ (IZ-carb) catalyst at 623 K (350 °C) which showed the highest conversion of CO₂ at 28%. The bulk density of In_2O_3 -ZrO₂ was measured at approximately 1360 kg/m³, and the apparent activation energy was estimated at around 77 kJ/mol. **Mears Parameter (MP)** was calculated using the equation:

For examing the absence of interphase concentration gradients:

$$MP = \frac{-r_{A(obs)}\rho_b R n}{k_c C_{Ab}} < 0.15$$
(S1)

For examing the absence of interphase temperature gradients:

$$MP = \frac{(-\Delta H)(r_{A(obs)}\rho_b R}{h T_b} \cdot \frac{E}{RT_b} < 0.15$$
(S2)

where,

 $-r_{A(obs)}$ = observed rate of reaction (mol/kg · s)

$$n$$
 = reaction order (assume n = 1 in this reaction)

- Rp = average catalyst granule radius (m)
- ρ_b = bulk density of catalyst bed (kg/m³) = $(1 \Phi)\rho_c$ (Φ = porosity)
- ρ_c = solid density of catalyst (kg/m³)
- C_{Ab} = bulk reactant concentration (mol/m³)
- k_c = mass transfer coefficient (m/s)
- ΔH = enthalpy of reaction (J/mol)
- $E = activation energy of CO_2 (J/mol)$
- R = gas constant (8.314 J/mol.K)

Weisz Prater parameter (WP) was calculated using the equation:

For checking the absence of concentration profiles in an isothermal porous catalyst pellet:

$$WP = \frac{-r_{A (obs)} \rho_c R^2}{D_e C_{As}} < 0.6 \text{ (for n = 1)}$$
(S3)

For examing the absence of intraparticle temperature gradients:

$$WP = \frac{(-\Delta H)(r_{A(obs)}R^2)}{\lambda_e T_s} \frac{E}{RT_s} < 1$$
(S4)

where,

$$-r_{A(obs)}$$
 = observed rate of reaction (mol/kg · s)

 ρ_c = solid density of catalyst (kg/m³)

Rp = average catalyst granule radius (m)

 D_e = effective diffusivity (m²/s)

 C_{As} = surface reactant concentration (mol/m³)

Moreover, the Thoenes-Kramers correlation (as shown below in eq. S3) was used to estimate the packed-bed external mass transport coefficient for the Mears Parameter.

$$\left[\frac{k_c d_p}{D_{AB}} \left(\frac{\Phi}{1-\Phi}\right) \frac{1}{\gamma}\right] = \left[\frac{U d_p \rho}{\mu \left(1-\Phi\right) \gamma}\right]^{\frac{1}{2}} \left(\frac{\mu}{\rho D_{AB}}\right)^{\frac{1}{3}}$$
(S5)

where,

 d_p = particle diameter (m)

 Φ = void fraction (porosity of packed bed)

 γ = shape factor

U = superficial gas velocity through the bed (m/s)

$$\mu$$
 = viscosity (kg/m · s)

 ρ = fluid density (kg/m³)

 $v = \frac{\mu}{\rho}$ = kinematic viscosity (m²/s)

 D_{AB} = gas phase diffusivity (m²/s)

 k_c = mass transfer coefficient (m/s)

Weisz-Prater and Maers parameters were calculated for In_2O_3 -ZrO₂ (IZ-carb) catalysts at 623 K (350 °C) which showed the highest conversion of CO₂, 28%. The Weisz-Prater and Maers parameters were WP = 0.156 and MP = 0.008, respectively for In_2O_3 -ZrO₂ catalysts. The WP < 0.6 and MP < 0.15 indicating the absence of both intraparticle and interphase mass transfer limitations.

Symbol	Term	In ₂ O ₃ -ZrO ₂ ,
r _{obs}	Observed reaction rate at bulk concentration,	5.966E-03
	mol/kg(catalyst)/s	
R _p	The average radius of the catalyst particle (m)	2.125E-04
C _{As}	Reactant (CO ₂) concentration at external particle surface, mol/m ³	195.6
ρ_p	True bulk density of the catalyst, kg/m ³	6400
Т	Reaction temperature, K	623
Р	Reaction pressure, bar	40
D _{CO2-H2}	Diffusivity of CO_2 in a mixture of CO_2 and H_2 , m^2/s	5.64E-06
De	Effective diffusivity of spherical catalyst pellets, m ² /s	5.64E-07
ф	Weisz-Prater Parameter $\phi = \frac{robs * \rho p * Rp2}{De * CAs}$	0.156

Table S1: Calculation of Weisz-Prater criterion for In_2O_3 -ZrO₂ (IZ-carb) catalyst

Symbol	Term	In ₂ O ₃ -ZrO ₂ ,
τ_{obs}	Observed reaction rate at bulk concentration,	5.966E-03
	mol/kg(catalyst)/s	
R _p	The average radius of the catalyst particle (m)	2.125E-04
C _{As}	Reactant (CO ₂) concentration at external particle surface, mol/m ³	195.6
ρ _p	True density of the catalyst, kg/m ³	1360
Т	Reaction temperature, K	623
Р	Reaction pressure, bar	40
D _{CO2-H2}	Diffusivity of CO_2 in a mixture of CO_2 and H_2 , m^2/s	5.64E-06
k _c	mass transfer coefficient (m/s)	1.18E-02
φ	Maers Parameter $\phi = \frac{robs * \rho p * Rp2}{De * CAs}$	0.0008

Table S2: Calculation of Maers criterion for In2O3-ZrO2 (IZ-carb) catalyst

Note that the specific heat capacity (Cp) of H₂ and CO₂ was 14300 and 830 J/kg.K, respectively.

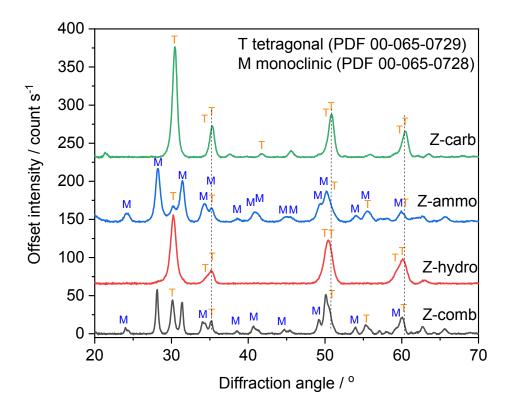
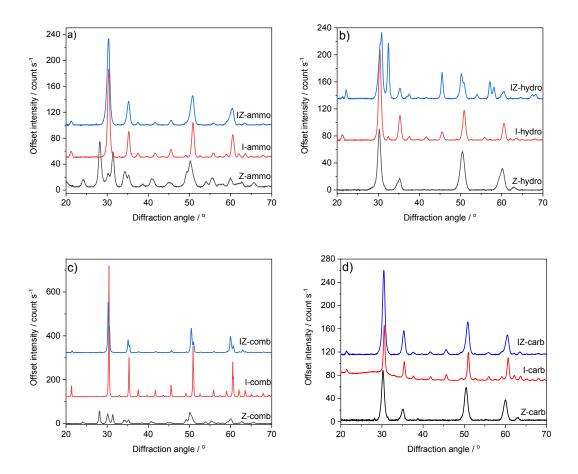
Thermal coefficient of H₂ and CO₂ was 0.182 and 0.017 W/m.K, respectively.

Thermal conductivity of In_2O_3 -ZrO₂ was taken by average values of ZrO₂ (2.7 W/m.K, https://doi.org/10.1016/j.ijft.2023.100424) and In_2O_3 (2.5 W/m.K, https://doi.org/10.1016/j.ceramint.2021.03.129).

The heat transfer coefficient can be calculated from the mass transfer coefficient by using the Chilton-Colburn equation: $\frac{h}{kc} = \rho Cp \left(\frac{Sc}{Pr}\right)^{2/3}$ (S6)

Where Pr and Sc is the Prandtl and Schmidt number, Cp is the specific heat capacity.

The MP and WP for heat transfer examination was $MP = 0.007 \ll 0.15$ and $WP = 0.0002 \ll 1$, indicating the absence of interphase and intraparticle temperature profile.

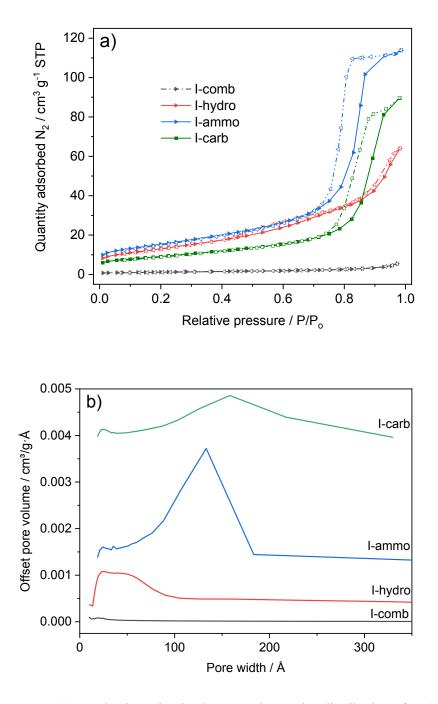

Figure S3. XRD patterns of ZrO₂ samples prepared from different methods.

Figure S4. Comparison of XRD patterns of ZrO₂, In₂O₃, and In₂O₃-ZrO₂ prepared with the same synthesis method.

Electron Image 1			Electron Image 1				Electron Image 1			
IZ-comb	7 15 8	b)	IZ-UH		6 4	7	Spectrum	Sector 8	c)] 1 2	Z-carb
10µm		iυμ								
	IZ-c	comb		1	Z-UH		12	Z-carb		
Sample Point	IZ-c In		In/Zr	l In	Z-UH Zr	In/Zr	lz In	Z-carb Zr	In/Zr	
Sample		comb				In/Zr 1.9			In/Zr 2.1	
Sample Point	In	comb Zr	In/Zr	In	Zr		In	Zr		
Sample Point 1	In 19	comb Zr 19.3	In/Zr 1.0	In 20.3	Zr 10.6	1.9	In 24.5	Zr 11.8	2.1	
Sample Point 1 2	ln 19 19	comb Zr 19.3 16.2	In/Zr 1.0 1.2	In 20.3 21.1	Zr 10.6 8.1	1.9 2.6	In 24.5 30.9	Zr 11.8 12.5	2.1 2.5	
Sample Point 1 2 3	In 19 19 15.1	comb Zr 19.3 16.2 13.9	In/Zr 1.0 1.2 1.1	In 20.3 21.1 18	Zr 10.6 8.1 10.4	1.9 2.6 1.7	In 24.5 30.9 17.2	Zr 11.8 12.5 8.4	2.1 2.5 2.0	
Sample Point 1 2 3 4	In 19 19 15.1 19.9	comb Zr 19.3 16.2 13.9 16.6	In/Zr 1.0 1.2 1.1 1.2	In 20.3 21.1 18 33.2	Zr 10.6 8.1 10.4 10.7	1.9 2.6 1.7 3.1	In 24.5 30.9 17.2 15.9	Zr 11.8 12.5 8.4 7.9	2.1 2.5 2.0 2.0	
Sample Point 1 2 3 4 5	In 19 15.1 19.9 20.6	comb Zr 19.3 16.2 13.9 16.6 14	In/Zr 1.0 1.2 1.1 1.2 1.5	In 20.3 21.1 18 33.2 21.2	Zr 10.6 8.1 10.4 10.7 10.5	1.9 2.6 1.7 3.1 2.0	In 24.5 30.9 17.2 15.9 22.4	Zr 11.8 12.5 8.4 7.9 10.1	2.1 2.5 2.0 2.0 2.2	
Sample Point 1 2 3 4 5 6	In 19 15.1 19.9 20.6 16.6	comb Zr 19.3 16.2 13.9 16.6 14 14.5	In/Zr 1.0 1.2 1.1 1.2 1.5 1.1	In 20.3 21.1 18 33.2 21.2 22.5	Zr 10.6 8.1 10.4 10.7 10.5 8.3	1.9 2.6 1.7 3.1 2.0 2.7	In 24.5 30.9 17.2 15.9 22.4 23.1	Zr 11.8 12.5 8.4 7.9 10.1 8.2	2.1 2.5 2.0 2.0 2.2 2.8	
Sample Point 1 2 3 4 5 6 7	In 19 15.1 19.9 20.6 16.6 30.1	comb Zr 19.3 16.2 13.9 16.6 14 14.5 4.3	In/Zr 1.0 1.2 1.1 1.2 1.5 1.1 7.0	In 20.3 21.1 18 33.2 21.2 22.5 26.3	Zr 10.6 8.1 10.4 10.7 10.5 8.3 8.9	1.9 2.6 1.7 3.1 2.0 2.7 3.0	In 24.5 30.9 17.2 15.9 22.4 23.1 22.1	Zr 11.8 12.5 8.4 7.9 10.1 8.2 8.6	2.1 2.5 2.0 2.0 2.2 2.8 2.6	

Figure S5. SEM/EDX measurements of selected In_2O_3 -ZrO₂ catalysts: a) IZ-comb; b) IZ-UH; and c) IZ-carb. The table shows molar percentages of In and Zr at 8 selected areas of each sample (the mark for each point is shown in the respective electron image). The asterisk (*) indicates that the average value was taken for only the first six points of the IZ-comb sample while it was averaged for 8 points on the IZ-UH and IZ-carb samples.

Figure S6. N_2 physisorption isotherms and pore size distribution of In_2O_3 prepared with different synthesis methods.

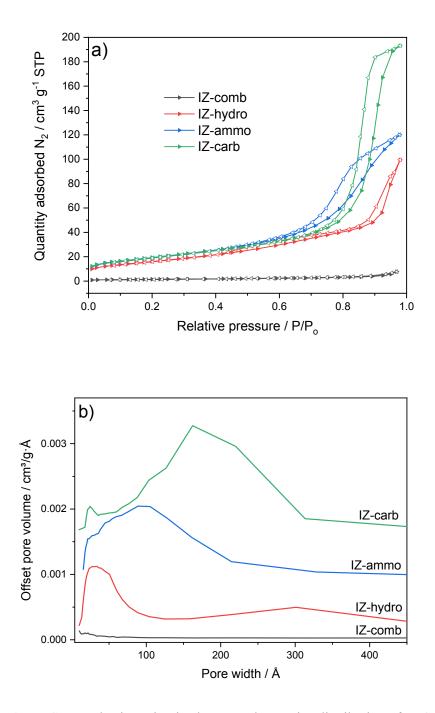
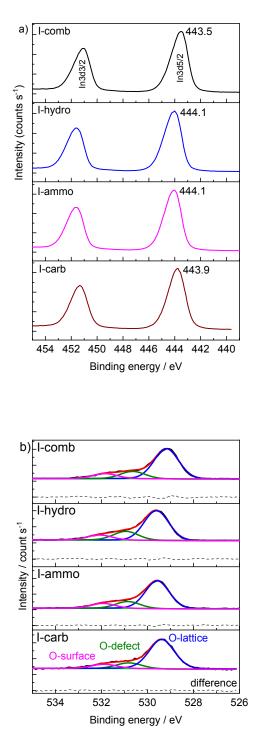
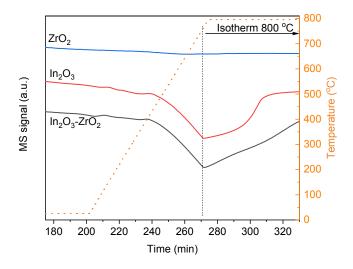




Figure S7. N_2 physisorption isotherms and pore size distribution of In_2O_3 -ZrO₂ prepared with different synthesis methods.

Figure S8. XPS spectra of In_2O_3 catalyst prepared by different methods: a) In3d and b) O1s core level.

Figure S9. Comparison of H₂-TPR profile of ZrO₂, In₂O₃, and In₂O₃-ZrO₂ synthesized by the urea hydrolysis method.

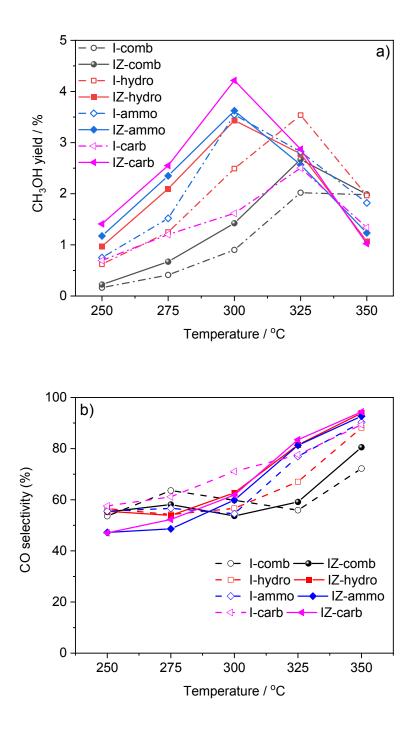


Figure S10. Comparison of In_2O_3 and In_2O_3 -ZrO₂ catalysts on (a) CH₃OH yield and (b) CO selectivity.