
09 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Constrained and unconstrained deep image prior optimization models with automatic regularization

Published:
DOI: http://doi.org/10.1007/s10589-022-00392-w

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/964572 since: 2024-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s10589-022-00392-w
https://hdl.handle.net/11585/964572


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Cascarano, P., Franchini, G., Kobler, E. et al. Constrained and unconstrained deep 
image prior optimization models with automatic regularization. Comput Optim 
Appl 84, 125–149 (2023) 

The final published version is available online at:  https://doi.org/10.1007/s10589-
022-00392-w  

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1007/s10589-022-00392-w
https://doi.org/10.1007/s10589-022-00392-w


International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

Transferred cascade CNNs for COVID-19 classification from
chest x-ray images

Nassima DIF1 and Zakaria ELBERRICHI2

1Ecole Superieure en Informatique, LabRI-SBA Lab, Sidi Bel Abbes, Algeria
2Computer science Department, Djillali Liabes University, EEDIS Laboratory, Sidi Bel Abbes, Algeria

Received Mon. 20, Revised Mon. 20, Accepted Mon. 20, Published Mon. 20

Abstract:
In light of the recent COVID-19 pandemic, identifying effective techniques for detecting the virus has become crucial. One cost-effective
approach is to analyze X-ray images. Deep learning systems have been suggested as an alternative diagnostic tool to assist doctors.
However, available datasets only classify X-ray images into Normal, Pneumonia, and COVID-19 categories. It is essential to distinguish
between bacterial and viral pneumonia due to their different treatment forms. This paper presents three new cascade systems to
differentiate between COVID-19 and non-COVID-19 pneumonia and classify bacterial and viral pneumonia based on a newly compiled
dataset. The proposed cascade system (TCCNN) allows the model to quickly identify complex concepts from the data by combining
different types of convolutional neural networks in two or three stages. Additionally, TCCNN introduces transfer learning within the
cascade system, allowing the convolutional neural network in the current stage to exploit the trained model from the previous stage.
The comparative analysis revealed the efficiency of the proposed systems, where the two-stage system PN CBV achieved an accuracy
of 96.27% based on the DenseNet201 DenseNet121 combination. This study validates the efficiency of the proposed two-stage cascade
systems compared to the three-cascade system and advantage transfer learning within these strategies.

Keywords: Covid-19, Deep learning, Chest x-ray images, Classification, Transferred cascade CNNs

1. Introduction
Since December 2019, new pneumonia has been de-

tected in China and has affected a large number of people.
This disease had a similar behaviour as SARS. In March
2020, WHO declared this pandemic as COVID-19 [1]. The
symptoms of COVID-19 include fever, cold, dry cough,
breathing difficulties, and acute respiratory syndrome [2].
Because of its high transmissibility, controlling the spread
of the virus has become urgent.

For the diagnosis of COVID-19, there are three main
clinical tools in use: Real-time polymerase chain reaction
(RT-PCR), computerized chest tomography (CT), and chest
X-Rays (CXR) scans. RT-PCR tests risk missing positive
cases due to various technical problems. Moreover, testing
kits and the long processing time (4–6 hours [3]) can result
in a rapid spreading rate of COVID-19. As an alternative
and to control the Covid-19 spreading, radiological images
such as X-rays and CT-sans have been exploited. While
CT imaging presents several disadvantages, such as high
radiation doses and sensitivity to patient movements [4],
X-ray imaging is patient-friendly, fast, cheap, and can

detect the disease early. Additionally, X-ray scanners are
largely available. However, X-ray scans take a long time
to detect COVID-19 and require an expert radiologist.
Moreover, their manual analysis is time-intensive and can be
influenced by doctors’ subjectivity. To reduce the doctor’s
workload and avoid their subjective decisions, researchers
have proposed exploiting computer-aided diagnostic sys-
tems (CAD) for COVID-19 detection from X-rays.

Recent advances in machine learning (ML) and deep
learning (DL) techniques have enabled the development of
CAD systems for X-ray image analysis [5], [6]. Convolu-
tional neural networks (CNNs) are the most popular archi-
tectures due to their advantages for image analysis [7], [8],
[9], [10]. However, these architectures risk overfitting due to
the lack of data. To address this problem, many efforts have
been made to create large datasets from different sources
[11], [12], [13], [14]. To the best of the authors’ knowledge,
all voluminous datasets categorize X-rays into three classes:
Covid-19, Normal, and Pneumonia due to the difficulty of
multi-class classification systems.
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The purpose of this contribution is to propose a four-
classification system that distinguishes between COVID-19,
normal, and viral and bacterial pneumonia. This classifica-
tion helps to avoid misclassifying COVID-19 samples due
to their similar characteristics with other viral pneumonia
[15]. To simplify the multi-class classification task, we
proposed a cascade system that divides the classification
according to annotation complexity, starting with the easiest
and progressing to the most complex. TCCNN helps to
quickly identify more complex concepts from data by
stacking CNNs sequentially. The main contribution is that
each model in our cascade system exploits the experience
of the previous model through transfer learning. This was
motivated by the advantages of transfer learning between
similar and non-distant classification tasks [16].

This paper presents several contributions, including the
creation of the largest dataset that is composed of four
classes: COVID-19, normal, bacterial, and viral. Addition-
ally, we propose three types of cascade systems based on
six CNN architectures: two types of two-stage cascade
strategies and a three-stage cascade system for covid-19
classification. Our study integrates a transfer learning strat-
egy within the proposed systems. Furthermore, we compare
one-stage, two-stage, and three-stage cascade strategies,
and between transfer learning from ImageNet and transfer
learning from x-rays in cascade systems. This intense
comparison provides an interesting reference on the best
method for classifying x-rays into four labels.

The remaining parts of this paper proceed as follows:
the first section details the related works to deep learning
methods for COVID-19 classification. Section 2 explains
the proposed method. Section 3 presents and discusses the
obtained results. Finally, the last section concludes this
work.

2. Related works
To address the COVID-19 epidemic, many efforts have

been made to design deep learning applications for COVID-
19 detection based on X-rays [17], [12], [18], and CT
scans [19] of the chest. Various deep learning architectures
have been exploited, such as convolutional neural net-
works (CNNs) [20] and Long short-term memory (LSTM)
[21]. CNNs attracted much interest in detecting COVID-
19 from X-rays due to their advantages for image pro-
cessing. Predictive models for these architectures can be
generated by either training from scratch [17] or using
transfer learning techniques [12], [13], [18], [22], [20].
In [22], the comparative analysis demonstrated the effi-
ciency of transfer learning over training from scratch based
on the VGG16 architecture. Similarly, Nayak et al. [20]
highlighted the important results of transfer learning from
the ResNet−50 compared to the other six CNN archi-
tectures. Chowdhury et al. [12] used a transfer learning
technique from 7 imageNet models and one pre-trained on
X-ray images CheXNet. Their experimental study revealed
that CheXNet was more efficient for binary classification,

whereas, DenseNet201 was more promising in the three-
class classification scheme. In another investigation [18],
using the fine-tuned ResNet50 architecture as a feature
extractor with SVM was more efficient than other pre-
trained models and a trained CNN architecture from scratch.
In [17], a new residual architecture was proposed to ex-
tract features at different abstraction levels. This approach
uses two parallel convolutions with different filter sizes to
capture multi-scale features. Another approach, suggested
by Öksüza et al. [23], proposes using fine-grained, coarse-
grained, and coarser-grained maps generated from three dif-
ferent networks: SqueezeNet, ShuffleNet, and EfficientNet-
B0. This ensemble approach achieved promising results in
detecting COVID-19 from chest x-ray images.

To combine the decisions of several learners, Win et
al. [24] proposed an ensemble deep learning technique.
Their approach was evaluated using 11 types of CNNs. The
authors combined the five best models using soft and hard
voting techniques. Similarly, Brunese et al. [25] proposed
an approach that combines various VGG16 models in a
threefold binary classification framework. The first stage
classified X-rays into normal or pulmonary cases, while the
second stage differentiated COVID-19 from non-COVID-19
pneumonia. Finally, the third stage used the Gradient Class
Activation Map (Grad-CAM) to localize suspected COVID-
19 areas.

Our proposed contribution shares some similarities with
the approach presented in [26], which proposed a two-
cascade network. Their method first categorizes x-ray im-
ages into normal, pneumonia, or tuberculosis, and then
distinguishes between normal pneumonia and covid-19 us-
ing the most efficient network for each level. In contrast,
our contribution proposes three cascade strategies, including
two types of two-stage cascade systems and a three-stage
cascade strategy, with transfer learning applied within each
stage. Furthermore, our approach also has the capability
to classify other pneumonia diseases, such as bacterial and
viral infections.

3. Proposed method
A. Cascade CNN systems

The purpose of cascade systems in COVID-19 detection
from X-rays is to distinguish between normal and pneu-
monia classes or between pneumonia sub-classes at each
level. In these systems, the classification is divided based
on the complexity of annotations, starting from the easiest
to the most complex. Discriminating between normal and
pneumonia is less challenging than classifying pneumonia
sub-classes, such as COVID-19, viral, and bacterial. Divid-
ing the classification process into several stages reduces the
model’s classification load and can also help to reduce the
error rate. These cascade systems are sequential ensemble
learning strategies that combine the decisions of multiple
learners to improve generalization. The originality of our
ensemble learning system lies in the ability of each model
to use the previous model’s experience through a transfer
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learning method within the cascade system. Figure 1 illus-
trates the general structure of the proposed cascade system.

For the two-stage cascade system, X-ray images are
classified into n categories using a pre-trained CNN on the
ImageNet dataset. Subsequently, the first class is partitioned
into m sub-categories, and the resulting dataset is passed
through a second CNN. This network can be either a pre-
trained CNN on ImageNet or the model developed in the
first training stage. The purpose of transfer learning from
stage 1 is to exploit the extracted features from dataset 1
to classify the sub-dataset which contains m sub-classes
(class1.1, class1.2, ..., class1.m). The three-stage cascade
strategy includes an additional step compared to the two-
stage cascade method, where subclass 1.1 of class 1 is fur-
ther divided into k sub-categories (class1.1.1, class1.1.2, ...,
class1.1.k). Finally, the resulting dataset is passed through
a pre-trained CNN from ImageNet or the previously fine-
tuned model from the second stage, and the generated model
is fine-tuned on this new dataset.

The first two-stage scheme denoted as PCN BV,
involves the classification of three distinct classes,
namely non-COVID-19 pneumonia, COVID-19, and nor-
mal. Among these, the non-COVID-19 pneumonia class is
further divided into a sub-group of m classes consisting
of bacterial and viral categories. On the other hand, the
second system (PN CBV) deals with the classification of
pneumonia and normal classes, and the group of pneumonia
sub-classes consists of COVID-19, bacterial, and viral. The
main difference between the two-stage schemes is the classi-
fication level of the COVID-19 class. The primary objective
of this study is to determine whether it is challenging to
distinguish between COVID-19, pneumonia, and normal
classes in the first stage or to classify COVID-19, viral,
and bacterial images in the second stage.

In the three-stage cascade system (PN PC BV), the
group of n classes includes normal and pneumonia. The
pneumonia class is further divided into non-pneumonia
COVID-19 and COVID-19 subcategories. Finally, the last
group of k classes presents subcategories of non-pneumonia
COVID-19, which include bacterial and viral pneumonia.

In this study, we employed the transfer learning tech-
nique from ImageNet due to its extensive use in the litera-
ture and its efficiency. Additionally, we proposed to perform
transfer learning between different models in the cascade
system. This method aims to reuse previously extracted
features by the CNN in the previous stage, as the label
”i” in stage k groups images that share similar features and
morphology to images in its subcategories in stage k+1. In
the cascade system, the trained network on dataset k was
used as a source model for transfer learning to dataset k+1.

The transfer learning method consists of three main
steps. First, the target CNN is initialized by the weights
(P(Xs | Ys)) of the source CNN, which was previously
trained on ImageNet or X-ray images. Then, the last fully

connected layers are removed and replaced by two fully
connected layers and one softmax layer. The fully connected
layers are composed of 1024 and 512 neurons, respectively,
while the softmax layer contains C neurons, where C repre-
sents the number of labels in TT . Finally, the new network
is fine-tuned on the target task.In this study, We used six
CNN architectures: VGG16, VGG19, Inception, Xception,
DenseNet201, DenseNet121. The fine-tuning process was
performed according to CNN’s nature.

4. Experimental study
The experiments were conducted on a computer with an

Intel i5-core processor, 8 GB RAM, and NVIDIA GeForce
GTX 1060 graphics processing unit (GPU), running on a
64-bit Ubuntu 16.04 operating system with Python.

We trained all CNNs based on the transfer learning
strategy in 20 epochs with a batch size of 64. We used
the Adam optimizer with a learning rate of 0.001. For
evaluation, we used the stratified hold-out method: 60%
for training, 20% for validation, and 20% for the test. To
validate the efficiency of the proposed systems, we used
four evaluation metrics, namely: accuracy, recall, precision,
and F1-score.

A. Data compilation
The emergence of the COVID-19 pandemic has led

researchers to propose voluminous datasets. To the best of
the authors’ knowledge, all voluminous datasets such as
COVID-19 Radiography Database1, COVID-QU-Ex [27],
and COVIDx 2 classify CXR images into three classes:
Normal, Pneumonia, and COVID-19. In this context, the
pneumonia class groups viral, bacterial, and other pneumo-
nia variants.

It is crucial to distinguish between bacterial and viral
pneumonia since they require different forms of treatment.
Bacterial pneumonia can be treated with antibiotics, while
viral pneumonia requires supportive care [28]. Therefore,
our study aims to distinguish between COVID-19 and non-
COVID-19 pneumonia and classify bacterial and viral pneu-
monia. To generate our multi-source dataset COVID-QU-
Ex 4C, we used three publicly available datasets: COVID-
QU-Ex 3 [27], Chest-Xray-Pneumonia 4 [28], and Qata-
cov19 5.

Table I provides an overview of the proposed COVID-
QU-Ex 4C dataset. The dataset includes normal and
COVID-19 instances selected from the COVID-QU-Ex
dataset, as well as bacterial and viral classes obtained by

1https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
2https://github.com/lindawangg/COVID-

Net/blob/master/docs/COVIDx.md
3https://www.kaggle.com/datasets/anasmohammedtahir/

covidqu
4https://www.kaggle.com/datasets/paultimothymooney/

chest-xray-pneumonia
5https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset
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Figure 1. The proposed cascade strategy.

merging bacterial and viral images from the Chest-Xray-
Pneumonia and Qata-cov19 (Control Group II) datasets.

TABLE I. The compiled COVID-QU-Ex 4C dataset.

Source Class Number Total

COVID-QU-Ex Covid-19 11 956

31 175Normal 10 701

Chest-Xray-Pneumonia
+

Qata-cov19
(Controle Group 2

Bacterial 5540
Viral 2978

Table II illustrates the structure of the sub-datasets used
for training the three cascade systems, namely PCN BV,
PN CBV, and PN PC BV. The first two-stage cas-
cade system, PCN BV, requires two sub-datasets, namely
PCN BV D1 and PCN BV D2, where PCN BV D2
contains sub-categories (viral and bacterial) of the Non-
Covid-19 Pneumonia class of PCN BV D1. Similarly,
the second system PN CBV also uses two sub-datasets,
namely PN CBV D1 and PN CBV D2. PN CBV D2

is a subset of PN CBV D1 and contains the pneumo-
nia sub-classes (COVID-19, bacterial, and viral). Beside,
the three-stage cascade system PN CBV D1 requires
three sub-datasets: PN CBV D1, PN PC BV D2, and
PCN BV D2. PN CBV D1 and PCN BV D2 are
also present in the first two cascade systems, while
PN PC BV D2 is a new sub-dataset that differentiates
COVID-19 from other non-COVID-19 pneumonias.

B. Results of the two-cascade strategies
This section presents the results of the two-stage cascade

schemes: PCN BV and PN CBV. Firstly, we present the
results obtained on the sub-datasets, namely PCN BV D1
and PCN BV D2 for PCN BV, and PN CBV D1 and
PN CBV D2 for PN CBV. Secondly, we perform a com-
parative study between PCN BV and PN CBV to identify
the most efficient architecture.

Table III illustrates the results obtained on the
PCN BV D1 and PCN BV D2 datasets. We used trans-
fer learning from the ImageNet dataset as an initial
step for both PCN BV D1 and PCN BV D2, then,
we performed transfer learning from PCN BV D1 to

http:// journals.uob.edu.bh
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TABLE II. The generated sub-datasets for cascade systems.

Scheme Dataset Class Number

PCN BV
PCN BV D1

Non Covid-19
Pneumonia 8518

Covid-19 11 956
Normal 10 701

PCN BV D2 Bacterial 5540
Viral 2978

PN CBV

PN CBV D1 Pneumonia 20 474
Normal 10 701

PN CBV D2
Covid-19 11 956
Bacterial 5540
Viral 2978

PN PC BV

PN CBV D1 - -

PN PC BV D2
Non Covid-19
Pneumonia 8518

Covid-19 11 956

PCN BV D2 - -

PCN BV D2.

For the second cascade system PN CBV, obtained
results on both PN CBV D1 and PN CBV D2 as pre-
sented in table IV.

Table V presents the results obtained from the two-stage
cascade methods: PCN BV and PN CBV. It highlights all
possible combinations between the models generated in the
previous step. At each level, we fixed the first model in the
first stage and varied the second model in the second stage.
For instance, VGG16 VGG16 indicates that the VGG16
network was used in both levels, while VGG16 VGG16t
indicates that the VGG16t model was obtained through
transfer learning from the used VGG16 model in the first
stage.

The comparative study demonstrates that transfer learn-
ing from the first-stage models in the cascade strategy is
generally more efficient than transfer learning from Im-
ageNet, except for DenseNet201 and DenseNet121. Be-
sides, for transfer learning from ImageNet, DenseNet201
was more efficient for both cascade techniques, while
DenseNet121 was more promising for the PN CBV
method.

The results indicate that the models were less efficient
when used independently compared to their combination
with other second-stage models. These findings highlight
the advantages of using cascade strategies, except for a few
cases (22 out of 84). Surprisingly, when combined with
other second-stage models using the PN CBV method, all
results decreased for Xception, which we believe is due to
its low accuracy (96.31%) on the PN CBV D1 dataset.

The comparative study between the two-stage cascade
methods PCN BV and PN CBV demonstrated the effi-
ciency of PCN BV for Xception, VGG16, InceptionV3,
and DenseNet121. Specifically, accurate results were ob-
tained for VGG16, InceptionV3, and DenseNet121 using
PCN BV, except when combined with DenseNet121 in
all cases and with DenseNet201 for DenseNet121 and
InceptionV3. In constract, PN CBV was more accurate for
VGG19 and DenseNet201, except when combining VGG19
with VGG16 or VGG19t and DenseNet201 with VGG16.

C. Results of the three-cascade strategy
For the two-stage cascade strategies, we generated 42

combinations for each method. However, for the three-stage
cascade method, a high number of combinations can be gen-
erated between the CNN architectures (294), which can be
computationally expensive. Therefore, to reduce the number
of combinations, we employed two strategies to select the
appropriate model at each level. The first strategy combines
CNNs based on transfer learning from the previous stage
in a cascade strategy, where a unique architecture is used
for each combination. The second strategy selects the two
best models on the appropriate dataset at each level. For the
first stage, we selected DenseNet121 and DenseNet201 due
to their high accuracy on the PN CBV D1 dataset. In the
second stage, we chose DenseNet121 and Xception, and in
the third stage, we selected DenseNet201 and InceptionV3.

Table VI presents the obtained results based on the two
strategies. In the first technique, DenseNet201 demonstrated
its efficiency compared to other combinations. However,
the results obtained by Xception were less promising. Be-
sides, for the second strategy, the comparative study, shows
that using Densenet201 in the first stage is more promis-
ing than DenseNet121. Additionally, in the second stage,
DenseNet121 is more efficient than Xception. Overall, the
ensemble’s efficiency depends on the models’ performance
at the first and second stages. In general, the best networks
ensure the best combination.

D. Comparison and discussion
In the previous section, we conducted a comprehensive

comparative study between obtained results on the COVID-
QU-Ex 4C and its sub-datasets. Table VII highlights the
best strategy for each dataset, and overall, the DenseNets
architectures yielded the best results. The obtained re-
sults demonstrate the challenges of distinguishing between
pneumonia (92.31%) in both binary (bacterial and viral)
and multi-class (COVID-19, bacterial, and viral) systems.
Whereas, CNNs accurately classified almost all images for
datasets that classify pneumonia and COVID-19 (99.88%)
or pneumonia and normal images (98.80%). These results
confirm the advantages of using a cascade system to sep-
arate the four-class classification task based on annotation
complexity, starting from the easiest to the most complex.

The comparative analysis of two-stage cascade systems
indicates that PCN BV is more suitable for Xception,
VGG16, InceptionV3, and DenseNet121 models in the
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TABLE III. The obtained results on the PCN BV D1 and PCN BV D2 datasets in terms of accuracy (Acc), precision (P), recall (R), and
F-measure (F1).

Dataset
PCN BV D1 (%) PCN BV D2 (%)

Transfer from ImageNet Transfer from ImageNet Transfer from PCN BV D1

Acc P R F1 Acc P R F1 Acc P R F1

VGG16 97.88 97.91 97.91 97.91 91.43 91.29 89.68 90.39 92.25 91.53 91.40 91.46
VGG19 97.23 97.11 97.39 97.24 89.67 89.17 87.86 88.45 92.31 92.05 90.90 91.43
InceptionV3 97.23 97.29 97.36 97.31 91.96 91.80 90.36 91.01 92.31 91.61 91.45 91.53
Xception 97.50 97.41 97.66 97.52 91.78 91.24 90.57 90.89 91.84 91.38 90.54 90.94
DenseNet121 98.11 98.06 98.19 98.12 90.79 90.23 89.34 89.75 91.84 90.97 91.12 91.04
DenseNet201 97.96 97.92 98.04 97.98 92.14 91.60 91.00 91.29 91.37 90.83 90.06 90.42

TABLE IV. The obtained results on the PN CBV D1 and PN CBV D2 datasets in terms of accuracy (Acc), precision (P), recall (R), and
F-measure (F1).

Dataset
PN CBV D1 (%) PN CBV D2 (%)

Transfer from ImageNet Transfer from ImageNet Transfer from PN CBV D1

Acc P R F1 Acc P R F1 Acc P R F1

VGG16 97.76 97.55 97.47 97.51 95.78 93.67 91.50 92.37 95.95 93.25 92.82 93.03
VGG19 97.53 97.45 97.06 97.25 95.76 92.45 93.10 92.75 95.76 92.68 92.87 92.77
InceptionV3 97.11 96.96 96.62 96.79 96.29 93.97 93.13 93.51 96.71 94.60 93.86 94.19
Xception 96.31 96.75 95.08 95.84 96.24 93.30 93.68 93.48 96.34 93.83 93.26 93.52
DenseNet121 98 97.99 97.56 97.77 96.73 94.02 94.84 94.40 95.76 93.19 92.01 92.50
DenseNet201 98.22 98.28 97.76 98.02 96.80 95.05 93.81 94.34 96.10 93.22 93.15 93.18

first stage, where it was less accurate in 16 among 42
cases. On the other hand, PN CBV was more accurate
for both VGG19 and DenseNet201. This method achieved
the best result by DenseNet201 DenseNet121 architecture.
Overall, these findings suggest that we cannot assume that
PCN BV presents the best strategy, as each technique has
its advantages depending on the specified architecture.

Figure 2 compares the results obtained from trans-
fer learning from ImageNet and transfer learning within
the three cascade systems: PCN BV, PN CBV, and
PN PC BV. In general, transfer learning within the cas-
cade systems based on PCN BV was more promising, ex-
cept for DenseNets, where transfer learning from ImageNet
based on PN CBV yielded accurate results. The compar-
ative study between the used methods for transfer learning
within the cascade systems also highlights the efficiency
of PCN BV over both PN CBV and PN PC BV. In
conclusion, the transfer learning strategy within the two-
stage cascade system was not suitable for DenseNets and
was less efficient for the three-stage cascade systems.

Figure 3 presents a comparative analysis of the best
combinations for each network and strategy. For the
PCN BV strategy, the most accurate results were obtained
by merging models with their transferred versions and
employing DenseNet201 in the second stage. The transfer
learning within the cascade systems was observed to be
more promising for the PCN BV strategy. Conversely, for
PN CBV, combining models with DenseNet121 was more
accurate. Based on these findings, we propose that using

transfer learning from multi-class classification problems in
two-stage cascade systems is more promising.

Figure VIII displays the best results for each strategy,
highlighting the efficiency of two-stage cascade systems
compared to the three-stage cascade system. It’s worth
noting that while PCN BV and PN PC BV achieved
the same result, PCN BV is more storage-efficient as
it only requires storing two models instead of three
for prediction. . According to the best results of two-
stage cascade systems, we can conclude that the per-
formance of the first-stage models influences the accu-
racy of the two-stage cascade strategies. For PCN BV,
DenseNet121 DenseNet121t achieved the best result due
to the high performance of DenseNet121 in the first stage
on the PCN BV D1 dataset. Similarly, for PN CBV, the
interesting results of DenseNet201 in the first stage gener-
ated the best combination (DenseNet201 DenseNet121).

5. Conclusion
In this study, we proposed three cascade systems

based on six CNN architectures for COVID-19 clas-
sification: two types of two-stage cascade strategies
(PCN BV and PN CBV) and a three-stage cascade system
(PN PC BV). To improve results, we integrated transfer
learning strategies within the proposed systems. We vali-
dated the proposed methods on a newly generated dataset
(COVID-QU-Ex 4C) that contains four classes: COVID-
19, normal, bacterial, and viral. The comparative study
showed that the two-stage cascade systems were more
efficient than the three-stage cascade system. Furthermore,
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Figure 2. Comparison between transfer learning from ImageNet and transfer learning within the three cascade systems.

Figure 3. The two best combinations for each network and strategy.
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TABLE V. The obtained results on the two-stage cascade methods (PCN BV, PN CBV ) in terms of accuracy (Acc), precision (P), recall (R),
and F-measure (F1).

First
Network Hybridization PCN BV (%) PN CBV (%)

Acc P R F1 Acc P R F1

VGG16

VGG16 93.43 89.01 90.74 89.80 - - - -
VGG16 VGG16 95.56 93.81 92.68 93.16 94.77 93.05 91.09 91.80
VGG16 VGG16t 95.82 93.93 93.60 93.76 95.14 93.12 92.57 92.82
VGG16 VGG19 95.13 92.72 91.95 92.29 94.87 92.19 92.74 92.45
VGG16 InceptionV3 95.72 94.11 93 93.48 95.35 93.34 92.89 93.08
VGG16 Xception 95.61 93.64 93 93.29 95.27 92.81 93.13 92.97
VGG16 DenseNet121 95.37 93.10 92.47 92.76 95.80 93.69 94.47 94.06
VGG16 DenseNet201 95.77 93.92 93.44 93.66 95.70 94.25 93.55 93.85

VGG19

VGG19 94.21 90.50 92.48 91.26 - - - -
VGG19 VGG19 94.36 91.18 91.69 91.41 94.66 91.82 92.71 92.23
VGG19 VGG19t 94.95 92.23 92.95 92.57 94.87 92.38 92.59 92.48
VGG19 VGG16 94.87 92.49 92.62 92.51 94.53 92.67 90.94 91.54
VGG19 InceptionV3 95 92.50 92.86 92.65 95.11 92.86 92.77 92.78
VGG19 Xception 94.92 92.20 92.91 92.54 95.05 92.49 93.03 92.75
VGG19 DenseNet121 94.68 91.78 92.41 92.08 95.53 93.03 94.30 93.61
VGG19 DenseNet201 95.05 92.40 93.26 92.82 95.46 93.67 93.44 93.52

InceptionV3

InceptionV3 94.87 92.80 93.01 92.90 - - - -
InceptionV3 InceptionV3 95 93.24 92.85 93 94.69 92.49 92.56 92.50
InceptionV3 InceptionV3t 95.11 93.13 93.46 93.29 95 92.82 93.17 92.97
InceptionV3 VGG16 94.79 92.96 92.41 92.62 94.10 92.29 90.69 91.23
InceptionV3 VGG19 94.33 91.75 91.60 91.64 94.28 91.54 92.52 91.99
InceptionV3 Xception 94.94 92.90 92.94 92.90 94.63 92.07 92.80 92.43
InceptionV3 DenseNet121 94.68 92.38 92.40 92.37 95.10 92.70 94.07 93.33
InceptionV3 DenseNet201 95.02 92.98 93.15 93.05 95.03 93.32 93.19 93.22

Xception

Xception 95 93.17 92.92 93 - - - -
Xception Xception 95.21 92.73 93.24 92.97 93.78 90.54 92.26 91.31
Xception Xceptiont 95.27 92.89 93.29 93.07 93.88 90.13 92.14 91.01
Xception VGG16 95.06 92.79 92.70 92.69 93.27 90.84 90.16 90.22
Xception VGG19 94.60 91.62 91.89 91.73 93.36 89.80 91.87 90.69
Xception InceptionV3 95.22 92.86 93.03 92.91 93.85 90.77 92.01 91.31
Xception DenseNet121 94.94 92.22 92.66 92.43 94.26 90.91 93.53 92
Xception DenseNet201 95.24 92.77 93.34 93.04 94.21 91.39 92.69 91.96

DenseNet121

DenseNet121 95.43 92.56 93.05 92.80 - - - -
DenseNet121 DenseNet121 95.59 93.03 93.14 93.07 96.11 93.76 94.74 94.22
DenseNet121 DenseNet121t 95.99 93.47 94.27 93.85 95.56 93.18 93.04 93.07
DenseNet121 VGG16 95.74 93.62 93.23 93.37 95.05 93.18 91.33 91.98
DenseNet121 VGG19 95.21 92.33 92.27 92.27 95.16 92.28 93.06 92.64
DenseNet121 InceptionV3 95.86 93.70 93.46 93.54 95.66 93.33 93.23 93.25
DenseNet121 Xception 95.80 93.47 93.57 93.51 95.62 93.05 93.56 93.30
DenseNet121 DenseNet201 95.88 93.56 93.82 93.68 96.04 94.34 93.93 94.09

DenseNet201

DenseNet201 95.45 92.75 93.71 93.20 - - - -
DenseNet201 DenseNet201 95.75 93.50 93.69 93.59 96.22 94.57 93.97 94.21
DenseNet201 DenseNet201t 95.64 93.09 93.40 93.24 95.98 93.60 93.85 93.72
DenseNet201 VGG16 95.61 93.55 93.10 93.27 95.26 93.50 91.45 92.18
DenseNet201 VGG19 95.11 92.29 92.21 92.22 95.42 92.65 93.26 92.93
DenseNet201 InceptionV3 95.75 93.69 93.38 93.49 95.83 93.57 93.28 93.39
DenseNet201 Xception 95.69 93.38 93.51 93.43 95.75 93.18 93.49 93.33
DenseNet201 DenseNet121 95.48 92.94 93.06 92.99 96.27 93.84 94.79 94.28

the results of the two-stage cascade systems revealed that
PCN BV was more accurate in most cases, and transfer
learning within the cascade systems was more effective for
PCN BV than PN CBV.

As a future perspective, we plan to introduce more
variability into the proposed dataset and address the data

imbalance issue. We propose to explore additional data
augmentation techniques, such as generative adversarial
networks (GANs), to tackle this problem. Additionally,
we suggest introducing Gradient-weighted Class Activation
Mapping (Grad-CAM) to visualize activated features during
detection.
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TABLE VI. The obtained results based on the three-stage cascade strategy PN PC BV in terms of accuracy (Acc), precision (P), recall (R), and
F-measure (F1).

Network Acc (%) P (%) R (%) F1 (%)

VGG16 VGG16t VGG16t 95.21 92.97 92.74 92.84
VGG19 VGG19t VGG19t 94.76 92.22 92.14 92.15
InceptionV3 InceptionV3t InceptionV3t 94.77 92.74 92.70 92.68
Xception Xceptiont Xceptiont 93.75 90.94 91.62 91.16
DenseNet121 DenseNet121t DenseNet121t 95.62 92.90 93.71 93.29
DenseNet201 DenseNet201t DenseNet201t 96.12 93.86 94.08 93.96

Densenet201 Densenet121 DenseNet201 95.99 93.63 93.83 93.72
Densenet201 Xception DenseNet201 95.96 93.64 93.77 93.70
Densenet201 Densenet121 InceptionV3 95.98 93.79 93.47 93.59
Densenet201 Xception InceptionV3 95.94 93.80 93.42 93.56
Densenet121 Densenet121 DenseNet201 95.78 93.49 93.71 93.59
Densenet121 Xception DenseNet201 95.75 93.47 93.65 93.55
Densenet121 Densenet121 InceptionV3 95.80 93.67 93.42 93.51
Densenet121 Xception InceptionV3 95.77 93.64 93.36 93.46

TABLE VII. The best results for each dataset.

Dataset Method Accuracy(%)
COVID-QU-Ex 4C DenseNet201 95.45
PCN BV D1 DenseNet121 98.11
PCN BV D2 VGG19, InceptionV3 92.31
PN CBV D1 DenseNet201 98.22
PN CBV D2 DenseNet201 96.80
PN PC BV D2 VGG16 99.88

TABLE VIII. The best results of the cascade strategies.

Strategy Accuracy (%)

PCN BV 95.99
PN CBV 96.27
PN PC BV 95.99
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[18] A. M. Ismael and A. Şengür, “Deep learning approaches for covid-
19 detection based on chest x-ray images,” Expert Systems with
Applications, vol. 164, p. 114054, 2021.

[19] H. Gunraj, A. Sabri, D. Koff, and A. Wong, “Covid-net ct-2:
Enhanced deep neural networks for detection of covid-19 from
chest ct images through bigger, more diverse learning,” Frontiers
in Medicine, vol. 8, p. 3126, 2022.

[20] S. R. Nayak, D. R. Nayak, U. Sinha, V. Arora, and R. B. Pachori,
“Application of deep learning techniques for detection of covid-19
cases using chest x-ray images: A comprehensive study,” Biomedical
Signal Processing and Control, vol. 64, p. 102365, 2021.

[21] M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep cnn-lstm
network for the detection of novel coronavirus (covid-19) using x-
ray images,” Informatics in medicine unlocked, vol. 20, p. 100412,
2020.

[22] N. Dif, A. Arioui, I. Zeblah, and S. M. Benslimane, “Covid-19

classification from x-rays : A comparative study,” in 2022 3rd
International Conference on Embedded and Distributed Systems
(EDiS), 2022, pp. 75–80.
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