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representing images as the output of generative Convolutional Neural Net-
work (CNN) architectures. So far, DIP has been shown to be an effective
approach when combined with classical and novel regularizers. Unfortunately,
to obtain appropriate solutions, all the models proposed up to now require
an accurate estimate of the regularization parameter. To overcome this diffi-
culty, we consider a locally adapted regularized unconstrained model whose
local regularization parameters are automatically estimated for additively sep-
arable regularizers. Moreover, we propose a novel constrained formulation in
analogy to Morozov’s discrepancy principle which enables the application of
a broader range of regularizers. Both the unconstrained and the constrained
models are solved via the proximal gradient descent-ascent method. Numerical
results demonstrate the robustness with respect to image content, noise levels
and hyperparameters of the proposed models on both denoising and deblurring
of simulated as well as real natural and medical images.
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1 Introduction

The task of image restoration aims at recovering a clean and sharp unknown
image u ∈ Rn given a blurry and/or noisy measurement g ∈ Rm.
Mathematically, the restoration process can be modelled as a linear inverse
problem:

find u ∈ Rn s.t. Hu+ η = g, (1)

where H ∈ Rm×n is a known forward operator and η ∈ Rm is the noise
corrupting the data. In this work, we consider a zero-mean Additive White
Gaussian Noise (AWGN) component with standard deviation ση.

Linear inverse problems are well-known to be ill-posed [3], therefore finding
u from (1) by simply inverting H is useless due to the lack of stability and/or
uniqueness properties. The task is usually reformulated as the problem of find-
ing an estimate u∗ of the desired u as accurate as possible via a well-posed
problem. In the last decades, several approaches have been proposed, rang-
ing from classical variational regularization methods to deep learning based
approaches [20,23,30,37].

Variational regularization methods compute u∗ as the solution of the fol-
lowing regularized optimization problem:

u∗ ∈ argmin
u∈Rn

1

2
∥Hu− g∥22 + λR(u), (2)

where the first and the second terms are referred to as data fidelity and regular-
ization, respectively. The hyperparameter λ is a positive scalar typically called
regularization parameter. More generally, the data fidelity term measures how
a given image adheres to the model (1). Its definition usually depends on the
type of noise affecting the acquired g and, upon AWGN assumptions, it is fre-
quently defined as an ℓ2-norm functional. The regularization term R : Rn → R
reflects prior information on the desired solution, such as its regularity and/or
sparsity [21], whereas the hyparameter λ weights the strength of the regular-
ization.

Very recently, supervised deep learning based methods have shown state-
of-the-art performances in the field of imaging inverse problems [32] due to
their capability to learn the correlation between degraded images and their
cleaned counterparts by exploiting high representative models like Deep Neu-
ral Network architectures and an outer training set of degraded-cleaned ex-
ample pairs. However, in general, these supervised approaches have several
issues, including the lack of generalization when not trained with enough data.
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Moreover, in many real applications, such as medical imaging, it is practically
impossible to build a labeled dataset with both ground truth and degraded
data [41].

All these reasons have motivated researchers to inspect unsupervised deep
learning approaches which avoid the usage of the training sets [12,13,25,26,38].
Deep Image Prior (DIP) [38] is among the most promising methods belonging
to this class. The DIP framework leverages the fact that the architecture of
a deep Convolutional Neural Network (CNN) generator reproduces natural
images more easily than random noise, thus inducing implicit regularization.
Given a CNN generator f : Rs ×RN → Rn whose weights are denoted by θ ∈
Rs and a random input vector z ∈ RN sampled from a uniform distribution,
the DIP approach [38] looks for a set of weights θ∗, combining the following
minimization problem

argmin
θ∈Rs

1

2
∥Hf(θ, z)− g∥22 (3)

with an early stopping procedure. More specifically, the weights θ∗ are ob-
tained by applying standard gradient-based iterative algorithms to the prob-
lem (3) and early stopping the iterative process before overfitting the degraded
image g. The restored image u∗ is then computed as f(θ∗, z).

Up to now, researchers have mostly worked on a theoretical analysis of
DIP [1,10,11] as well as on boosting its performance. Inspired by standard
variational regularization methods, in [2,7,8,29,31,39] the authors improved
the DIP performance by adding an explicit penalization term R to the objec-
tive in (3). Hence, the optimization problem (3) is replaced by the following
regularized one:

argmin
θ∈Rs

1

2
∥Hf(θ, z)− g∥22 + λR(f(θ, z)). (4)

As an example, in [2,29,39] R is set as the standard Total Variation (TV)
[35], whereas in [31] the authors consider the RED regularizer [34]. In more
details, the definition of TV comes from the assumption that natural images
often admit very sparse approximations in the gradient domain. Hence, given
a vectorized image u ∈ Rn, the TV regularizer is defined as follows:

TV(u) := ∥Du∥1,2 :=

n∑
i=1

(
|(Dhu)i|2 + |(Dvu)i|2

)1/2
, (5)

where by D = (Dh;Dv) ∈ R2n×n we denote the discrete gradient such that
Dh ∈ Rn, Dv ∈ Rn are the first order finite difference discrete operators along
the horizontal and vertical axes, respectively.
On the other hand, the RED regularizer [34] is based on the so called reg-
ularization by denoising principle, i.e. the capability of denoisers to induce
regularization. It is defined as follows:

R(u) =
1

2
uT (u− D(u)), (6)



4 Pasquale Cascarano et al.

where D(·) is chosen as any off-the-shelf denoiser. In [34], by assuming the
differentiability, local homogeneity, Jacobian symmetry and filter passivity
of D(·), the authors prove that R is convex, differentiable and, moreover,
∇R(u) = u − D(u). Hereafter we denote by DeepRED the method proposed
in [31] to solve problem (4) when R is set as the RED regularizer.

The selection of the regularization parameter λ in (4) is an essential issue
that this approach inherits from the class of variational regularization meth-
ods [37,43]. A wise choice of regularization parameter is obviously crucial for
obtaining useful approximate solutions to ill-posed problems. Indeed, replac-
ing (3) with (4) induces better regularized solutions, provided a suitable value
for λ depending both on the level of degradation of the acquired image and
on the considered problem.
In the literature there exist various strategies for choosing the parameter λ,
such as the Morozov’s discrepancy principle, the generalized cross-validation
(GCV) [14], the L-curve method [17], and the unbiased predictive risk estima-
tor [28]. However, it is well-known that such strategies can present different
limitations: they are not at all easy to apply for every regularizer; they can
provide either over or under smoothed solutions; they may often require to
solve (4) many times for different values of λ, making the overall procedure
computationally expensive. For these reasons, manually tuning the regular-
ization parameter by trial-and-error procedures is common in the regularized
DIP framework [2,7,29,31,39], leading to an high demanding workload.

Contributions. In this work, we provide two different DIP based optimiza-
tion models which share the property of automatically balancing the effect
of the regularization. First, we consider an unconstrained model as the one
in (4) where the regularization term is additively separable. The strength of
the regularization is pixelwise weighted by a set (one for each pixel) of local
regularization parameters whose definition is based on local patterns. Follow-
ing the idea of estimating the regularization parameter iteratively suggested
in [16,40], we automatically estimate the set of local regularization parame-
ters according to the Uniform PENalty (UPEN) principle [5]. Furthermore,
we propose to reformulate the standard regularized unconstrained DIP opti-
mization problem (4) as a constrained one, whose constraints impose that the
residual ∥Hf(θ∗, z) − g∥2 is almost equal to the standard deviation of the
noise affecting the acquired data, in accordance to the discrepancy principle.
As evident, this approach strictly depends on an estimation of the noise level
in the corrupted image. However, in real applications, choosing a reasonable
value of the noise level is usually much easier than finding a suitable value of
the regularization parameter λ. Indeed, many efficient algorithms to estimate
the noise level are known in the literature [19,24] and successfully exploited
in many fields [15,36]. To consider automatically regularized DIP-based opti-
mization models is an interesting issue in the DIP framework, since so far, to
the best of our knowledge, no one working in this context has been focused
on this aspect. Both the unconstrained and constrained models are solved via
a modified and more efficient version of the proximal gradient descent-ascent
(PGDA) method in which the computation of the gradient step is split in two
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blocks. Finally, we show that, upon suitable assumptions [6], some convergence
results for the arising iterative schemes can be provided.

Organization of the paper. In Section 2, we introduce both the uncon-
strained and the constrained models and we illustrate the resulting PGDA
schemes. In Section 3, we present several numerical experiments on synthetic
as well as real blurred and noisy natural and medical images and we compare
the results with the standard DIP [38] and DeepRED [31].

2 Novel automatically regularized DIP-based optimization models

In this section, we introduce the unconstrained and the constrained optimiza-
tion models to face the regularized DIP problem and we show how they can
be treated within the PGDA framework.

2.1 Unconstrained model

The approaches described in [2,29,39] consider the unconstrained model (4)
setting the regularizer as the handcrafted Total Variation with a single regu-
larization parameter, which does not allow to adapt the regularization to the
local image patterns. Conversely, we consider a flexible space variant regular-
izer and a set of local regularization parameters λi for i = 1 . . . n weighting
the strength of the regularization for each pixel. The resulting unconstrained
model reads:

argmin
θ∈Rs

1

2
∥Hf(θ, z)− g∥22 +

n∑
i=1

λiRi((Af(θ, z))Ii), (7)

where Ii ⊂ {1, . . . , l} = I such that Ii ∩ Ij = ∅ for every i, j = 1 . . . n with
i ̸= j and

⋃n
i=1 Ii = I, Ri are real-valued functions representing the local

components of the regularizer, A : Rn → Rl is a generic operator and l is a
positive integer such that l ≥ n. The functions Ri and the local parameters
λi usually represent local energies defined on a neighbourhood of the i-th
pixel thus forcing prior information based on local patterns. Practically, these
local parameters are automatically chosen along the iterations as explained in
Remark 1. Considering a vector v in Rl, for every i = 1, . . . n we denote vIi ∈
R|Ii| as the vector specified by the components of v whose indexes are in Ii.
Examples of regularization terms belonging to this class are the Tikhonov-like
and the Total Variation ones. For instance, in the Tikhonov-based regularizers,
A is usually chosen as the identity or the laplacian operators, whereas Ri : R →
R is chosen as the square function. Concerning the isotropic Total Variation,
A represents the discrete gradient and Ri : R2 → R is chosen as the ℓ2-norm
function.

By adding an auxiliary variable v := Af(θ, z), the optimization problem
(7) is equivalent to the following formulation:
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argmin
θ∈Rs,v∈Rl

1

2
∥Hf(θ, z)− g∥22 +

n∑
i=1

λiRi(vIi) (8)

s.t. Af(θ, z) = v.

In order to solve problem (8), we introduce the corresponding augmented
Lagrangian function defined as

L(θ,v,µv) =
1

2
∥Hf(θ, z)− g∥22 +

n∑
i=1

λiRi(vIi)

+
βv

2
∥Af(θ, z)− v∥22 + ⟨µv,Af(θ, z)− v⟩,

(9)

where βv is a positive scalar, called penalty parameter and µv is the La-
grangian parameter associated with the constraint Af(θ, z) = v. Some papers
[31,8] address the minimization of the regularized DIP optimization problem
(4) by seeking the saddle points of the related augmented Lagrangian function
through the ADMM algorithm. However, an highly inexact version of ADMM
is practically implemented since the updating step for the weights θ is, in
general, solved inexactly by applying only one iteration of a gradient-based
method. For this reason, instead of ADMM, we take into account another
class of methods tailored for minimax problems. In more detail, by denoting
with x ≡ [θ;v], we handle the saddle point problem

min
x∈Rs+l

max
µv∈Rl

L(x,µv) (10)

by means of the class of alternating proximal gradient descent-ascent (PGDA)
methods [6,9,27] (see Appendix A for a survey of these algorithms). By intro-
ducing the notation R(x) =

∑n
i=1 λiRi(vIi) and defining

K(x,µv) =
1

2
∥Hf(θ, z)− g∥22 +

βv

2
∥Af(θ, z)− v∥22 + ⟨µv,Af(θ, z)− v⟩,

upon suitable initialization of the involved variables, the k-th iteration of the
alternating PGDA iterative algorithm described in [6] to solve (10) reads as
follows: {

xk+1 = proxαxR(xk − αx∇xK(xk,µk
v))

µk+1
v = µk

v + αµv∇µvK(xk+1,µk
v)

(11)

where αx and αµv are proper positive learning rates. By definition of proximal
operator, the vector xk+1 in the first step of (11) can be written as in the
following:

xk+1 = argmin
x

αxR(x) +
1

2
∥x− (xk − αx∇xK(xk,µk

v))∥22.
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Hence, in view of the notation introduced above,

xk+1 = argmin
θ∈Rs,v∈Rl

αxR(x) +
1

2

∥∥∥∥[θv
]
−

[
θk − αx∇θK(xk, µk

v)
vk − αx∇vK(xk, µk

v)

]∥∥∥∥2
2

= argmin
θ∈Rs,v∈Rl

αxR(x) +
1

2
∥θ − (θk − αx∇θK(xk,µk

v))∥22

+
1

2
∥v − (vk − αx∇vK(xk,µk

v))∥22.

(12)

Due to the separability of the objective in (12) with respect to the variables
θ and v and by assuming convexity of R and αx = 1

βv
, iteration (11) can be

rewritten as

θk+1 = θk − αx∇θK(xk,µk
v)

vk+1 = argmin
v∈Rl

αxR(x) +
1

2
∥v − (vk − αx∇vK(xk,µk

v))∥22 =

= argmin
v∈Rl

n∑
i=1

λiRi(vIi) +
1

2αx

∥∥∥∥v −
(
Af(θk, z) +

µk
v

βv

)∥∥∥∥2
2

µk+1
v = µk

v + αµv(Af(θk+1, z)− vk+1).

(13)

Concerning the optimization problem in the second step of (13), if the
proximal map of Ri can be easily computed for all i = 1 . . . n, then the problem
can be efficiently solved in a closed form by applying the proximity operator

of Ri to the n components of Af(θk, z) +
µk

v

βv
. Such hypotheses on Ri are not

so restrictive. For example both Tikhonov-like and isotropic Total Variation
regularizers satisfy these assumptions since the Ri are set as the square or
ℓ2-norm functions.

Remark 1 In our implementation, we chose to vary the set of local regular-
ization parameters λi along the iterations. In particular, their formulation is
inspired by [5] and reads:

λk
i =

1

2n

∥Hf(θk+1, z)− g∥22
Ri ((Af(θk+1, z))Ii)

. (14)

This entails that the smaller is the value of the local component function the
greater is the regularization provided at pixel i. We remark that, in the exper-
imentation, we set these parameters to a certain value when the denominator
decreases below a fixed threshold.

2.1.1 Practical and theoretical details of algorithm (13)

We point out that, taking into account the separable nature of problem (12)
and the optimization efficiency, in the practical implementation, we exploit
the already computed value for θk+1 in the update of vk+1. In Section 3.6
we compare the behaviour of the standard alternating PGDA method (13)
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and that of the implemented version which employs θk+1 for the computation
of vk+1 on one of the problem under analysis. The two versions of the alter-
nating PGDA are comparable, even if the standard one needs higher memory
requirements.

Remark 2 Under the hypotheses that the function K(x,y) is ρ-weakly convex
and L-Lipschitz in the first component uniformly in the second one, and the
regularizer R is proper, convex and lower semicontinuous and LR-Lipschitz
continuous on its domain, and since K(x,y) is concave and has Lipschitz
continuous gradient in the second component uniformly in the first one, then
the convergence result [6, Theorem 3.7] can be invoked. Such theorem ensures
that an ε-stationary point [6, Definition (6)] of (9) can be visited in a finite
number of iterations depending on ε. Both the invoked theorem and definition
are recalled in Appendix A (see Definition (1) and Theorem (1)). We point
out that the learning rates αx and αµv are required to be bounded by proper
constants which we do not know in practice. For this reason, we decide to fix
αx = 1

αµv
= βv. The choice of βv is discussed in the following remark.

Remark 3 The value of the penalty parameter βv is hand-tuned. However, in
the experimental part (Section 3) we empirically show that the choice of this
hyperparameter does not affect the performance of the method as much as the
choice of the regularization parameter when dealing with model (4). In detail,
we empirically demonstrate that the performance of the proposed model is
not sensitive to this penalty parameter βv for all considered test problems if
chosen in a reasonable set. Moreover none of the considered value for βv makes
the algorithm divergent.

2.2 Constrained model

The starting point of this approach is again the regularized DIP optimization
problem in (4). Differently from the unconstrained model described in Section
2.1, we here assume R : Rn → R is a generic regularizer. The constrained
model we refer to, in the following, reads as:

argmin
θ∈Rs

R(f(θ, z)) s.t. f(θ, z) ∈ Dση , (15)

where Dση is defined as:

Dση := {f(θ, z) ∈ Rn | ∥Hf(θ, z)− g∥22 ≤ τσ2
ηm}, (16)

with τ being a positive scalar and ση being the standard deviation of the
noise affecting g. This constrained model (15) exploits the Morozov’s discrep-
ancy principle by simply extending [18,33]. If R ◦ f is convex, this model is
equivalent to (4) for a suitable λ ≥ 0. In particular, by the KKT comple-
mentary condition, the discrepancy principle seeks a λ > 0, such that the
minimizer of (15) lies on the boundary of Dση . However, this hypothesis of
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convexity appears too restrictive for the DIP framework. Nevertheless, under
milder assumptions, the KKT conditions ensure that a local optimum for (15)
is a stationary point for (4) provided a particular λ ≥ 0. Therefore, we fo-
cus on problem (15) since it allows us to avoid the dependence on the choice
of the regularization parameter λ. Finally, we cannot theoretically guarantee
that the solution of (15) satisfies the discrepancy principle (namely, lies on the
boundary of Dση ), but in Section 3 we empirically verify that our approaches
implicitly enforce it. We stress that our general approach (15), largely differs
from model (4) proposed in the literature, since it overcomes the problem of
tuning the regularization parameter provided the noise standard deviation ση.
In practice, it is sufficient to consider a good estimate of ση which can be
computed by applying the efficient algorithms described in [19,24].

In order to solve (15), we propose to consider the alternating PGDA
method. By introducing two auxiliary variables t := f(θ, z) and r := Hf(θ, z)−
g, two positive penalty parameters βt and βr, the augmented Lagrangian func-
tional is defined as:

L(θ, t, r;µt,µr) = R(t) + iBδ
(r) + ⟨µt, f(θ, z)− t⟩+ βt

2
∥t− f(θ, z)∥2

+ ⟨µr,Hf(θ, z)− g − r⟩+ βr

2
∥r− (Hf(θ, z)− g)∥2,

(17)

where iBδ
is the indicator function of the ball Bδ ⊂ Rm, centered in 0 ∈ Rm,

of radius δ :=
√
τσ2m, and µt, µr are the Lagrangian parameters related to

the auxiliary variables. Given the notation x = [θ, t, r] and y = [µt,µr], and
by setting

K(x,y) =
βt

2
∥t− f(θ, z)∥2 + βr

2
∥r− (Hf(θ, z)− g)∥2

+ ⟨µt, f(θ, z)− t⟩+ ⟨µr,Hf(θ, z)− g − r⟩

and

R(x) = R(t) + iBρ
(r),

the augmented Lagrangian function (17) has the form:

L(θ, t, r;µt,µr) ≡ L(x,y) ≡ K(x,y) +R(x).

The general iteration of the alternating PGDA iterative algorithm to solve

min
x∈Rs+n+m

max
y∈Rn+m

L(x,y) (18)

can be written as:{
xk+1 = proxαxR(xk − αx∇xK(xk,yk))

yk+1 = yk + αy∇yK(xk+1,yk)
(19)
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where αx and αy are proper positive learning rates. By following the approach
employed in Section 2.1 for the unconstrained case, the vector xk+1 in the first
step of (19) can be rewritten as

xk+1 = argmin
x

αxR(x) +
1

2

∥∥∥∥∥∥
θ
t
r

−

θk − αx∇θK(xk,yk)
tk − αx∇tK(xk,yk)
rk − αx∇rK(xk,yk)

∥∥∥∥∥∥
2

2

= argmin
x

αxR(t) + iBρ
(r) +

1

2
∥θ − (θk − αx∇θK(xk,yk))∥22

+
1

2
∥t− (tk − αx∇tK(xk,yk))∥22

+
1

2
∥r− (rk − αx∇rK(xk,yk))∥22.

(20)

As a consequence, by selecting βt = βr =
1

αx
,

θk+1 = θk − αx∇θK(xk,yk)

tk+1 = argmin
t∈Rn

αxR(t) +
1

2
∥t− (tk − αx∇tK(xk,yk))∥22

= argmin
t∈Rn

αxR(t) +
1

2

∥∥∥∥t− (
f(θk, z) +

µk
t

βt

)∥∥∥∥2
2

rk+1 = argmin
r∈Rm

αxiBρ
(r) +

1

2
∥r− (rk − αx∇rK(xk,yk))∥22

= argmin
r∈Rm

αxiBρ(r) +
1

2αx

∥∥∥∥r− (Hf(θk, z)− g)− µk
r

βr

∥∥∥∥2
2

µk+1
t = µk

t + αy(f(θ
k+1, z)− tk+1)

µk+1
r = µk

r + αy(
(
Hf(θk+1, z)− g

)
− rk+1).

(21)

Similarly to the standard DIP framework solving (3), the first step in (21)
updates the network’s weights performing one back-propagation step. The
update of t, provided by the second step reported in (21), strictly depends on
the choice of the regularizer. However, the minimization problem to find tk+1

is mathematically equivalent to the proximal map of αxR in f(θk, z) +
µk

t

βt
,

therefore it can admit a closed form solution or it can be solved through either
fixed point or gradient descent strategies as in [31]. The update of r is a

simple projection of Hf(θk, z)− g +
µk

r

βr
onto the ball Bδ. From the practical

point of view, in the updating steps for tk+1 and rk+1 in (21), we exploit
the already computed vector θk+1 for improving the optimization efficiency,
as already discussed in Section 2.1.1. As for the convergence properties of the
scheme (21), analogous conclusions to those of Remark 2 hold also in this case.
Finally, we point out that the penalty parameters βt and βr are hand-tuned.
However, the considerations highlighted for the penalty βv in Remark 3 also
apply to these two hyperparameters.
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3 Results

In this section, we show the results of some numerical experiments carried
out to highlight the main benefits of the suggested unconstrained and con-
strained models and to evaluate their effectiveness in solving image deblurring
and denoising tasks on synthetic natural images as well as real medical ones.
We perform several tests by varying the level of degradation, evaluate the
performances through qualitative visual comparisons and quantitatively by
PSNR and SSIM metrics. Finally, we discuss about the effectiveness of our
implementation with respect to the standard PGDA.

3.1 Implementation and evaluation details

Implementation details. Regarding the choice of the regularizer, both models
allow a certain freedom of choice. For the unconstrained model, we consider
the handcrafted space variant Total Variation and in the following we refer
to it as DIP-WTV. We stress that in this case we consider the model (7)
by assuming all Ri are set equal to the 2D ℓ2-norm for i = 1 . . . n and A is
taken equal to the discrete gradient, hence l = 2n and Ii = {i, n+ i} for each
i = 1, . . . , n. Upon these assumptions the set of regularization parameters is
defined according to the formula given by (14). Concerning the constrained
optimization model (15), we set the regularizer R equal to the RED regularizer
[34]. We refer to this approach as cDIP-RED in the following. The cDIP-RED
approach requires the knowledge of standard deviation of the noise affecting
the acquired image. As already mentioned, we point out that we estimate the
noise standard deviation by applying the algorithm described in [19], even
for the simulated tests where we do know it. The parameter τ in (15) is set
equal to 1 for all the experiments. For both models and for all the experiments
performed we stop the related PGDA iterative process after 5000 iterations.
We remark that both the DIP-WTV and the cDIP-RED approaches are based
on a modified version of the alternating PGDA scheme, as clarified is Section
2.1.1. In Section 3.6 we discuss this choice on one of the problem under analysis.
As deep neural network architecture f we consider a generative CNN Encoder-
Decoder architecture with skip connections by concatenation as suggested in
[38], whereas the input z is taken as a random input tensor sampled from a
uniform distribution. The input z is a 3D tensor having the same dimension
of the unknown image and 32 channels, the number of weights θ is about 2
millions.

In the experiments, we follow the common practice in the DIP framework
[31,38] and use the Adam [22] algorithm implemented in PyTorch with the
default parameters to update θ in (13) and (21). As typically done, we also
perturb in each iteration the input z by a component sampled from a Gaus-
sian distribution with zero mean and standard deviation equal to 1

30 and we
compute the final output as the average of all iterates.
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Competitors. We compare the proposed approaches DIP-WTV and cDIP-
RED with the standard DIP [38] and the DeepRED [31] algorithms. We point
out that in [31] the authors prove that DeepRED outperforms other several
approaches as far as the deblurring and denoising tasks are concerned. More-
over, we underline that in their implementation1, to enforce the regularization,
the authors implement a strategy that increases the magnitude of the regu-
larization parameter λ along the iterations when the computed solution starts
overfitting the corrupted image. More precisely, when the PSNR value between
the restored image and the degraded image is greater than a given threshold
γ the regularization parameter is increased by adding a constant.

Test set. In Figure 1, we depict the images used in the numerical simu-
lations. We consider a test set of five red-green-blue (RGB) natural images
belonging to the Set5 dataset [4], two black-white (BW) natural images and
one chest CT image of a patient affected by COVID-19 already post-processed
into a 2D image after the acquisition. We treat all the images belonging to Set5
as ground truths as well as the watercastle BW image. In our experiments, the
simulated acquired images are created by applying the image formation model
(1) to the related ground truths. In particular, to simulate blurred data we
assume that H represents the discretization of a convolutional product with a
Gaussian kernel of standard deviation σH. We remark that the level of degra-
dation of the simulated acquisition is specified by the magnitudes of ση and
σH. Finally, we stress that the skyscraper BW image and the real chest CT
image are affected by artifacts. Since no ground truths are available for these
images, the comparisons among the methods are carried out through visual
inspection. The codes and the images used for these numerical experiments
are available online2.

3.2 Stability w. r. t. hyperparameters and empirical convergence

In this section, we describe the advantages which the models previously sug-
gested bring over the considered competitors. In the first part, we empiri-
cally show the proposed approaches avoid the typical noise overfitting of DIP.
Then, we underline how the suggested methods are more robust with respect
to the choice of the hyperparameters than DeepRED. Finally, we empirically
demonstrate that solutions of the proposed approaches satisfy the Morozov’s
discrepancy principle.

No overfitting. In the first test, we highlight the sensitivity of the standard
DIP algorithm with respect to the choice of the optimal number of iterations
to be performed and we compare it with DIP-WTV and cDIP-RED. For all
experiments in this section we set the penalty parameters βv = 1, βt = 0.5
and βr = 1. We consider the woman, bird, and baby images and we simulate
the noisy acquisitions by corrupting the ground truths with an AWGN com-
ponent of standard deviation ση = 35. Then, we apply DIP, DIP-WTV, and

1 https://github.com/GaryMataev/DeepRED
2 https://github.com/pcascarano/cDIP-RED-DIP-WTV

https://github.com/GaryMataev/DeepRED
https://github.com/pcascarano/cDIP-RED-DIP-WTV
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Butterfly Bird Head Woman

Baby Watercastle Skyscraper chest CT

Fig. 1: The test images employed in the numerical experiments. Butterfly :
RGB image 256× 256 pixels, Bird : RGB image 288× 288 pixels, Head : RGB
image 256× 256 pixels, Woman: RGB 224× 320 pixels, Baby : RGB 512× 512
pixels, Watercastle: BW 320 × 480 pixels, Skyscraper : BW 256 × 256 pixels,
chest CT : BW 512× 512 pixels.

cDIP-RED and in the upper panel of Figure 2 we depict the behaviour of the
PSNR metric along the performed iterations. In order to analyze the relation
between the noise level of the simulated acquisition and the optimal number of
iterations to be performed by DIP, DIP-WTV and cDIP-RED, in lower panel
of Figure 2, we report the behavior of the PSNR metric along the iterations
while the level of corruption changes. In particular, we consider the butterfly
test images and we corrupt it by AWGN with ση = 25, 35, 50. As a general
comment, Figure 2 shows that standard DIP starts overfitting the corrupted
image along the iterative process. Moreover, for the DIP approach, this test
highlights that the number of iterations to reach the best PSNR strongly de-
pends on the image considered (Figure 2a), and on the level of corruption
(Figure 2d). Conversely, the DIP-WTV (Figures 2b and 2e) and cDIP-RED
(Figures 2c and 2f) schemes do not overfit the corrupted data while the PSNR
does not decrease.

No regularization parameter is required. The DeepRED algorithm over-
comes the problem of overfitting by adding the RED regularizer to the ob-
jective minimized by the standard DIP, provided a proper value for the reg-
ularization parameter λ. In this section, we highlight the sensitivity of the
DeepRED algorithm with respect to the choice of the hyparameters defining
the sequence of the regularization parameters, namely the threshold γ and
the starting value of the regularization parameter λ0. In Figure 3a, we show
the behaviour of the PSNR for different values of the threshold γ. The de-
graded image is obtained by corrupting the butterfly image with an AWGN
component setting ση = 35. The parameter λ0 is fixed equal to 0.005 while
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(a) DIP (b) DIP-WTV (c) cDIP-RED

(d) DIP (e) DIP-WTV (f) cDIP-RED

Fig. 2: The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along
the iterations. In (a)-(b)-(c) the DIP, DIP-WTV and cDIP-RED are tested
on three different RGB images degraded setting ση = 35. In (d)-(e)-(f) DIP,
DIP-WTV and cDIP-RED, respectively, are tested on the butterfly RGB image
corrupted with different noise levels.

the increasing factor equals 0.03. For high values of the threshold the regu-
larization contribution is too weak thus the PSNR starts decreasing, which
means DeepRED starts overfitting the degraded image. For low values of the
threshold, the regularization parameter starts becoming high thus too much
regularization is enforced. The best compromise for this butterfly test problem
is γ = 22. However, in our experiments we observe that this value depends
once again on both the image and the noise level considered and cannot be
fixed a priori. In Figure 3b, we report the PSNR behaviour obtained by fixing
γ = 22 and by changing the starting value of the regularization parameter λ0.
We observe the output of the DeepRED in 5000 iterates largely depends on
the choice of this hyperparameter. We stress that DeepRED is implemented
in the ADMM framework which requires the tuning of the penalty parameter.
In our experiments, the DeepRED penalty parameter is set equal to 0.5 as
suggested by the authors in [31].

The main feature of DIP-WTV and cDIP-RED is that the introduced
regularization has no parameters to be estimated. In the case of DIP-WTV,
the space variant regularization parameters are automatically estimated along
the iterations, whereas the constrained formulation of cDIP-RED allows to
automatically estimate the strength of the regularization by the Morozov’s
discrepancy principle.
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(a) DeepRED varying γ (b) DeepRED varying λ0

(c) DIP-WTV varying βv (d) cDIP-RED varying βt and βr

Fig. 3: The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along
the iterations for the butterfly RGB image with ση = 35.

Stability w.r.t. penalty parameters βv, βt and βr. We remark that for the
DIP-WTV and cDIP-RED approaches we just need to fix the penalties βv, βt

and βr. However, in order to prove the stability of these methodologies with
respect to the choice of these parameters, in Figures 3c and 3d we depict the
PSNR behaviour provided by DIP-WTV and cDIP-RED on the previous test
image by setting different values for βv, βt and βr. We stress that the range for
the penalties for DIP-WTV and cDIP-RED has been deduced by the values
suggested in [31] for their ADMM implementation.

From these figures we can conclude that for the DIP-WTV and the cDIP-
RED methods the penalty parameters affect the convergence speed, but the
PSNR behaviour of both the approaches is stable along the iterations and
no noise-overfitting is present for any of the configurations considered. More-
over, we also observed that these different configurations provide comparable
restorations in terms of visual quality in 5000 iterations. We observe that to
maximize the performances of the cDIP-RED method we should set βt < βr.
This is due to the fact that a bigger value of βr provides more consistency
with the initial data. Finally, we stress that the PSNR behaviour reported in
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Fig. 4: The constraint ratio’s trend along the iterations obtained by applying
DIP, DeepRED (with γ = 22 and γ = 24), DIP-WTV and cDIP-RED to the
butterfly RGB image corrupted by AWGN with ση = 35.

Figures 3c and 3d for the particular butterfly test problem are common to all
the other tests performed.

All these considerations allow us to state that DIP-WTV and cDIP-RED
are more robust than DIP and DeepRED with respect to the choice of the
hyperparameters values. Moreover, independently on the penalties parameters
setting, if compared to the standard DIP, we can stop DIP-WTV and cDIP-
RED being confident that these methods do not overfit noise.

Satisfying the Morozov’s discrepancy principle. In Figure 4, we consider
once again the denoising test on the butterfly image described previously. We
analyze the behaviour of the constraint ratio ∥f(θ(k), z)− g∥/δ as a function
of the iterations number. We remark that a constraint ratio equal to 1 entails
the corresponding iterate is almost at the boundary of Dση defined in (16). We
observe that DIP and DeepRED (setting γ = 24) slowly overfit the simulated
noisy acquisition and converge to an interior point of Dση . On the other hand,
DeepRED (with γ = 22), DIP-WTV and cDIP-RED converge to a solution
which lies on the boundary of Dση and hence implicitly satisfy the discrepancy
principle. We stress that we empirically observe the same behaviour for all the
other experiments performed. As a general comment, this test confirms once
again how the performances of DeepRED largely depend on the choice of
the hyperparameter γ defining the strength of the regularization. Moreover,
we empirically show a more robust convergent behaviour of DIP-WTV and
cDIP-RED avoiding costly parameter tuning.

3.3 Denoising task

We validate DIP-WTV and cDIP-RED by comparing them with DIP and
DeepRED on the Set5 [4] dataset for the denoising task. The starting noisy
images are created by corrupting the ground truth images with an AWGN
component of standard deviation equals to 25 and 50. We remark once again
that for the cDIP-RED approach we estimate the noise standard deviation
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even if we know its value. The performances are evaluated by means of the
PSNR metric and, in addition, by a visual comparison. In particular, Figures 5
and 6 report the restored baby and butterfly images starting from the data with
the highest level of corruption considered. In Table 1 we report the mean values
of the PSNR metric on Set5. For the DIP algorithm we have selected for each
image the number of iteration maximizing the PSNR value. For DeepRED we
set the ADMM penalty equal to 0.5, whereas we have selected the threshold γ
and the starting regularization parameter λ0 in order to maximize the PSNR
for each image. For DIP-WTV and cDIP-RED we set for all the images βv = 1
and βt = 0.5 and βr = 1, respectively. For DeepRED, DIP-WTV and cDIP-
RED the restored images have been obtained performing 5000 iterations.

The results reported in Table 1 show that cDIP-RED outperforms DIP and
provides slightly better performances with respect to DeepRED in terms of
PSNR metric. We remark that cDIP-RED does not require any hand-tuning
of the regularization parameter. Concerning DIP-WTV, we observe that it
provides better performances than DIP. Moreover, we stress that it has shown
more robustness to the choice of the hyperparameters with respect to the
DeepRED and it has the lowest number of hyperparameters to be set. Unfor-
tunately, the handcrafted Total Variation regularizer is not as effective as RED
regularization for natural images, which manifests in lower PSNR scores for
DIP-WTV. In Figures 5 and 6, we report the simulated noisy acquisitions of
the baby and butterfly images setting ση = 50 and the restored images obtained
by DIP, DeepRED, DIP-WTV and cDIP-RED. Moreover, in the captions, we
highlight the PSNR values. As a general comment, the DIP algorithm strug-
gles to recover the image texture. The cDIP-RED restorations look sharper
and more faithful to the ground truth than the ones obtained by DeepRED
and DIP-WTV as underlined by the close-ups.

Table 1: PSNR mean values for the Set5 for two level of noise. In blue we
highlight the best PSNR value.

ση Noisy DIP DeepRED DIP-WTV cDIP-RED

PSNR
25 25.46 32.29 32.91 32.48 32.95
50 19.89 27.87 28.15 27.98 28.34

3.4 Deblurring task

In this section, we compare DIP-WTV and cDIP-RED with DIP and DeepRED
on the Set5 [4] dataset for the deblurring task. The starting degraded images
are constructed by setting the standard deviation of the noise ση = 10 and the
standard deviation of the Gaussian blur σH = 2. The performances have been
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(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 5: Restored images for the baby test problem setting ση = 50. The PSNR
values are: Noisy: 19.84 dB, DIP: 27.85 dB, DeepRED: 28.32 dB, DIP-WTV:
28.26 dB, cDIP-RED: 28.43 dB.

(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 6: Restored images for the butterfly test problem setting ση = 50. The
PSNR values are: Noisy: 19.88 dB, DIP: 27.81 dB, DeepRED: 28.13 dB, DIP-
WTV: 28.01 dB, cDIP-RED: 28.69 dB.
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(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 7: Restored images for the watercastle test problem with noise level 5 and
blur 1.6. The PSNR and SSIM values are: Noisy: 22.87 dB - 0.76, DIP: 25.81
dB - 0.87, DeepRED: 26.23 dB - 0.89, DIP-WTV: 25.87 dB - 0.88, cDIP-RED:
26.28 dB - 0.89.

evaluated by means of the PSNR and SSIM metrics. In Table 2, we report
the mean values of the PSNR and SSIM metrics. Moreover, we consider the
skyscraper and the watercastle images and we add blur and noise by setting
ση = 10 and σH = 0.8 for the first image, ση = 5 and σH = 1.6 for the second.
The simulated degraded acquisitions are drawn in Figures 7b and 8b, respec-
tively. In Figures 8 and 7, we report the results obtained by applying DIP,
DeepRED, DIP-WTV and cDIP-RED and in the caption we report the PSNR
and SSIM metrics. For the DIP and DeepRED we set all the hyperparameters
in order to maximize the PSNR. For DIP-WTV and cDIP-RED we set for
all the tests βv = 1.5 and βt = 1.5 and βr = 2, respectively. For DeepRED,
DIP-WTV, and cDIP-RED the restored images have been obtained perform-
ing 5000 iterations.
From Table 2 we observe again that DeepRED and cDIP-RED reach compara-
ble performances on Set5. However, we stress that, differently from DeepRED,
the cDIP-RED scheme does not require to fix the regularization parameter.
Moreover, DIP-WTV outperforms the standard DIP. For the watercastle im-
age, DeepRED, and cDIP-RED reach similar performances in terms of PSNR
and SSIM metrics, however the DeepRED restoration looks noisier than the
one provided by cDIP-RED. Finally, DIP-WTV always performs better than
the standard DIP.

Concerning the skyscraper we do not have a ground truth available, there-
fore we can compare the results only through visual inspection. Indeed, it is
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(a) Compressed acquisition (b) Blurry and noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 8: Restored images for the skyscraper test problem with noise level 10 and
blur 0.8.

clear from Figure 8a that the skyscraper image is affected by jpeg-compression
artifacts. In order to simulate a more realistic acquisition, we further corrupt
this compressed image with blur and noise (Figure 7b). The close-ups in Figure
8 highlight that the output cDIP-RED suppress the artifacts and outperforms
the restorations provided by DIP, DeepRED and DIP-WTV in terms of visual
quality. In particular, cDIP-RED can retrieve better the details and remove
the artifacts and the noise.

Table 2: PSNR and SSIM mean values for the Set5 considering Gaussian blur
with σH = 2 and the noise-level ση = 10. In blue we highlight the best PSNR
and SSIM values.

Blurred DIP DeepRED DIP-WTV cDIP-RED

PSNR 25.93 30.08 30.81 30.56 30.90
SSIM 0.81 0.91 0.92 0.92 0.93

3.5 Artifact removal for a chest CT image

Finally, we show how our methods can be effective for retrieving one real
medical chest CT image of a patient affected by COVID-19 [42]. In Figure
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(a) Acquired chest CT

(b) DIP-WTV (c) cDIP-RED

Fig. 9: Reconstructed images for the real CT problem. In (a) we report the
acquired data, in (b)-(c) we report the restored images obtained by DIP-WTV
and cDIP-RED, respectively.

9a we report the acquired data together with the close-ups of two details
(inflammation zones) in the lungs backside where are visible the effects of the
interstitial pneumonia caused by COVID-19 disease. From these panels the
standard artifacts related to the discrete angles sampling typical of the CT
application are clearly visible. In Figures 9b and 9c, we show the restored
images provided by our DIP-WTV and cDIP-RED approaches, respectively.
Generally, all finer structures, such as the inflammation details, alveoli and
bronchioles, are sufficiently well retrieved, as highlighted by the close-ups.
Finally, it is evident that the restoration provided by cDIP-RED looks sharper
than the one restored by DIP-WTV.

3.6 Standard and modified versions of the alternating PGDA method

As already mentioned, both the unconstrained and the constrained models
developed in this work have been solved by means of a modified version of the
alternating PGDA algorithm. In this section we compare the performance of
the standard PGDA and that of the employed modified variant on a denoising
problem, by a way of example. Particularly, in this analysis we focus on the
sole cDIP-RED approach, since analogous considerations can be deduced for
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(a) PSNR (b) Constraint ratio

Fig. 10: The PSNR values and the constraint ratio’s trend achieved by PGDA
and cDIP-RED along the iterations for the woman RGB image with ση = 35.

DIP-WTV. In the comparison we consider cDIP-RED exploiting the modified
PGDA scheme, and its counterpart which uses the standard PGDA algorithm.
In this section, the latter approach is simply denoted by PGDA. We consider
the same parameters for cDIP-RED and PGDA. In Figure 10a we report the
PSNR values obtained along the iterations by applying PGDA and cDIP-RED
on the denoising problem related to the woman image corrupted with AWGN
with standard deviation ση = 35. It is evident that the achieved values are
comparable and the differences between the two methods are very limited. The
same considerations can be derived from the behaviour of the constraint ratio
generated by the two approaches under consideration and depicted in Figure
10b: the two curves are almost indistinguishable. Finally, we remark that ex-
ploiting the already computed values of to perform the successive variables
updates, avoids storing the intermediate values and, for this reason, allows a
lower memory requirement.

4 Conclusion

In this paper, we propose a constrained and an unconstrained DIP optimiza-
tion models which automatically estimate the strength of the regularization.
The unconstrained one uses a space variant handcrafted regularizer whose lo-
cal regularization parameters are adaptively defined along the optimization
process, whereas the constrained model is tailored for a generic regularizer
and implicitly forces solutions satisfying the discrepancy principle. Particu-
larly, we used the space variant Total Variation and the RED regularizer in
the implementation for the unconstrained and the constrained models, respec-
tively. The main strengths of the developed frameworks are threefold: it is not
required to set proper values for the regularization parameter, the schemes
implemented are more robust with respect to the selection of the hyperpa-
rameters than other state-of-the-art DIP-based methods, and both schemes
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avoid the typical overfitting behaviour of the DIP framework. The numerical
experiments on image denoising and deblurring show comparable results of the
developed approaches with respect to state-of-the-art strategies with the great
advantage of avoiding costly parameter tuning. Finally, since in the literature
highly inexact version of ADMM have been used to solve the regularized DIP
models, framing the problem in the PGDA setting opens new possibilities to
the theoretical convergence analysis and a more faithful match between theory
and practical implementation.

A The alternating proximal gradient descent-ascent method

The alternating proximal gradient descent-ascent (PGDA) method has been proposed [6,9,
27] to face a saddle point problem of the form

min
x∈Rd

max
y∈Rn

Φ(x,y) + R(x) − h(y), (22)

where the hypotheses on the coupling function Φ : Rd × Rn → R, and the regularizers
R : Rd → R ∪ {+∞} and h : Rn → R ∪ {+∞} are stated in the following assumptions. We
consider the approach developed in [6].

Assumption 1 The coupling function Φ is

(i) ρ-weakly convex in the first component uniformly in the second one, i.e.

Φ(·,y) +
ρ

2
||·||2 is convex for all y ∈ Rn

(ii) concave and ∇Φ is L∇Φ-Lipschitz continuous in the second component uniformly in
the first one, i.e.

||∇Φ(x,y) −∇Φ(x,y′)|| ≤ L∇Φ||y − y′||, ∀ x ∈ Rd, ∀ y,y′ ∈ Rn.

Assumption 2 The function Φ is L-Lipschitz in the first component uniformly over dom h
in the second one, i.e.

||Φ(x,y) − Φ(x′,y)|| ≤ L||x− x′||, ∀ x,x′ ∈ Rd,y ∈ dom h.

Assumption 3 The regularizers R and h are proper, convex and lower semicontinuous.

(i) Additionally, R is LR-Lipschitz continuous on its domain, which is assumed to be open.
(ii) Furthermore, h has bounded domain dom h such that the diameter of dom h is bounded

by Ch.

It is worth to remark that both the problems (10) and (18) can be cast as in (22) with
Φ(x,y) = K(x,y), where, for the first problem, y = µv. The regularizer h is not present
neither in the formulation (10) nor in the (18) one.

Before introducing the PGDA scheme, we need to clarify which is the notion of solution
for problem (22) we mean. Indeed, if the minimax problem is not convex-concave, the notion
of saddle point is too strong. As done in [6], we focus on the stationarity of the so called
max function given by

φ(x) = max
y∈Rn

Φ(x,y) − h(y), where φ : Rd → R,

which can be proved to be a ρ-weakly convex function for some ρ ≥ 0. To focus on the max
function makes sense in our framework: indeed, for the problem (10), the relevant variable,
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corresponding to the needed weights, is the primal one, i.e., x. In order to define optimality
in terms of the max function we need to define the regularized max function:

m(x) = φ(x) + R(x), where m : Rd → R ∪ {∞}. (23)

In the PGDA framework, the max function is in general nonsmooth, which makes it nonob-
vious how to define near stationarity. For this reason, a smooth approximation of m, known
as Moreau envelope mδ, parametrized by a positive scalar δ, has been introduced. In more
detail, for the proper, ρ-weakly convex and lower semicontinuous function m, the Moreau
envelope of m with the parameter δ ∈ (0, ρ−1) is the function from Rd → R defined by

mδ(x) := inf
z∈Rd

{
m(x) +

1

2δ
||z− x||2

}
.

The Moreau envelope allows to naturally define a notion of near stationarity even for nons-
mooth and ρ-weakly convex functions.

Definition 1 For an ε > 0 and a δ ∈ (0, ρ−1), a point x is ε-stationary for m if ||∇mδ(x)|| ≤
ε.

Now the algorithm and its convergence properties can be introduced. For initial values
(x0,y0) ∈ domR× domh, the alternating PGDA method reads as{

xk+1 = proxηxR
(
xk − ηx∇xΦ(xk,yk)

)
yk+1 = proxηyh

(
yk + ηy∇yΦ(xk+1,yk)

) (24)

where ηx and ηy are proper positive learning rates.

Theorem 1 Let Assumptions 1, 2 and 3 hold true and the function m is lower bounded.
The iterates generated by the algorithm (24) with ηx = O(ε4) < 1

2ρ
, ηy = 1

L∇Φ
and δ = 1

2ρ

visit an ε-stationary point in at most K = O(ε−6)
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