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Background: The relative contribution of changes in the cerebral white matter

(WM) and cortical gray matter (GM) to the transition to dementia in patients with

mild cognitive impairment (MCI) is not yet established. In this longitudinal study,

we aimed to analyze MRI features that may predict the transition to dementia

in patients with MCI and T2 hyperintensities in the cerebral WM, also known

as leukoaraiosis.

Methods: Sixty-four participants with MCI and moderate to severe leukoaraiosis

underwent baseline MRI examinations and annual neuropsychological testing

over a 2 year period. The diagnosis of dementia was based on established

criteria. We evaluated demographic, neuropsychological, and several MRI features

at baseline as predictors of the clinical transition. The MRI features included

visually assessed MRI features, such as the number of lacunes, microbleeds, and

dilated perivascular spaces, and quantitative MRI features, such as volumes of

the cortical GM, hippocampus, T2 hyperintensities, and di�usion indices of the

cerebral WM. Additionally, we examined advanced quantitative features such as

the fractal dimension (FD) of cortical GM and WM, which represents an index of

tissue structural complexity derived from 3D-T1 weighted images. To assess the

prediction of transition to dementia, we employed an XGBoost-based machine

learning system using SHapley Additive exPlanations (SHAP) values to provide

explainability to the machine learning model.

Results: After 2 years, 18 (28.1%) participants had transitioned from

MCI to dementia. The area under the receiving operator characteristic

curve was 0.69 (0.53, 0.85) [mean (90% confidence interval)]. The cortical

GM-FD emerged as the top-ranking predictive feature of transition.

Furthermore, aggregated quantitative neuroimaging features outperformed

visually assessed MRI features in predicting conversion to dementia.
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Discussion: Our findings confirm the complementary roles of cortical GM andWM

changes as underlying factors in the development of dementia in subjects with

MCI and leukoaraiosis. FD appears to be a biomarker potentially more sensitive

than other brain features.
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dementia, fractal dimension, gray matter, leukoaraiosis, mild cognitive impairment, MRI,

white matter

1. Introduction

Mild cognitive impairment (MCI) is a condition characterized

by a variable impairment of cognitive functions that does not

interfere with activities of daily living (Gauthier et al., 2006). Over

half of the subjects with MCI progress to dementia in the next 5

years (Gauthier et al., 2006). Since vascular and neurodegenerative

diseases overlap in the older population and both may underlie

MCI and dementia (Jellinger, 2013), distinguishing the respective

contributors to the transition to dementia can be difficult. There

is great interest in the identification of biomarkers as predictors

of the transition to dementia in patients with MCI in longitudinal

studies (Jokinen et al., 2012, 2015, 2020; Bilello et al., 2015; Wright

and Flores, 2015; Ye et al., 2015; Williams et al., 2017, 2019;

Zeestraten et al., 2017; Wu et al., 2019; Egle et al., 2022). Changes

in the cerebral subcortical white matter (WM) appearing as areas

of decreased density on computed tomography or hyperintensities

on T2-weighted MR images, termed leukoaraiosis, are associated

with changes in the diffusion of water protons in both T2-weighted

hyperintense and normal-appearing WM (O’Sullivan, 2008). Such

WM changes are a common finding in elderly subjects whose

cognitive functions span from normal to MCI and dementia

(Fazekas et al., 1987; Golomb et al., 1995; O’Sullivan, 2008; Inzitari

et al., 2009). Leukoaraiosis, along with lacunes and microbleeds,

is a marker of small vessel disease (SVD) (Jokinen et al., 2015,

2020; Lambert et al., 2016; Williams et al., 2017, 2019; Zeestraten

et al., 2017), but, overall, it is a non-specific finding that is observed

in elderly subjects with preserved cognition and patients with

Alzheimer’s disease (AD) (Fazekas et al., 1987; Golomb et al., 1995;

Bracco et al., 2005; O’Sullivan, 2008; Bilello et al., 2015).

The Vascular MCI (VMCI) Tuscany study aimed to identify

clinical, neuroimaging, and biological markers predictive of

transition to dementia in patients with MCI and leukoaraiosis

(Poggesi et al., 2012). In the VMCI Tuscany study, visually assessed

MRI features of brain damage included the number of lacunes,

microbleeds (Valenti et al., 2016), and dilated perivascular spaces

(Mascalchi et al., 2014). Quantitative MRI assessment included

volumes of the entire cortical gray matter (GM), hippocampus,

and T2 hyperintense WM (Giorgio et al., 2019) and diffusion

properties of the T2 hyperintense and normal-appearing WM

(Mascalchi et al., 2014; Ciulli et al., 2016). We also considered

advanced quantitative features such as the fractal dimension (FD)

of the cortical GM and WM (Pantoni et al., 2019)—indices of

tissue structural complexity extracted from 3D-T1 weighted images

(Marzi et al., 2020).

Herein, our objective was to assess the predictive power for the

transition to dementia of various factors, including demographic

data, neuropsychological assessments, and both visually and

quantitatively assessed MRI features over a 2-year period. This

evaluation was conducted on a cohort of 64 patients with MCI and

leukoaraiosis as part of the VMCI Tuscany study.

2. Materials and methods

2.1. Patients

The VMCI Tuscany study was approved by the local ethical

committees of the three participating centers in the Tuscany region

of Italy, namely Florence, Pisa, and Siena, which shared selection

criteria and assessment protocols (Poggesi et al., 2012).

The inclusion criteria for the VMCI Tuscany study were

as follows: (1) MCI as defined according to the criteria by

Winblad et al. (2004), and (2) evidence of moderate to severe T2

hyperintensity in the cerebral WM, based on the modified version

of the Fazekas scale (Pantoni et al., 2005). The VMCI Tuscany study

recruited 138 subjects, all of whom provided written informed

consent to participate in the study (Salvadori et al., 2018).

Each patient underwent a comprehensive neuropsychological

evaluation developed for patients with SVD and MCI (Salvadori

et al., 2016), including both global cognitive functioning tests

(i.e., Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,

2005; Conti et al., 2015) and second-level tests covering different

cognitive domains [i.e., Visual Search (VS) (Della Sala et al.,

1992), Symbol-Digit Modalities Test (SDMT) (Nocentini et al.,

2006), Trail-Making Test (TMT), Part A (Giovagnoli et al., 1996),

Color Word Stroop Test (Stroop) (Caffarra et al., 2002), and an

immediate copy of the Rey–Osterrieth Complex Figure (ROC-F)].

For the neuropsychological tests, we used the available normative

data based on healthy Italian adult samples’ national norms to

calculate demographically adjusted scores using the regression

equations extracted by normative studies (details in Pantoni et al.,

2019). The definition of change from MCI to dementia, or major

neurocognitive disorder, was conducted in accordance with the

DSM-5 criteria (Salvadori et al., 2018). The results of the baseline

clinical, neuropsychological (Salvadori et al., 2016, 2018), and MRI

assessments have been reported in previous studies (Valenti et al.,

2016; Giorgio et al., 2019).

For this study, 64 participants were selected from a

single center, and they underwent baseline MRI and annual
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TABLE 1 Descriptive statistics of demographic, neuropsychological, visually assessed MRI, and quantitative MRI features for patients with and without a

2-year transition to dementia.

Feature Patients without transition to
dementia (N = 46)

Patients with transition to
dementia (N = 18)

Demographic Age 73.96 (6.67) [61.12, 89.03] 76.34 (6.693) [59.80, 84.09]

Sex 22 female and 24 male patients 8 female and 10 male patients

Education 8.17 (4.25) [3, 18] 7.44 (4.30) [2, 18]

Neuropsychological test MoCA 21.23 (4.62) [11.95, 29.29] 18.93 (3.95) [13.10, 25.24]

ROC-F immediate copy 23.68 (7.21) [5.59, 35.58] 21.27 (10.61) [4, 36]

SDMT 39.18 (10.03) [22.02, 59.94] 31.18 (5.38) [24.67, 43.49]

Stroop 33.44 (23.81) [−3.45, 114.57] 51.59 (36.02) [8.83, 155.09]

TMT-A 61.47 (47.97) [3.77, 202.2] 64.47 (43.15) [8.42, 152.92]

VS 32.84 (8.61) [14.3, 50.17] 29.08 (7.78) [15.41, 41.27]

Visually assessed MRI

features

Lacunar infarcts 2.02 (0.80) [1, 3] 2.28 (0.83) [1, 3]

Cerebral microbleeds 0.91 (2.57) [0, 15] 2.24 (5.77) [0, 18]

EPVS basal ganglia 1.67 (0.82) [0, 4] 1.83 (0.62) [1, 3]

EPVS centrum semiovale 1.89 (0.77) [1, 3] 1.44 (0.70) [1, 3]

Quantitative MRI

features

WM lesion load 0.07 (0.04) [0.01, 0.20] 0.09 (0.05) [0.02, 0.20]

WM volume 0.15 (0.01) [0.12, 0.17] 0.14 (0.01) [0.13, 0.16]

GM volume 0.12 (0.01) [0.10, 0.14] 0.11 (0.01) [0.10, 0.12]

Hippocampal volume 0.0023 (0.0005) [0.0010, 0.0031] 0.0020 (0.0002) [0.0020, 0.0024]

WM FD 2.45 (0.04) [2.35, 2.51] 2.43 (0.04) [2.36, 2.49]

GM FD 2.34 (0.02) [2.30, 2.38] 2.33 (0.02) [2.27, 2.36]

Median FA 0.37 (0.02) [0.33, 0.41] 0.36 (0.02) [0.32, 0.40]

Median MD 0.82 (0.05) [0.7, 0.9] 0.82 (0.04) [0.8, 0.9]

The statistics are reported as the mean values (standard deviation) [minimum and maximum values] in the respective groups. The volume and the FD of a specific brain structure are defined as

the average value between the left and right hemispheres. Volumes were subsequently normalized to eTIV. EPVS, enlarged perivascular spaces; FA, fractal anisotropy; FD, fractal dimension; GM,

gray matter; MD, mean diffusivity; MoCA, adjustedMontreal Cognitive Assessment score; ROC-F, adjusted Rey-Osterrieth Complex Figure immediate copy score; SDMT, adjusted symbol-digit

modality test score; TMT-A, adjusted trail-making test-A score; VS, adjusted visual search score; WM, white matter.

neuropsychological testing over a 2-year period (Table 1). After

2 years, 18 (28.1%) participants had converted from MCI to

dementia. The results of the cross-sectional assessment in this

sub-cohort using visually assessed and quantitative MRI features

and their correlation with the neuropsychological evaluation were

reported in a previous study (Pantoni et al., 2019).

2.2. MRI acquisition protocol

All examinations were performed on a 1.5 T system (Intera,

Philips Medical System, Best, The Netherlands) with 33 mT/m

maximum gradient strength and a 6-channel head coil with SENSE

technology. After scouts, we obtained sagittal 3D T1-weighted

turbo gradient echo [repetition time (TR)= 8.1ms, echo time (TE)

= 3.7ms, flip angle = 8◦, inversion time (TI) = 764ms, field of

view (FOV) = 256mm × 256mm, matrix size = 256 × 256, 160

contiguous slices, slice thickness = 1mm; number of excitations

(NEX) = 1] images, axial T2-weighted FLAIR (TR = 11,000ms,

TE = 140ms, TI = 2800ms, flip angle = 90◦, FOV = 250mm

× 250mm, matrix size = 280 × 202, 40 contiguous slices, slice

thickness= 3mm, interslice gap= 0.6mm, NEX= 1) images, axial

T∗
2-weighted gradient-echo [TR = 696ms, TE = 23ms, flip angle

= 18◦, FOV = 250mm × 200mm, matrix size = 252 × 160, 22

slices, slice thickness = 5mm, interslice gap = 1mm, NEX = 2]

images, and diffusion-weighted imaging (DWI) volumes using an

axial single-shot echo planar imaging sequence [TR= 9,394ms, TE

= 89ms, FOV = 256mm, matrix size = 128 × 128, 50 slices, slice

thickness= 3mm, no gap, NEX= 3, diffusion sensitizing gradients

applied along 15 non-collinear directions using b value of 0 (b0
image) and 1,000 s/mm2]. An experienced neuroradiologist visually

checked all images for possible artifacts prior to image processing.

2.3. MRI feature extraction

Figure 1 shows the extraction procedure for the brain MRI

features considered in the present investigation and partially

described in detail in a previous study (Pantoni et al., 2019).
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FIGURE 1

Schematic representation of the MRI features extraction for predicting the transition to dementia.

2.3.1. Visually assessed MRI features
An experienced observer visually assessed the number of

lacunes, cerebral microbleeds, and enlarged perivascular spaces

(EPVS). He scored lacunar infarcts, defined as cavities of 3-

to-10mm in diameter, as 0 = (absent), 1 = (1–3), and 3 =

(>3) and used the Microbleed Anatomical Rating Scale (MARS)

(Gregoire et al., 2009) to assess the total number of microbleeds,

defined as small, rounded, or circular, well-defined T2 hypointense

focal brain lesions ranging from 2 to 10mm in diameter. The

inter- and intra-observer agreement for rating lacunar infarcts

and microbleeds in patients of the VMCI Tuscany cohort was

“substantial” or “almost perfect” (Valenti et al., 2016; Mascalchi

et al., 2019).

Finally, he assessed the EPVS in the basal ganglia and the

centrum semiovale. These were defined as small, sharply delineated

structures with cerebrospinal fluid intensity; they followed the

orientation of the perforating vessels, ran perpendicular to

the brain surface, and were <3mm wide. EPVS were scored

as 0 = (absent), 1 = (≤10), 2 = (11–20), 3 = (21–40),

and 4= (≥40).

2.3.2. Quantitative MRI features
The WM T2 hyperintensities were quantitatively assessed by

computing the lesion load using a semiautomatic segmentation

technique based on user-supervised local thresholding (Jim 5.0,

Xinapse System, Leicester, UK; www.xinapse.com/Manual/). A

single operator outlined the T2 hyperintenseWM lesions on FLAIR

images. TheWM lesion load was then calculated by normalizing the

total volume of lesions by the individual’s cerebral WM volume.

2.3.2.1. Volumes of the cerebral WM, cortical GM,

and hippocampus

The FreeSurfer image analysis suite v. 5.3 (http://surfer.

nmr.mgh.harvard.edu/) performed cortical reconstruction

and volumetric segmentation of the WM, cortical GM,

and hippocampus on T1-weighted images (Fischl, 2012). We

applied the correction procedures for segmentation and surface

reconstruction errors, as proposed by the FreeSurfer developers,

to FreeSurfer outputs. They involve editing the brain and WM

masks, adding control points, and re-running the FreeSurfer

pipeline (https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
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TroubleshootingData). To correct all defects, manual editing and

re-running were performed by the same operator up to three times

(McCarthy et al., 2015). Given the inherently hemispheric nature of

the hippocampus, we computed the volumes of the hippocampus,

WM, and cortical GM in the left and right hemispheres separately.

Then, we calculated the average value of the volume of each

structure in the left and right hemispheres and normalized these

averages to the estimated intracranial volume (eTIV).

2.3.2.2. Microstructural changes of the cerebral WM

DWI volumes were subjected to head motion and eddy current

distortion correction using FDT (FMRIB’s Diffusion Toolbox 2.0),

a component of FSL 4.1.9 (Smith et al., 2004). Subsequently,

brain tissue was extracted using BET (Smith, 2002). The b-

matrix was reoriented by applying the rotational part of the

affine transformation employed during the eddy-correction step

(Leemans and Jones, 2009). A tensor model was then fitted to the

raw data using a constrained non-linear least squares procedure

implemented in the CAMINO package (Cook et al., 2006). Any

residual non-positive definite tensors in isolated regions, primarily

located at the edge of the brain, were eliminated through tensor

interpolation in the log-euclidean domain (Arsigny et al., 2006).

Finally, fractional anisotropy (FA) and mean diffusivity (MD) were

computed from the estimated tensor field. Median MD and FA

values of the cerebral WM were computed using a previously

described procedure (De Stefano et al., 2006; Mascalchi et al., 2014).

2.3.2.3. WM and cortical GM fractal analysis

Among different methods to compute the FD, we selected

the 3-D box-counting algorithm (Russell et al., 1980), a fairly

direct and reliable method to analyze fractal objects. The algorithm

involves overlaying a grid of cubes of side length s onto a binary

segmentation of a brain structure, counting the number of cubes

N(s) needed to enclose the structure, and repeating this process for

different values of s. To prevent any systematic influence of the grid

placement, for each s value, we applied 20 uniformly distributed

random offsets to the grid origin, and the relative box count was

averaged to obtain a single N(s) value (Goñi et al., 2013). The FD of

the structure is then computed by modeling the data pointsN(s) vs.

s in a log-log plane as a linear regression function and calculating

the absolute value of the slope of the regression line. In the natural

scale, the FD, a measure of space-filling, is the exponent (sign

changed) of a power law that describes the relationship between the

number of cubes enclosing the structure and their side length.

Generally, a natural object such as a brain structure shows

its fractal properties in a limited interval of spatial scales, named

the fractal scaling window, which is unknown a priori. Therefore,

we applied an automated selection of spatial scales for each brain

region, searching for the interval of spatial scales in which the linear

regression shows the best fit, asmeasured by the rounded coefficient

of determination adjusted for the number of data points (R2
adj
).

The fractal analysis was carried out using the fractalbrain toolkit

version 1.1 (Marzi, 2023) (freely available at https://github.com/

chiaramarzi/fractalbrain-toolkit) and described in detail in Marzi

et al. (2020).

In this study, we examined the fractal properties of both WM

and cortical GM by calculating and averaging the FD from both the

left and right hemispheres of each structure.

2.3.3. Machine learning system
To forecast the transition to dementia, we used an explainable

machine learning (ML) framework fed by baseline demographical,

neuropsychological, visual, and quantitative MRI features. During

the training phase, missing values in the data were imputed

by replacing them with the average value of the corresponding

feature. Additionally, standardization was performed by rescaling

each feature to have a mean of zero and a variance of one.

These imputation and standardization techniques were exclusively

learned during the training phase and subsequently applied

in the validation and testing phases, leading to an unbiased

generalization performance.

The explainable ML framework was trained, validated, and

tested through a repeated stratified nested validation procedure

(Figure 2). Nested validation is a technique that reduces the

possibility of overfitting and model hyperparameter optimization,

along with estimating the generalization error on unseen data

(Müller and Guido, 2016). We chose bootstrap resampling for

the outer split and a 5-fold cross-validation (CV) for the inner

loop. We selected a number of folds equal to 5 because it offers a

favorable bias-variance trade-off (Hastie et al., 2013). In detail, for

each repetition of the bootstrap resampling, the entire dataset was

divided by sampling—with replacement—the instances contained

in the original dataset to form an outer training set. The outer

test set included the unique instances that were not selected for

the training set, i.e., the out-of-bag samples. The outer training set

was then used for hyperparameter optimization through an inner

subject-level 5-fold CV. The subject-level splitting ensures that the

repetitions present in the outer training set are either in the inner

training set or in the inner validation set, preventing data leakage

(Yagis et al., 2021). Once the combination of hyperparameter

values that minimized the out-of-sample prediction error (Hastie

et al., 2013) had been found in the inner CV, the model with

that combination of hyperparameters’ values was re-trained on the

outer training set and tested on the unseen outer test set, thus

preventing any form of peeking effect (Diciotti et al., 2013). The

stratified sampling ensured that samples possessing a particular

characteristic, i.e., the transition to dementia, were selected in

the same proportion in the training, validation, and test sets as

they existed in the entire dataset. The stratified nested validation

was repeated 100 times with different bootstrap data splitting

to attenuate the dependencies of the model from the training

data, along with reducing performance estimation variance while

maintaining a minimal bias (Molinaro et al., 2005; Kim, 2009).

The explainable ML framework utilized in this study employed

an Extreme Gradient Boosting Classifier (XGboost) model. This

model, based on tree-based machine learning, has demonstrated

effectiveness in addressing various recent challenges in the field of

machine learning (Chen and Guestrin, 2016). The hyperparameters

of the model were selected through a random search within

the inner CV process. The hyperparameter space was defined

as follows: the minimum loss reduction required for further
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FIGURE 2

Machine learning validation scheme: 100-times repeated stratified nested validation procedure. In the figure, we chose a dataset comprising ten

samples to provide a comprehensive illustration of the bootstrap resampling procedure with replacement. When applying bootstrap resampling to

our actual dataset, which contains 64 subjects, we obtain an outer training set consisting of 64 instances (some of which are repeated) and an outer

test set that comprises the unique instances not included in the training set, referred to as the out-of-bag samples. The outer training set was then

used for an inner subject-level 5-fold cross-validation (CV) for hyperparameter optimization.
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partitioning a leaf node of the tree γ ∈s (0.6, 0.7, 0.8), the subsample

ratio of columns used when constructing each tree colsample_bytree

∈ (0.25, 0.5, 0.75, 1), the maximum depth of a tree max_depth

∈ (2, 3, 4), the minimum number of instances required in each

node min_child_weight ∈ (2, 3, 5), the number of decision trees

n_estimators ∈ (5, 10, 20, 100), and the ratio of training data

randomly sampled before growing trees subsample ∈ (0.1, 0.2, 0.4).

For each repetition of the stratified nested validation, the

classifier’s performance was evaluated on the outer test set using

the area under the receiver operating characteristic (ROC) curve

(AUC). The mean AUC and the 90% confidence interval (CI)

were reported as the final performance. To verify whether the

performance of our classifier was significantly superior to that of

a random guessing classifier (Fawcett, 2006), we compared the

AUC values with the value 0.5, i.e., the chance-level performance,

through a one-tailedWilcoxon signed rank with a significance level

of 5%. By considering the coordinates of the ROC curve obtained

from the data of the outer test set at each repetition of the stratified

nested validation, we built a median ROC curve. The optimal

operating point on the median ROC curve was identified as the

point with the highest Youden’s index, denoted as J = sensitivity

+ specificity – 1 (Youden, 1950).

Furthermore, we used SHAP (Lundberg, 2017), an

explainable AI technique that enables the determination of

feature contributions to each model output. Each SHAP value

represents a real number associated with a particular feature

of an individual sample (i.e., a subject). The sign of the SHAP

value indicates the direction in which the feature influences the

output for a specific subject. To obtain the feature contributions,

SHAP values were computed for the outer test set during each

repetition of the repeated nested validation and were subsequently

averaged, in absolute value, across patients (Scheda and Diciotti,

2022). Therefore, we obtained 100 global SHAP values for each

feature and calculated the median over the repetitions as the

final global feature importance. The global contribution of the

top-ranking predictive feature was compared to the second feature

of the ranking through a one-tailed Wilcoxon signed rank with

a significance of 0.05. In addition to assessing the individual

contributions of each feature toward predicting the transition to

dementia, we also averaged the SHAP values over specific feature

categories (i.e., a sum of the SHAP values of all features belonging

to a category divided by the total number of features in the

category). These categories included demographic features (age,

sex, and education), adjusted neuropsychological scores (MoCA,

TMT-A, ROC-F immediate copy, SDMT, Stroop, VS), visually

assessed MRI features (lacunar infarcts, cerebral microbleeds,

EPVS basal ganglia, EPVS centrum semiovale), and quantitative

MRI features (WM lesion load, GM FD, WM FD, hippocampal

volume, GM volume, WM volume, Median MD, Median FA). By

grouping the SHAP values according to these feature categories,

we gained a comprehensive understanding of their combined

contributions to the prediction of the transition to dementia.

3. Results

To forecast the transition to dementia, the mean ROCAUCwas

0.69 with a 90% CI of (0.53, 0.85). The AUC value of our classifier

FIGURE 3

Median receiver operating characteristic (ROC) curve of the model

trained using nested validation over 100 repetitions. The gold point

on the ROC curve corresponds to the coordinates (0.33, 0.67)

where the maximal Youden’s index is achieved. The red overlay

represents the ROC curve of a random classifier, serving as a

reference. The dotted and dashed purple curves indicate the 25th

and 75th percentiles, respectively.

was significantly higher than the chance-level performance (one-

tailedWilcoxon signed rank p-value< 0.001). Through ROC curve

analysis (Figure 3), we identified a specific operating point that

maximized Youden’s index, gaining a sensitivity of 0.67 and a

specificity of 0.67.

Notably, the GM FD was the top-ranking predictive feature

(Figure 4). The median absolute SHAP value of the GM FD

was significantly higher than that of the second-ranking feature,

i.e., hippocampal volume (one-tailed Wilcoxon signed rank p-

value < 0.001). SDMT score, cortical GM volume, Stroop score,

EPVS centrum semiovale, WM FD, age, MoCA score, and

WM lesion load were the main important predictive features.

The aggregated quantitative neuroimaging features exhibited

superior predictive capabilities compared to visually assessed MRI

features (Figure 5). Figure 6 illustrates the visualization of mean

SHAP values corresponding to specific features within individual

samples (subjects). This visualization aims to provide a concise

representation of how the dataset’s features influence the model’s

output. Each subject is depicted by a single dot for every feature.

The SHAP value of a feature determines the horizontal position

of the dot, and dots accumulate along each feature’s row to depict

density. Colors are utilized to indicate the original feature values.

In essence, this plot enables us to observe the SHAP value for

each feature in every sample. In this graphical representation, a

dot’s color varies (from blue to pink) according to whether the

feature value is high or low. Additionally, its position on the graph

shifts (from the base SHAP value to the right or left) based on

its influence on the model’s decision (i.e., its SHAP value). As
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FIGURE 4

A box plot showing the mean absolute SHAP values of each feature, sorted in ascending order. The volume and the FD of a specific brain structure

are defined as the average values among the left and right hemispheres. Volumes were subsequently normalized to eTIV. EPVS, enlarged perivascular

spaces; FD, fractal dimension; GM, gray matter; MoCA, adjusted Montreal Cognitive Assessment score; SDMT, adjusted symbol-digit modality test

score; WM, white matter.

FIGURE 5

A box plot illustrating the averaged absolute SHAP values over each category (i.e., a sum of the SHAP values of all features belonging to a category

divided by the total number of features in the category).

depicted in Figure 6, lower FD values, showing decreased cortical

GM structural complexity, significantly affects the model’s decision,

guiding it toward the transition to dementia class.

4. Discussion

Predicting the transition to dementia in patients with MCI

is of utmost importance, as it could enable the implementation

of therapies aimed at slowing or halting the progression of the

disease. In a previous cross-sectional study that involved the

same MCI and leukoaraiosis cohort as the current investigation,

we observed that different combinations of MRI features were

predictive of the cognitive status at baseline. Notably, the FD of

the WM was consistently identified as the most frequently selected

feature for this purpose (Pantoni et al., 2019). In this longitudinal

investigation, we expanded our evaluation to include the same

features, hippocampal volume, and diffusion indexes of the WM,

which are well-established correlates of cognitive impairment

(O’Sullivan, 2008; Mascalchi et al., 2013; Zeestraten et al., 2017).
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FIGURE 6

Beeswarm summary plot depicting representative SHAP values. Each feature row for each sample (i.e., subject) is represented by a single dot, with

the x position determined by the corresponding SHAP value. Dots accumulate along each feature row to indicate density. The color of each dot

represents the original value of the feature. The volume and the FD of a specific brain structure are defined as the average values among the left and

right hemispheres. Volumes were subsequently normalized to eTIV. EPVS, enlarged perivascular spaces; FA, fractal anisotropy; FD, fractal dimension;

GM, gray matter; MD, mean di�usivity; MoCA, adjusted Montreal Cognitive Assessment score; ROC-F, adjusted Rey-Osterrieth Complex Figure

immediate copy score; SDMT, adjusted symbol-digit modality test score; TMT-A, adjusted trail making test-A score; VS, adjusted visual search score;

WM, white matter.

First, we wish to point out that the overall predictive performance

achieved by a series of demographic, neuropsychological, and MRI

features was not exceptionally high, as reflected by a mean (90%

CI) ROC area of 0.69 (0.53, 0.85). We speculate that this relatively

modest performance might be attributed to the broad clinical-

instrumental definition of VMCI used in our study, potentially

including cases with concomitant and potentially prevalent AD

pathology within our sample.

Interestingly, the FD of the cortical GM emerged as the most

remarkable and best predictor for this transition. Furthermore, the

FD and volume of the cortical GM exhibited superior predictive

performance compared to the WM lesion load, diffusion-derived

indices, and FD of the cerebral WM. Notably, when features

of the same type were aggregated, quantitative neuroimaging

features demonstrated superior predictive capability compared

to neuropsychological tests, visually assessed MRI features, and

demographic factors.

Our findings provide further confirmation that cortical GM is

closely associated with leukoaraiosis, as demonstrated by previous

studies (Lambert et al., 2015; Ye et al., 2015; Heinen et al.,

2020). Moreover, our results highlight the contribution of GM

atrophy to the transition to dementia in patients with MCI and

leukoaraiosis (Jokinen et al., 2012, 2020; Bilello et al., 2015; Wu

et al., 2019; Fan et al., 2021). Specifically, it has been observed that

cortical atrophy associated with leukoaraiosis exhibits a distinct

distribution in the dorsolateral prefrontal, parietal, and posterior-

superior temporal cortices, differing from the cortical changes

associated with normal aging (Lambert et al., 2015; Ye et al.,

2015; Heinen et al., 2020). Additionally, studies have indicated

a correlation between the progression of cortical atrophy and

leukoaraiosis over time (Lambert et al., 2016). Furthermore,

atrophy in the hippocampal and medial temporal lobes has been

identified as an underlying factor contributing to cognitive deficits

in patients with leukoaraiosis (Bastos-Leite et al., 2007; Jokinen

et al., 2020; Chen et al., 2021; Fan et al., 2021; Sun et al., 2022)

and has been associated with their transition to dementia in these

individuals (Jokinen et al., 2012, 2020). The exact nature of cortical

changes in relation to leukoaraiosis and SVD remains uncertain, as

some studies suggest that these changes could be secondary effects

of leukoaraiosis/SVD (Bastos-Leite et al., 2007; Jokinen et al., 2020;

Chen et al., 2021), while others propose the involvement of a dual

pathology with accompanying AD (Jellinger, 2013; Ye et al., 2015;
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Wu et al., 2019). Notably, our study reveals that subtle changes

in cortical GM, manifested as decreased FD, better anticipate

the transition from MCI to dementia compared to overt cortical

atrophy. In parallel, it is well-established that “invisible” changes in

terms of subtle T2 signal changes (Jokinen et al., 2015) or diffusion

properties (Zeestraten et al., 2017; Williams et al., 2019; Egle et al.,

2022) can be observed in the normal-appearing WM of patients

with leukoaraiosis, and these changes are predictive of cognitive

decline. In line with these findings, our study suggests that the FD of

theWMmay serve as an additional marker for the subtle structural

changes occurring in the WM of patients with leukoaraiosis.

The findings of this study further strengthen the evidence that

FD provides supplementary information beyond what is offered

by other conventional structural features (Free et al., 1996; Im

et al., 2006; Sandu et al., 2008a,b, 2014a,b, 2022; King et al.,

2009, 2010; Madan and Kensinger, 2016, 2018; Marzi et al.,

2018, 2020, 2021, 2022; Pantoni et al., 2019; Pani et al., 2022;

Nazlee and Waiter, 2023) and has potential relevant practical and

diagnostic implications, particularly regarding the MRI evaluation

of the cortical GM. Importantly, the FD measurement can be

derived from standard, high-resolution 3D T1-weighted images

commonly included in clinical MRI protocols. This means that FD

assessment does not necessitate additional dedicated acquisitions,

such as magnetization transfer imaging, which is capable of

detecting subtle microstructural changes in the cortical GM in

both inherited and sporadic AD (Ginestroni et al., 2009; Mascalchi

et al., 2013). By contrast, nuclear medicine techniques for assessing

cortical GM metabolism or amyloid deposits for the differential

diagnosis of patients with leukoaraiosis have not been widely

implemented (Ye et al., 2015; Altomare et al., 2023). Therefore,

using FD measurements from standard MRI scans may represent

a valuable and accessible tool in clinical practice for evaluating

cortical GM alterations without requiring additional specialized

imaging techniques.

We acknowledge several limitations in our study. First, the

relatively small sample size and the fact that the study was

conducted at a single center may affect the generalizability of our

findings. The sample was collected in a highly qualified referral

university hospital where patients fulfilling admission criteria were

consecutively identified and carefully evaluated before enrollment.

Of course, this cannot support the full generalizability of the

results. Therefore, to enhance the robustness and generalizability

of the results, further validation in independent samples would

be beneficial. Second, the consideration of whole brain structures

rather than regional FD differences does not allow for the

demonstration of the distributed microstructural or overt changes

that are known to occur in vascular MCI and dementia. Finally,

longitudinal MRI data would be valuable to better elucidate the

underlying mechanisms. Unfortunately, such longitudinal data are

not available for our study.

In conclusion, our study highlights that the transition to

dementia from MCI in patients with leukoaraiosis is associated

with subtle alterations in both the cerebral cortical GM and WM,

as reflected by altered FD. Notably, our findings suggest that

the FD changes observed in the cortical GM exhibit a stronger

predictive value for future transitions compared to other brain

measurements. The FD of the cortical GM emerges as a biomarker

that is potentially more sensitive than other brain measurements

for predicting the transition to dementia.
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