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Performance Limits of Spatially Distributed Molecular Communications
With Receiver Saturation

Flavio Zabini , Member, IEEE, and Barbara Maví Masini, Senior Member, IEEE

Abstract—Molecular communications via diffusion are affected
by unreliability and inter symbol interference in case of single
transmitter. A promising solution to these issues appears to be
the adoption of a swarm of randomly distributed transmitting
nano-devices and a single spherical receiver. However, such a
perspective assumes the receiver as fully absorbing (i.e., able to
absorb an unlimited number of molecules per second). In this
letter, we show that, if this assumption is relaxed, increasing the
number of point transmitters leads to a saturation effect which
makes communication impossible when digital transmission is
considered. By means of a first and second order spatio-temporal
stochastic model, we analytically derive the maximum allowed
point transmitters density before saturation arises, as a function
of parameters such as the diffusion coefficient, the maximum
number of absorbed molecules, and the number of previously
transmitted symbols. The analysis is validated via Monte Carlo
simulation.

Index Terms—Molecular communications, diffusion, point
processes, asynchronous transmission, spatiotemporal model.

I. INTRODUCTION

MOLECULAR communications have recently attracted
an increasing interest for providing many bio-inspired

communication methods for both nanoscale (e.g., nanorobots
for surgical instrumentation, diagnosis, and drug delivery)
and macroscale (e.g., underwater communication) applica-
tions [1]. In molecular communication via diffusion (MCvD),
the Brownian motion of chemical molecules substitutes elec-
tromagnetic waves as information carrier [2], [3], [4]. Crucial
aspects such as noise, interference, and capacity have been
investigated in the literature [5], [6], [7], [8]: as a matter
of fact, bionanomachines for molecular communications are
small in scale, limited and unreliable in functionality. Hence,
it is their collective behavior that has to be studied, instead of
considering them individually.

In this context, the authors in [9] proposed a model with a
swarm of point transmitters spatially distributed according to
a homogeneous Poisson point process (HPPP), and a spheri-
cal receiver. The collective strength of such a communication
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system is evaluated both in terms of received number of
molecules and of bit error probability (BEP) when on-off key-
ing (OOK) digital modulations is considered. These results
have been extended in case of asynchronous transmissions, i.e.,
without assuming that all point transmitters emit molecules at
the same time instants, in [10], [11], [12].

Two of the most relevant results regarding this kind of
spatially distributed MCvD scenario can be summarized as
follows: i) from a single transmitter MCvD scenario, the
signal-to-noise ratio (SNR) saturates (i.e., when digital trans-
mission is considered, the BEP shows a floor) as the number
of emitted molecules increases; ii) both SNR and the signal-
to-noise-plus-interference ratio (SNIR) linearly increase (thus,
the BEP decreases) as the spatial density of point transmitter
increases. In other words, indefinitely increasing the density
of point transmitters (rather than increasing the number of
transmitted molecules for each point transmitter) appears as
the key-solution to counteract both noise and inter-symbol
interference (ISI) effects. However, this result clearly depends
on the ideal assumption that the receiver can indefinitely
absorb all molecules hitting its surface (i.e., fully absorb-
ing receiver). But, in [13], it is shown that the absorbing
rate is limited for chemical reasons and, in [14], the num-
ber of molecules absorbed within a certain interval (i.e., a bit
interval) is thus considered bounded by a certain threshold.
The problem of the receiver congestion when the fully absorb-
ing assumption is removed has also been addressed in [15],
where an algorithm is proposed to control molecules emission
and avoid molecules wasting. However, [13], [14], [15] deal
with a point-to-point molecular communication scenario.

Differently, in this work, we address a scenario with
a swarm of point transmitters to study the effect of the
receiver saturation in the terms of BEP. In addition, differently
from [15], which is focused on an early congestion detection
and a proper run-time molecules emission control in a point-
to-point communication scenario, we analytically derive the
maximum value of the point transmitters density before the
congestion arises for a fixed emission rate.

II. SYSTEM MODEL

We consider a large-scale molecular communications sce-
nario similar to that presented in [9] with a swarm of
point transmitters and a spherical receiver (see Fig. 1). More
specifically, the transmitters positions {xk} are a random set
given by the outcomes of a spatial HPPP Π with intensity λa
restricted to ΩRa \ ΩR , where ΩRa and ΩR are spheres of
radius Ra and R, respectively.
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Fig. 1. A swarm of randomly placed point transmitters randomly emit
molecules according to independent time-domain PPs with the same intensity
function ϱ(t).

For the transmission process, we consider the asynchronous
stochastic model proposed in [10], [11], [12]. The instants in
which the molecules are emitted by the k-th point transmitter
are given by the random set {τ (k)

l } constituted by the out-
put of the (generally, non stationary) time domain PP Φ(k)

(i.e., τ
(k)
l is the emission instant of the l-th molecule emitted

by the k-th transmitter placed at xk ). The time domain PPs
{Φ(k)} are independent and have the same intensity function
ρ(t). Such an asynchronous model describes a scenario where
the point transmitters represents the randomly located points
where spontaneous emissions happen in the fluid due to chem-
ical reactions. Since the emissions are related to the collisions
between the reagent molecules, it must be highlighted that
the Brownian motion of the reagent molecules motivates the
independence among the time domain PPs and ρ(t) takes the
meaning of the propensity function as described by [16].

Note that, the aforementioned asynchronous transmissions
(also known as timing transmissions) can be reduced to the
synchronous case (also known as Poisson concentration trans-
mission) by setting ρ(t) = Ntxδ(t), where Ntx is the average
number of molecules instantaneously emitted by a Poisson
concentration transmitter and δ(t) is the Dirac delta. In such a
case, the model reduces to the synchronous scenario proposed
in [9], where the point transmitters represent nano-machines
which collaborate to transmit the messages.

The key difference with respect to the spatiotemporal model
in [10] and [12] is at the receiver side. Here, the goal is to
investigate the impact of the saturation effect on a spatially
distributed molecular communication system. Thus, instead of
assuming a fully absorbing receiver, we take into account the
effect of saturation by means of the maximum absorbing rate
fsat, indicating the number of molecules per second that the
receiver can absorb. For the sake of simplicity, we assume
that the maximum number of absorbed molecules for each
symbol time results in N abs = fsatTb and that such a level is
quickly resetted at each timestep. This is in accordance with
the model proposed in [14] (establishing a more complex and
accurate model for the reception mechanism, e.g., based on
ligand-receptor interactions, is beyond the scope of the present
letter). Thus, the random variable (RV) nabs denoting the total
number of absorbed molecules is given by

nabs = min
{
N abs, nrx

}
(1)

where nrx is the number of absorbed molecules (within Tb)
when a fully absorbing spherical receiver of radius R is
considered with hitting rate [3]

fhit(d , t) =
R

d

1√
4πDt

d − R

t
exp

[
− (d − R)2

4Dt

]
(2)

being d the distance from the transmitter, D the diffusion coef-
ficient, and t the time after the transmission of the unitary
molecule. As known, fhit(d , t) represents the (infinitesimal)
probability that a molecule emitted at the time origin at dis-
tance d is received (exactly) at time t. The probability that
a molecule emitted at t = 0 is observed within the interval
[t0, t0 + Tb] is thus given by
∫ t0+Tb

t0
fhit(d , t)dt = Fhit(d , t0 + Tb)− Fhit(d , t0) (3)

where

Fhit(d , t) =
R

d
erfc

(
d − R√
4Dt

)
. (4)

The time invariance of the Fick’s law of diffusion allows to
write that, if the emission happens at τ

(k)
l , the probability that

the molecule is received in the interval [t0, t0 + Tb] is

Fhit

(
d , t0 + Tb − τ

(k)
l

)
− Fhit

(
d , t0 − τ

(k)
l

)
= Fhit

(
d , t0 − τ

(k)
l

)

(5)

where Fhit(d , t) ! Fhit(d ,Tb + t) − Fhit(d , t). Due to the
linearity of the Fick’s law, the number of received molecules
from all transmitters within the interval [t0, t0 + Tb] is

nrx[ρ(t)] =
∑

xk∈Π

∑

τ
(k)
l ∈Φ(k)

b
(k)
l (6)

where the dependence on ρ(t) is highlighted and b
(k)
l is a

binomial RV equal to one with probability Fhit(xk , t0−τ
(k)
l ).

We now consider the digital transmission of j + 1 symbols,
where the intensity function of all transmission processes is
modeled by

ρ(t) =
j∑

i=0

aig(t − iTb) (7)

where ai is the i-th bit (which is 1 with probability p1 and 0
with probability p0 = 1− p1), the waveform g(t) is such that
g(t) = Ntxδ(t) for the synchronous Poisson transmission case
and g(t) = (Ntx/Ta) rect(t/Ta) for the asynchronous trans-
mission case, with Ta the activity interval and Ta/Tb ≤ 1
the duty cycle. It has been shown in [10], [11], [12] that ρ(t)
plays the role of the input of a linear time invariant (LTI)
system, thus the superposition of effects holds. Focusing on
the generic j-th instant (due to the causality, the molecules
emitted after the j-th bit time provide no effect), the number
of hitting molecules can be written as

nrx|a1:j = nu + nISI (8)

where nu is the useful component evaluated by (6) when
ρ(t) = aj g(t − jTb), and nISI is the ISI component eval-
uated by (6) when ρ(t) =

∑j−1
i=1 aig(t − iTb). Note that the
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randomness of the useful component nu represents the noise,
while the ISI component nISI is given by the molecules hitting
the receiver in a bit interval different than the emission one.

III. PERFORMANCE EVALUATION

A. BEP as a Function of the Threshold

Some analytical expressions derived for the fully absorbing
receiver are here properly adapted to calculate the BEP taking
the saturation effect into account. From (8), it follows that, if
aj = 0 or aj = 1, the number nrx of hitting molecules results
in nrx|0 = nISI and nrx|1 = nu+nISI, respectively. According
to (1), the number of absorbed molecules in the two cases are
thus given by

nabs|0 = min
{
N abs, nISI

}
(9a)

nabs|1 = min
{
N abs, nu + nISI

}
. (9b)

The mean and the variance of nu and nISI have been evaluated
in [12]. The average BEP can instead be computed as:

Pe = p0Pe|0 + p1Pe|1 (10)

where, Nth denoted the threshold, Pe|0 ! Prob{nabs|0 >
Nth} and Pe|1 ! Prob{nabs|1 < Nth}, where nabs|0 and
nabs|1 represents the number of absorbed molecules condi-
tioned to aj = 0 and aj = 1, respectively. By making use of
the total probability theorem, we can derive

Pe|0 = Prob
{
nabs|0 > Nth, nISI ≤ N abs

}

+ Prob
{
nabs|0 > Nth, nISI > N abs

}
(11a)

Pe|1 = Prob
{
nabs|1 < Nth, nu + nISI ≤ N abs

}

+ Prob
{
nabs|1 < Nth, nu + nISI > N abs

}
. (11b)

From (9) and (11) one can readily note that the case Nth >
N abs makes the error event conditioned to aj = 0 an impos-
sible event and the error event conditioned to aj = 1 a certain
event. Moroever, the case Nth < N abs can be easily computed
by making use of (9). Thus, (11) becomes

Pe|0 =

{
Prob{nISI > Nth} forNth ≤ N abs
0 forNth > N abs

(12a)

Pe|1 =

{
Prob{nu + nISI < Nth} forNth ≤ N abs
1 forNth > N abs

(12b)

Denote as µu and σ2u the mean and variance of the useful
component nu. Clearly, the ISI component depends on the
previously emitted symbols. However, if they are assumed
independent and equiprobable, ISI mean µISI and variance
σ2ISI can be calculated obtaining expressions independent on
the particular symbols sequences [12]. In [17] it is proved
that nISI and nu + nISI can be approximated as generalized
Gaussian random variables with mean µISI and µu + µISI
and variance σ2ISI and σ2u + σ2ISI, respectively. We recall that
the generalized Gaussian probability density function (PDF)
is defined as p(x ) = β

2αΓ(1/β) exp [− ( x−µ
α )β ], where Γ(·) is

the gamma function, µ is the mean, β is the shaping param-
eter (note that for β = 2 we obtain the normal distribution),

and α is a scale parameter such that the variance results in
α2 Γ(3/β)Γ(1/β) . Thus, (12) becomes

Pe|0 =

⎧
⎪⎨

⎪⎩

1
2 −

γ

(
1
β ,

∣∣∣Nth−µISI
α0

∣∣∣
β
)

2 sgn(Nth−µISI)Γ
(

1
β

) forNth ≤ N abs

0 forNth > N abs

(13a)

Pe|1 =

⎧
⎪⎨

⎪⎩

1
2 +

γ

(
1
β ,

∣∣∣Nth−µu−µISI
α1

∣∣∣
β
)

2 sgn(Nth−µu−µISI)Γ
(

1
β

) forNth ≤ N abs

1 forNth > N abs

(13b)

where γ(s , x ) !
∫ x
0 ts−1e−tdt denotes the lower incomplete

gamma function, α20 ! Γ(1/β)
Γ(3/β)σ

2
ISI, and α21 ! Γ(1/β)

Γ(3/β) (σ
2
u +

σ2ISI). By substituting (13) in (10) we easily get the error
probability as a function of the threshold.

B. Optimal Threshold

It is clear from (13) that the optimal threshold has to be
lower than N abs. By deriving the expression of Pe with
respect Nth we obtain, for (Nth ≤ N abs):

dPe

dNth
= p0

dPe|0
dNth

+ p1
dPe|1
dNth

(14)

where

dPe|0
dNth

= − β

2α0 Γ(1/β)
exp

[
−
(
Nth − µISI

α0

)β
]

(15a)

dPe|1
dNth

=
β

2α1 Γ(1/β)
exp

[
−
(
µu + µISI − Nth

α1

)β
]

(15b)

By setting (14) to zero we obtain:

p0
α0

exp

[
−
(
Nth − µISI

α0

)β
]
=

p1
α1

exp

[
−
(
µu + µISI −Nth

α1

)β
]

that is

ln

(
p0
α0

)
−

(
Nth − µISI

α0

)β

= ln

(
p1
α1

)
−

(
µu + µISI −Nth

α1

)β

.

(16)

By denoting as N ∗
th the solution of (16), the optimal threshold

can be written as

N
(opt)
th = min

{
N ∗
th,N abs

}
. (17)

Thus, the error probability can be obtained through (10), by
using (13), and (17), as well as the expressions of µu, µISI,
σ2u, and σ2ISI derived in [12] for both the synchronous and the
asynchronous case.

IV. CASE STUDY

A. Optimal Threshold for ISI-Dominated Scenario

Consider the case p0 = α0
α0+α1

, p1 = α1
α0+α1

. The optimal
threshold is derived by (16) with p0

p1
= α0

α1
, as follows

Nth − µISI

α0
=

µu + µISI − Nth

α1
⇒ Nth =

α0

α0 + α1
µu + µISI.
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Thus the threshold minimizing the BEP is

N ∗
th =

σISI

σISI +
√
σ2u + σ2ISI

µu + µISI. (18)

By (10), (13), (17), and (18), we obtain

Pe =

⎧
⎪⎨

⎪⎩

1
2 −

γ

(
1
β ,

∣∣∣ µu
α0+α1

∣∣∣
β
)

2Γ
(

1
β

) forN ∗
th < N abs

p∗fl forN ∗
th > N abs

(19)

where, by defining α0 ! α0 sgn(N abs − µISI), it is

p∗
fl ! 1

2
−

α0γ

(
1
β ,

∣∣∣Nabs−µISI
α0

∣∣∣
β
)

+ α1γ

(
1
β ,

∣∣∣µu+µISI−Nabs
α1

∣∣∣
β
)

2(α0 + α1)Γ
(

1
β

) .

Note that, in a ISI dominated scenario, σ2u ≪ σ2ISI and thus
p0 → 1/2, p1 → 1/2. In other words, the proposed case
coincides with the case of equiprobable symbols when the
variance of the ISI dominates that of the useful signal. In such
a case, from (17) and (18) we obtain:

N
(opt)
th → min

{µu
2

+ µISI,N abs

}
. (20)

B. Maximum Transmitter Points Density Evaluation

In the general case, by setting the threshold to (20), it is

Pe =

{
p(SIR, SINR) forµu/2 + µISI ≤ N abs
pfl
(
N abs

)
forµu/2 + µISI > N abs

(21)

where SIR ! µ2u/σ
2
ISI, SINR ! µ2u/(σ

2
u+σ

2
ISI), pfl(N abs) is

obtained from (10) by substituting Nth = N abs in (13), and

p(SIR, SINR) ! 1
2
−

p0γ
[
1
β , (ρ SIR)

β
2

]
+ p1γ

[
1
β , (ρ SINR)

β
2

]

2Γ
(

1
β

)

with ρ ! Γ(3/β)/4Γ(1/β). Now, we derive the maximum
density of point transmitters before the saturation effect arises.
To this aim, we substitute in (21) the expressions of µu, µISI,
SIR, and SINR as functions of λa, derived in [12] for both
the synchronous and the asynchronous case.

1) Synchronous Case: For Poisson concentration transmit-
ters, the mean of useful and ISI components are

µu = NtxHall(Tb) (22a)

µISI =
Ntx

2
[Hall(j + 1)Tb]− Hall(Tb)] (22b)

where Hall(t) is the so called collective impulse response
resulting in Hall(t) = 4λaR

√
πDt(2R +

√
πDt). The SIR

and SINR result as in [12, eq. (84)].
2) Asynchronous Case: For timing asynchronous transmit-

ters with uniformly distributed emissions in an activity interval
Ta, the mean of useful and ISI components result in

µu = 8λaR
2
√
πD

Ntx

Ta
ψ

(
Tb,Ta,

√
πD

R

)
(23a)

µISI =
Ntx

2Ta

(
hj+1 − h1

)
(23b)

Fig. 2. Maximum transmitters density as a function of the ISI time duration.

where hk = 8λaR2
√
πD ψ(kTb,Ta,

√
πD
R ) and

ψ(t ,T , x ) !

⎧
⎪⎨

⎪⎩

2
√
t3
3 + t2x

4 , for t ≤ T

φ(t ,T , x ) + Tx
2

(
t − T

2

)
for t > T

with φ(t ,T , x ) ! 2
3 (
√
t3 − t

√
t − T + T

√
t − T ).

The SIR and SINR are obtained as in [12, eq. (85)]. By
substituting (22) and (23), after some algebra (21) becomes

Pe =

{
p(SIR, SINR) forλ ≤ λM
Pe
(
N abs

)
forλ > λM

(24)

where λM represents the maximum transmitters density, that,
for Poisson concentration (synchronous) transmitters, is

λM =
N abs

2NtxR
√
πD(j + 1)Tb

(
2R +

√
πD(j + 1)Tb

) (25)

and, for timing (asynchronous) transmitters with uniformly
distributed emissions in an activity interval Ta, is

λM =
N abs

4R2
√
πD Ntx

Ta
ψ
(
(j + 1)Tb,Ta,

√
πD
R

) . (26)

Note that, since SIR and SINR are increasing functions of
the point transmitters density λa, λM implies a floor value
for the BEP. We also remark that, in both cases (synchronous
and asynchronous), the maximum transmitters density λM lin-
early increases with the saturation level N abs and decreases
with the number of emitted molecules Ntx, the diffusion coef-
ficient D, and the square of the receiver radius R. However,
since the maximum number of absorbed molecules depends on
the number of receptors over the cell surface, it is reasonable
to assume N abs proportional to R2 (the number of receptors
increases as the area increases). Hence, λM should not sub-
stantially depend on the dimension of the receiver. It is clear
that the dominant term at the denominator of (25) and (26)
depends on the number j of the previously transmitted sym-
bols which generate ISI. In Fig. 2 the maximum value of the
transmitters density λM before the saturation effect arises is
plotted as a function of the total ISI duration (j + 1)Tb, for
both synchronous (25) and asynchronous (26) case, for dif-
ferent values of the saturation level N abs. Due to the lower
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Fig. 3. BEP as a function of the threshold Nth, with 4 ISI symbols and
N abs = 250. Comparison between analytical and simulation results.

efficiency of the asynchronous transmission (less molecules hit
the receiver with respect to the synchronous case), the receiver
saturation effect arises for higher values of point transmitters
density (compared to the case of synchronous transmission).

Such a result establishes that, in the considered scenario,
differently from the case in [12] related to the fully absorbing
receiver, ISI cannot be counteracted by indefinitely increasing
the density of point transmitters.

C. Analytical and Simulation Results

In this section, we show the impact of the saturation effect
on the BEP and we validate the analytical expression (13)
through Monte Carlo simulations. To this aim, we assume the
validity of (4) (that has already been verified in [3] by particle-
based simulations) and, we compute nrx according to (6) by
using the superposition of effects (note that, according to (8),
each contribution contains both useful and ISI terms). Then
N abs is considered according to (9) (saturation effect), com-
pared to the threshold Nth and used (instead of nrx) to count
the error events. The resulting values for the bit error rate
are finally averaged over 104 instantiations of the considered
PPs. A receiver with radius R = 5µm, a bounded space of
radius Ra = 50µm, a diffusion coefficient D = 120µm2 / s,
a bit time duration Tb = 0.2s, an average number of emitted
molecules per bit Ntx = 80, and 4 ISI symbols are considered,
according to [18], [19]. For what concerns the generalized
Gaussian parameter, β ∈ [2, 5] is considered [17].

In Fig. 3 the BEP is depicted as a function of the thresh-
old Nth for a point transmitters density λa = 1015 m−3,
according to (10) and (13). As expected, the BEP drops to 1/2
as soon as the threshold Nth overcomes N abs. Both Gaussian
(β = 2) and generalized Gaussian (β = 5) approximations are
considered for the analysis and compared to Monte Carlo sim-
ulations results. The figure shows a good agreement for both
the synchronous and the asynchronous case. More precisely,
β = 2 well fits the synchronous case, while β = 5 is the best
fitting for the asynchronous case.

In Fig. 4 the BEP is shown as a function of the point
transmitters density λa for the case of optimal threshold
with different values of the saturation level N abs. Here, an

Fig. 4. BEP as a function of the point transmitters density λa with 4 ISI
symbols, optimal threshold, and β = 3.5.

intermediate value β = 3.5 is chosen for both the syn-
chronous and the asynchronous case. It can be observed that,
as expected, asynchronous transmission implies higher values
of Pe before the saturation effect arises.

V. CONCLUSION

A spatially distributed large-scale MCvD system is con-
sidered with a swarm of point transmitters and a not fully
absorbing spherical receiver. An analytical model for the
BEP in case of OOK modulation is obtained based on point
processes theory for both synchronous and asynchronous
transmitters. We show that, differently from the fully absorbing
receiver case, if the density of the point transmitters increases
over a given threshold, the BEP drops to a value close to 1/2
as a result of the saturation effect at the receiver side. The
optimal values for point transmitters density are analytically
determined and validated through Monte Carlo simulations.
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