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The Cortical V1 Transform as a Heterogeneous Poisson Problem\ast 

Alessandro Sarti\dagger , Mattia Galeotti\ddagger , and Giovanna Citti\ddagger 

Abstract. Receptive profiles of the primary visual cortex (V1) cortical cells are very heterogeneous and act
by differentiating the stimulus image as operators changing from point to point. In this paper we
aim to show that the distribution of cells in V1, although not complete to reconstruct the original
image, is sufficient to reconstruct the perceived image with subjective constancy. We show that a
color constancy image can be reconstructed as the solution of the associated inverse problem, which
is a Poisson equation with heterogeneous differential operators. At the neural level the weights of
short-range connectivity constitute the fundamental solution of the Poisson problem adapted point
by point. A first demonstration of convergence of the result towards homogeneous reconstructions
is proposed by means of homogenization techniques.
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1. Introduction. The visual brain extracts more and more complex features starting from
the visual stimulus. The cells of the retina and the lateral geniculate nucleus (LGN) extract
the position of the contours, then the cells of the primary visual cortex (V1) extract the po-
sition and orientation of the image contours, up to the upper cortices where more complex
features are extracted. The action of cells is characterized to a first approximation by linear
receptive profiles (Ps) [25], called also ``classical receptive profiles,"" which behave like filters
representing the impulse response of the cells. Predictions of receptive profiles in V1 are in
good agreement with receptive measurements reported in the literature (Hubel and Wiesel
[25, 26, 27]; DeAngelis et al. [22, 23]). Specifically, explicit neurophysiological characteriza-
tions have been given of LGN neurons in terms of Laplacian of Gaussian, and simple cells in V1
have been compared to related models in terms of Gabor functions (Marcelja [37]; Jones and
Palmer [28, 29]), differences of Gaussians (Rodieck [45]) or Gaussian derivatives (Koenderink
and van Doorn [33]; Young [53]; Young et al. [54, 55]; Lindeberg [35]).

\ast Received by the editors February 27, 2023; accepted for publication (in revised form) July 19, 2023; published
electronically February 21, 2024.

https://doi.org/10.1137/23M1555958
Funding: This work was funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component

2 Investment 1.3 - Call for Tender No. 341 of 15/03/2022 of Italian Ministry of University and Research funded by
the European Union -- Next GenerationEU Project code PE0000006, Concession Decree No. 1553 of 11/10/2022
adopted by the Italian Ministry of University and Research, CUP D93C22000930002, ``A Multiscale Integrated
Approach to the Study of the Nervous System in Health and Disease"" (MNESYS). Also funded by GHAIA project,
EUHorizon 2020 MSCA grant agreement 777822.

\dagger CAMS, EHESS, Paris, France (alessandro.sarti@ehess.fr, http://cams.ehess.fr/alessandro-sarti/).
\ddagger Dipartimento di Matematica, Universit\`a di Bologna, Bologna 40126, Italy (galeotti.mattia.work@gmail.com,

giovanna.citti@unibo.it, https://www.dm.unibo.it/\sim mattia.galeotti4/).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

389

D
ow

nl
oa

de
d 

03
/1

2/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/23M1555958
mailto:alessandro.sarti@ehess.fr
http://cams.ehess.fr/alessandro-sarti/
mailto:galeotti.mattia.work@gmail.com
mailto:giovanna.citti@unibo.it
https://www.dm.unibo.it/~mattia.galeotti4/


390 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

In several papers it has been shown that the set of profiles can be obtained through group
transformations starting from a mother profile. For example, in [15] simple cell profiles of V1
were studied in the rotation and translation group, and it was shown that all the functional
architecture related to these cells (horizontal connectivity and association fields) is to be
considered as a direct consequence of the Lie group symmetries involved. This finding was
extended to cells sensitive to scale in the symplectic group [48], to movement in the Galilean
group [3], to curvature in the Engel group [1] and to rotation, scale, and frequency in the
Heisenberg group [8]. The interested reader could refer to [17] for a complete review.

Simple cells sensitive to position and orientation are topographically organized in V1. The
process of visual mapping from the retina to cortical neurons is known as retinotopy. Moreover
in primates and cats, neurons with similar orientation selectivity are clustered together to
constitute the so-called hypercolumnar [25] or pinwheel [11] organization. In the opposite,
rodents do not have such specific feature organization as primates and cats. This means that
the information encoded in V1 in rodents is distributed in a less organized fashion, known
as ``salt-and-pepper maps"" [30]. Anyway, whatever the feature organization is, the three-
dimensional group of rotations and translations of the plane is not completely represented
since it is projected in the two-dimensional cortical surface of V1.

An important problem of contemporary neuroscience consists in understanding whether
the perceived image can be reconstructed starting from the partial information carried by
cells in V1. In other words, it is a question of understanding whether V1 is a high-resolution
image buffer that contains the representation of the perceived image. In this sense V1 would
make a cortical transform of the stimulus to obtain the perceived image.

In this regard, Barbieri in [4] shows that the distribution of receptive profiles in V1 is not
complete, and therefore it is not sufficient to reconstruct the visual stimulus. Subsequently,
he shows which additional constraints would be required to achieve the reconstruction.

In this paper we aim to show that the distribution of cells in V1, although not complete to
reconstruct the original image, is sufficient to reconstruct the perceived image without addi-
tional constraints. In particular we focus on the perceptual phenomena of lightness constancy
and color constancy, which are fundamental characteristics of the perceived image. Lightness
constancy refers to the perception of an object's lightness as invariant with respect to the
illumination conditions. Analogously, color constancy is a similar phenomenon, but this time
is the perception of color resulting invariant with respect to illumination. We therefore aim
to show that the distribution of cells in V1 is sufficient to perform a transform of the visual
stimulus in the lightness and color constancy image perceived by the subject.

To do this we will consider the Ps as Gaussian derivatives [33, 53, 54, 55] with heteroge-
neous metrics and order of derivation. They act by differentiating the image as heterogeneous
operators changing from point to point. Then we show that an image can be reconstructed
as the solution of the associated inverse problem, which is a Poisson equation with heteroge-
neous operators. The homogeneous equivalent of this reconstruction is the Retinex differential
model presented in [31, 39] in which the perceived image was obtained by first differentiating
the stimulus with homogeneous Laplacian operators and then solving the associated inverse
problem (Poisson equation). In our case we will generalize the Poisson equation to equations
changing from point to point in order to reconstruct the perceived image. This kind of dif-
ferential problem with heterogeneous operators was introduced, among others, in [49, 50] to
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THE CORTICAL V1 TRANSFORM 391

define the possibility of performing a differential calculus with operators that change from
point to point in space and time.

Observe that the heterogeneous differential structure of images has been largely studied
in the past, starting from the pioneering work of Koenderink [32]. A wide amount of stud-
ies about locally adaptive frames (or Gauge frames) has been developed and an exhaustive
list of references has been collected in [6]. In this setting, detectors of features like edges,
corners, t-junctions, ridges, monkey-saddles, and many more have been modeled by hetero-
geneous differential operators. A further expansion of heterogeneity has been provided by
data-driven left-invariant metrics [5]. These works, although they underline the heterogeneity
of the differential structure of images, concern the direct problem of differentiation and feature
extraction rather than the inverse problem of stimulus reconstruction. On the other hand,
research about stimulus reconstruction by inversion of differential operators are very few, and
up to now they have dealt with homogeneous operators [38, 9, 10].

The originality of the present research is in performing operator inversion in a differential
heterogeneous setting. We provide an existence result for weak solutions of the operator. A
first proof of convergence of the result towards a homogeneous reconstruction as in [31, 39]
will be proposed by means of homogenization techniques. The proof is constructed with
operators discretized on regular grids (difference operators). We refer the reader in particular
to [40, 34, 43] and develop the notion of H -convergence (see Definition 5.7) that was initially
introduced by Spagnolo [51] and De Giorgi [20, 21]. Results of this kind for mathematical
models of the cortex are, for example, [47, 14]. We consider a family of difference operators
with random coefficients on an \varepsilon -spaced reticulum, and we prove that it can converge as \varepsilon \rightarrow 0
to a deterministic differential operator defined on a continuous domain and isotropic under a
suitable hypothesis.

The paper is organized as follows. In section 2 some classical concepts of functional
architecture of V1 are recalled. Classical models of receptive profiles are presented in terms of
Gaussian derivatives and orientation maps of such profiles are shown both for hypercolumnar
organization and salt-and-pepper maps. In section 3 the main model of cortical transform
as a heterogeneous Poisson problem is presented. In section 4 we prove the existence of a
weak solution of the problem using a steepest descent method. In the subsequent section 5
the notion of H-convergence is introduced and a sketch of the proof of convergence of the
heterogeneous problem towards the homogeneous one is proposed. The main numerical results
are shown and discussed in section 6.

2. Functional architecture of V1.

2.1. Receptives profiles. A receptive profile is the impulse response of a cell, which is the
response of the cell to a delta of Dirac of a retinal stimulus. Statistical studies on the Ps of
V1 cells in macaques show a great heterogeneity of behaviors [44]. Copies of center-surround
Ps (Mexican hats) are present, as well as a great variety of simple cells with anisotropic Ps
that detect orientation of boundaries, all with different orientation and frequency and many
other complex cells.

In the simple case of Mexican hats the receptive profile will be denoted Ph (the index h
denotes the fact that P is the profile of a Mexican hat); it is axial symmetric and in terms of
Gaussian derivatives writes as
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392 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Ph(x1, x2) =\Delta G\sigma (x1, x2),(2.1)

where x = (x1, x2) is the general point of the plane where G\sigma is a two-dimensional Gauss
function with variance \sigma and \Delta is the Euclidean Laplacian.

In the case of receptive profiles of simple cells let's consider the directional derivative

X\theta ,1 = cos\theta \partial x1
+ sin\theta \partial x2

.(2.2)

The receptive profile of a simple cell with preferred orientation \theta + \pi /2 writes as

Ps(x1, x2) =X2\beta 
\theta ,1G\sigma (x1, x2).(2.3)

The coefficient \beta is always an integer, so that X2\beta 
\theta ,1 denotes the directional derivative of order

2\beta in the direction \theta . In particular this is a derivative of even order. Typically we will be
interested in \beta = 1 or \beta = 2, giving rise to derivatives of order 2 or 4. The higher order
derivative denotes the presence of a higher number of sinusoidal cycles under the Gauss bell
[33] (see Figure 1).

2.2. Orientation maps. The preferred orientation of simple cells changes in the cortex
point to point [25], giving rise to the so-called orientation map. The orientation map is a
map \theta : \BbbR 2 \rightarrow [0, \pi ], where x = (x1, x2) are cortical coordinates and \theta = \theta (x1, x2) is the
preferred direction of columns of simple cells. In primates and cats, neurons with similar
orientation selectivity are clustered together to constitute the so-called pinwheel organization
[11]. A simple model of pinwheel-shaped orientation map is proposed in [42], where the map
is obtained through the superposition of randomly weighted complex sinusoids:

\theta 1(x1, x2) = arg

N\sum 
k=1

cke
i2\pi (x1 \mathrm{c}\mathrm{o}\mathrm{s}(2\pi k/N)+x2 \mathrm{s}\mathrm{i}\mathrm{n}(2\pi k/N)),(2.4)

Figure 1. Left: Receptive profiles of different kind of cells after neurophysiological measurement (inhibitory
response in red, excitatory in yellow) as reported in [22] and [23]. Upper left: LGN receptive profiles show a
characteristic center-surround response that can be modeled as a Laplacian of Gaussian. Bottom left: Simple
cells of V1 show strong orientation preference and are modeled by directional derivatives of Gaussian. Right:
Representation of Ps as derivatives of Gaussian of different degrees. (Left images ©1995 Elsevier. Reprinted,
with permission, from [22].)
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THE CORTICAL V1 TRANSFORM 393

Figure 2. Orientation maps in rodents are salt-and-pepper noise (left, our reconstruction), while in primates
they present the so-called pinwheel structure (right, reproduced from [12]). A mathematical model of the two
distributions is given, respectively, by (2.5) and (2.4).

with N denoting the number of orientation samples and where the coefficients ck \in [0,1] are
white noise. From (2.4) we obtain the so-called pinwheel structure, which is an orientation map
with the presence of singularities around which all the orientations are present. The function is
complex-valued and the color maps the argument of complex variables. The distance between
singularities is almost constant. Pinwheel points are the two-dimensional implementation of
a hypercolumn of orientations that is the set of orientations corresponding to a retinal point
in the original model of Hubel and Wiesel [25] (see Figure 2).

In the opposite, in rodents the orientation information encoded in V1 is distributed in a
less organized fashion, known as ``salt-and-pepper maps"" [30], and can be modeled by

\theta 2(x1, x2) = d(x1, x2),(2.5)

where the coefficients d\in [0, \pi ] are white noise.

2.3. Short- and long-range connectivity. Cortical cells are reciprocally connected by
short- and long-range connectivity. Short-range connectivity corresponds to the distribution
of interaction between cells within a hypercolumn. On the other hand long-range connectivity
induces interactions between hypercolumns. Long-range connectivity is very anisotropic and
connects mainly cells with a similar orientation preference, while short-range connections are
isotropic. Particularly, from neurophysiological measurements of the activity of pairs of V1
neurons, a correlation function is computed that is proportional to the functional connectivity
between the pairs of units. This short-range connectivity show radial symmetry and a decrease
in intensity proportional to log(r) or 1/r [19] (see Figure 3).

These connections are modulatory, meaning that they act on the output of Ps of cortical
cells and not directly on the thalamic stimulus.

3. The cortical transform. We describe in the following the model for the coupled activity
of classical receptive profiles and the short-range connectivity that modulates the feed-forward
input giving rise to contextual modulation effects. Particularly the weights of local connec-
tivity constitute the fundamental solution of a Poisson problem where the forcing term is
given by the output of classical receptive profiles. This coupling can account for the lightness
constancy of the perceived image (Retinex effect). Given the heterogeneity of cells linked by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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394 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Figure 3. Left: Long-range connectivity between hypercolumns from [12]. Right: Short-range connectivity
within a hypercolumn (our representation from [19]).

local connectivity, the model will end up in a Poisson equation with heterogeneous operators.
Homogeneous version of the model can be found, for example, in [31] and [39], while a more
complex model but without any image reconstruction is proposed by Cowan and Bressloff
[13].

3.1. Feed-forward action on the input stimulus. The action of a classical receptive profile
P on an input stimulus I writes as

O= P  \star I,

where  \star is the convolution product and I is the image stimulus, on which the P acts as a
linear filter. Particularly the action of Mexican reads

Oh = Ph  \star I =\Delta G\sigma  \star I =\Delta I\sigma ,(3.1)

where I\sigma =G\sigma  \star I is smooth approximation of I. The action of the simple cells Ps is written
as

Os = - ( - 1)\beta X2\beta 
\theta ,1G\sigma  \star I = - ( - 1)\beta X2\beta 

\theta ,1I\sigma ,(3.2)

where \beta is a integer positive and even. For \beta = 1 the operator X2\beta 
\theta ,1 is a second order directional

derivative in the direction \theta , which can be identified with a degenerate Laplacian. Let us recall
that  - \Delta and  - X2

\theta ,1 are elliptic.
Hence we postulate that the operator which acts on the image is different from one point

to another and can be a random combination of the previous operators. In what follows we
will always denote by L\Lambda the considered linear operator, which can be L\Lambda =\Delta or L\Lambda =X2\beta 

\theta ,1,
or a linear combination of them. We will be mostly interested in the values \beta = 1 and \beta = 2,
which denote derivatives of order 2 or 4, respectively. The general operator will read

L\Lambda = a1\Delta + a2X
2
\theta ,1  - a3( - 1)\beta X2\beta 

\theta ,1(3.3)

for a partition of the unity ai: at every point x one of these coefficients will take the value 1,
and the others will vanish.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE CORTICAL V1 TRANSFORM 395

3.2. Reconstruction of the perceived image. The output of a distribution of V1 cells
in response to the visual input I is the differentiation of the visual input itself. We will
propose here a procedure to construct the perceived image by considering the integration of
the operator. In previous papers, we conjectured that this step is accomplished by the action
of the connectivity between V1 and LGN in a homogeneous setting [9, 10]. Here we clarify that
it can be accomplished by short-range connectivity of V1 and by considering heterogeneous
operators of V1.

Let's consider the inverse problem with respect to the differentiation L\Lambda I(x1, x2), which
is the heterogeneous Poisson problem, with Neumann or Dirichlet conditions,

L\Lambda u(x1, x2) =L\Lambda I(x1, x2),(3.4)

where the right-hand-side term is known and represents the action of receptive profiles on the
visual input, while the solution u represents the reconstructed-perceived image. Equation (3.4)
can be considered as an extension of a Poisson equation to heterogeneous operators. This
process constructs the perceived image, which is the original input I(x1, x2) up to a harmonic
function. Clearly, harmonic no longer means the annulation of the Laplacian but rather the
annulation of the heterogeneous operator L\Lambda .

Having formalized the expression of the operator L\Lambda we study the associated equation (3.4).
Calling f =L\Lambda I the equation reduces to

L\Lambda u= f(3.5)

with Dirichlet or Neumann boundary conditions. We will prove the existence of solutions via
parabolic approximation. Indeed we consider the evolution equation

\partial t\~u=L\Lambda \~u - f(3.6)

with an arbitrary initial condition, and the same boundary condition as in (3.5) at any instant
of time. Formally, for any open bounded domain Q we will introduce suitable Sobolev spaces
W 1,2

\Lambda (Q), we will consider L\Lambda as an operator acting on the space and we will look at the
Cauchy problem

\~u\prime =L\Lambda \~u - f,(3.7)

u(0)\in W 1,2
\Lambda (Q)

(the initial condition vanishes at the boundary if we consider a Dirichlet problem). We will
see under which condition the Cauchy problem is defined for every instant of time, there exists
limt\rightarrow \infty \~u and the limit coincides with the solution u of (3.5).

4. Existence of weak solutions. The operator defined in (3.3) is degenerate when a1 =
a3 = 0, even if \theta is constant. Indeed, if \theta = 0, the equation reduces to

\partial 2
x1x1

u= f

in an open set Q \subset \BbbR 2, so that it is not uniformly elliptic. In addition it is of order 2 at
some points, and of order 4 at other points. We will formalize the definition of solutions in
suitable Sobolev spaces associated to the considered directional derivatives. In addition, we
will prove the convergence of the solution of the parabolic equation (3.6) to the solution to
problem (3.5).
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4.1. Definition of weak solution. We would like to introduce a definition of a differential
operator sufficiently flexible to cover the Euclidean Laplacian and the degenerate Laplacian
defined in (3.3). To this end we will consider a smooth manifold Q locally diffeomorphic to \BbbR 2,
and we will define a subbundle H of the tangent bundle TM of Q. Then we define a metric
g on H. The triple (Q,H,g) is called sub-Riemannian manifold. By definition of metric, for
every x the metric g defines a scalar product on the horizontal tangent plane Hx.

4.2. Second order operators. At every point x the horizontal tangent space Hx will be
defined by the choice of generators \Lambda x. The expression of \Lambda x will reflect the choice of receptive
profiles at that point. As a consequence we will choose as set of generators

\Lambda x = \{ z1, z2\} , where z1 = a1(cos(\theta (x)), sin(\theta (x))), z2 = a2( - sin(\theta (x)), cos(\theta (x))).(4.1)

The dimension of the generated horizontal tangent space will depend on the zeros of the
functions ai and can be 1 or 2. Correspondingly, in addition to the vector field X\theta (x),1

introduced in (2.2) we define a second vector field to complete the basis of the space,

X\theta (x),1 = cos(\theta (x))\partial x1
+ sin(\theta (x))\partial x2

, X\theta (x),2 = - sin(\theta (x))\partial x1
+ cos(\theta (x))\partial x2

,(4.2)

and we will work with the vector fields aiX\theta (x),i.

For any bounded set Q\subset \BbbR d and every h\in C\infty 
0 , we define the horizontal gradient

\nabla \Lambda h :=

2\sum 
i=1

X\theta (x),ihX\theta (x),i.

This allows us to define the integral norm

\| h\| W 1,2
\Lambda (Q) =

\sqrt{}    2\sum 
i,j=1

\int 
Q
a2i (X\theta (x),ih)2(x)dx.

The Sobolev space W 1,2
0,\Lambda (Q) will be the closure of C\infty 

0 (Q) with respect to this norm. If

Q is smooth, W 1,2
\Lambda (Q) is the set of functions h whose norm \| h\| W 1,2

\Lambda (Q) is bounded. Recall
that the coefficients ai can vanish, making the space degenerate. By definition the following
Dirichlet functional is well defined in the space W 1,2

\Lambda (Q):

F (u) =

2\sum 
i=1

\int 
Q
a2i (X\theta (x),iu)

2(x)dx.(4.3)

If X is an arbitrary operator of second order with differentiable coefficients, we call the
formal adjoint of X the operator X\ast defined by the relation\int 

Q
Xuh=

\int 
Q
uX\ast h \forall u\in W 1,2

\Lambda (Q), h\in C\infty 
0 (Q).

The associated Laplacian is formally defined as

L\Lambda u=

2\sum 
i=1

X\ast 
\theta (x),i(a

2
iX\theta (x),iu).(4.4)

By definition of formal adjoint, the weak solution is defined as follows.
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THE CORTICAL V1 TRANSFORM 397

Definition 4.1. Let Q be a bounded open set. A function u\in W 1,2
\Lambda (Q) is a weak solution of

the equation L\Lambda u= f \in L2(Q) if for every smooth function h compactly supported in Q\int 
Q

2\sum 
i=1

a2iX\theta (x),iuX\theta (x),ihdx= - 
\int 
Q
fhdx,

where ai are bounded and measurable. The function u attains the value 0 at the boundary in
a weak sense if u \in W 1,2

0,\Lambda (Q). It attains the Neumann boundary datum if it is the minimum
of the associated functional

J(u) = F (u) - 
\int 
Q
fu.(4.5)

4.3. Higher order operators. We already noted that the operator defined in (3.3) can
have order greater than 2 or can be a linear combination of operator of different order. In the
simplest case the operator reduces to

L\Lambda u(x) =X\ast 
\theta (x),1(a

2
1X\theta (x),1)u(x) - (X2

\theta (x),1)
\ast (a23X

2
\theta (x),1)u(x).(4.6)

In order to simplify the proof, we will consider the operator

L\Lambda u(x) =X\ast 
\theta (x),1(a

2
1X\theta (x),1u)(x) - \Delta (a23\Delta )u(x),(4.7)

which can have different order at different points. Observe that L\Lambda =  - dF , where F is the
operator

F (u) =

2\sum 
i=1

\int 
Q
a2i (X\theta (x),iu)

2(x)dx+

\int 
Q
a23(\Delta 

2u)2(x)dx.(4.8)

As before, this functional, well defined on functions u \in C\infty 
0 , defines the square of a norm.

The closure of C\infty 
0 with respect to this norm defines a Sobolev space where the associated

equation is well defined. If a3 = 0, the operator reduces to a second order operator, which can
be degenerate or not. If ai = a2 = 0, a3 = 1, the operator reduces to the bi-Laplacian, denoted
by \Delta 2

E . We have defined an operator L\Lambda heterogeneous both in its differential order and in
the type of metric.

4.4. Existence of a solution. In all the considered problems, the operator L\Lambda is the
differential of a functional J defined on a suitable Hilbert space S of Sobolev type. We will
show that in this case the solution of the stationary problem can be obtained via the steepest
descent method.

Precisely assume that Q is a bounded domain subset of \BbbR 2. Also assume that J is of class
C1,1(S). By the Riesz representation theorem there exists a function \nabla J(u) \in S such that
dJ(u)(h) admits the following representation with respect to the scalar product of the space
S dJ(u)(h) = \langle \nabla J(u), h\rangle . Assume that Lu - f = - \nabla J(u), so that problem (3.7) reduces to

\~u\prime = - \nabla J(\~u),(4.9)

\~u(0)\in S.
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398 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Remark 4.2. If J \in C1,1 and it is bounded below, then  - \nabla J(u) is Lipschitz continuous
and the Cauchy problem (4.9) is well defined. Due to the boundedness from below of J , its
solution is defined on [0,\infty [.

We will need the following compactness assumption of Palais--Smale (PS) type.

Definition 4.3. A functional J satisfies the PS condition at the level m if for every sequence
un such that

J(un)\rightarrow m, dJ(un)\rightarrow 0

the sequence un has a converging subsequence.

Theorem 4.4 (see [2]). If J is convex, is of class C1,1, satisfies the PS condition, and
is bounded below, there exists limt\rightarrow \infty \~u = u and u is a minimum of the functional J . In
particular it satisfies dJ(u) = 0.

These results can be directly applied to the functionals we have introduced and will be
intensively used in the next sections.

Example 4.5. We consider the functional J defined as in (4.5) on the Sobolev space W 1,2
0,\Lambda .

Here we assume that \theta is measurable, and ai are measurable and bounded. Then the functional
is of class C1,1 and its differential is

dJ(u)(h) = dF (u)(h) - 
\int 
Q
fh=

\int 
Q

2\sum 
i=1

a2iX\theta (x),iuX\theta (x),ih - 
\int 

fh.(4.10)

If both ai are different from 0, the convergence of the steepest descent method is known.

If a1 = 1, a2 = 0, and \theta (x, y) is a C1 approximation of one of the functions defined in (2.4)
or (2.5), the operator is totally degenerate. In this case we recover the operator (3.2) associated
to V1 receptive profiles. Also, in this case it is possible to prove the PS condition. Indeed,
if we consider a sequence such that dJ(un)(h) \rightarrow 0 and J(un) \rightarrow infW 1,2

0,\Lambda 
J, then \| un\| 2W 1,2

0,\Lambda 
is

bounded, so that there is a function u\in W 1,2
0,\Lambda such that un weakly converges to u in W 1,2

0,\Lambda and

un weakly converges to u in L2. From dJ(un) \rightarrow 0 we also deduce that dJ(un)(un) \rightarrow 0, so
that

lim
n

\| un\| 2W 1,2
0,\Lambda 

= lim
n

\int 
fun =

\int 
fu

for the weak convergence. From the assumption of the differential we also know that
dJ(un)(u)\rightarrow 0, so that

\| u\| 2W 1,2
0,\Lambda 

= lim
n

\int 
Q
X\theta (x),1unX\theta (x),1u=

\int 
fu.

It follows that un \rightarrow u weakly in W 1,2
0,\Lambda and \| un\| 2W 1,2

0,\Lambda 
\rightarrow \| u\| 2W 1,2

0,\Lambda 
, which implies the convergence

of un to u in W 1,2
0,\Lambda .
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THE CORTICAL V1 TRANSFORM 399

As a consequence, by Theorem 4.4 the solutions of the stationary problems are the limit
of the solution of the parabolic one.

Example 4.6. The operator in (4.7) is the differential of the functional

J(u) =

2\sum 
i=1

\int 
Q
a2i (X\theta (x),ih)

2(x)dx+

\int 
Q
(\Delta u)2(x)dx - 

\int 
Q
f(x)u(x).

As before, this operator satisfies the PS condition. Indeed, a sequence such that dJ(un)\rightarrow 0
and J(un) \rightarrow inf J has the Laplacian bounded in L2, so that, arguing as before, we obtain
the convergence of un. The assumptions of Theorem 4.4 are satisfied, which ensures that the
solution obtained through the parabolic approximation tends to the solution of the fourth
order operator.

We applied here the steepest descent method; the main limitation of the method is that
it can be applied only to minima of functionals. However, it has the big advantage that it can
be applied to degenerate operators such as the one in Example 4.5, since the functional, while
approximating a minimum, bounds the norm of the minimizing sequence. Other powerful
methods, such as, for example, the semigroup technique, allow one to handle the case where
the equation does not come from a minimum of a functional. However, the convergence result
requires that the biggest eigenvalue of the operator be negative, which is not the case of the
degenerate operators in Example 4.5.

4.4.1. The Green function. The previous method allows us to find the Green function
of the operator L\Lambda in open, smooth sets Q \subset \BbbR d. The Green function is a smooth kernel
\Gamma : Q\times Q\setminus \{ (x,x) : x\in Q\} \rightarrow \BbbR such that any solution of the problem

L\Lambda u= f in Q, \partial \nu u= 0 on \partial Q

can be represented in the form

u(x) = - 
\int 
Q
\Gamma (x, y)f(y)dy.

For a large class of operators with measurable coefficients analogous to L\Lambda , the existence
of a Green function, or fundamental solution (which is the analogous kernel on the whole
space), is known. In [24] this is proved for second order uniformly elliptic operators, while the
existence of a fundamental solution for uniformly subelliptic operators is due to [46].

If we fix the first entry x \in Q, the Green function as a function of its second entry is a
smooth function \Gamma (x, - ) : Q\setminus \{ x\} \rightarrow R solution of the problem

L\ast 
\Lambda \Gamma (x, - ) = \delta x in Q, \partial \nu \Gamma = 0 on \partial Q,

where L\ast 
\Lambda is the formal adjoint of L\Lambda .

In order to solve this last problem and find the Green function, we can apply the steepest
descent method we have introduced (see also results in section 6).
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400 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

5. Discretization and homogenization results. The aim of this section is to provide
homogenization results for operators of the same type as those defined in (3.3) and (4.4). We
can express the theory in an open set Q\subset \BbbR d. To this end we will consider a finite set \Lambda \subset \BbbZ d

symmetric with respect to 0, and we will call m the number of its elements. Any element zi
with i= 1, . . . ,m is a vector, and the associated directional derivative will be denoted by X\varepsilon 

zi .
We intend to study the discretization of the following Dirichlet problem, which generalizes
the operator (4.4) defined above:

 - 
m\sum 
i=1

(X\varepsilon 
zi)

\ast 
\Bigl( 
aij(x)X

\varepsilon 
zju(x)

\Bigr) 
= f(x).(5.1)

We will consider both deterministic and stochastic coefficients aij . For deterministic co-
efficients we study the convergence of the discretized problem to the continuous one. In the
stochastic case, we show that, even if we start with a random orientation \theta in the discrete
problem, a homogenization procedure will ensure the convergence to a continuous problem
with constant coefficients.

5.1. Difference operators. We recall here how to discretize this second order differential
operator, referring the reader to [40] and [43] for a wider introduction.

We start with discretizing a smooth bounded domain Q\subset \BbbR d. Let us call Q\varepsilon =Q \cap \varepsilon \BbbZ d,
where \varepsilon > 0. The boundary \partial Q\Lambda 

\varepsilon of Q\varepsilon is defined by

\partial Q\Lambda 
\varepsilon := \{ x+ \varepsilon zi| x\in Q\varepsilon , i= 1, . . . ,m\} \setminus Q\varepsilon .

We also introduce Q\varepsilon :=Q\varepsilon \cup \partial Q\Lambda 
\varepsilon .

Consider a function u\varepsilon : Q\varepsilon \rightarrow \BbbR ; then the standard difference operator associated by X\varepsilon 
zi

is defined by

X\varepsilon 
ziu

\varepsilon (x) :=
u\varepsilon (x+ \varepsilon zi) - u\varepsilon (x)

\varepsilon 
\forall i= 1, . . . ,m.

We explicitly note that zi is a vector, not necessarily an element of the canonical basis, of the
space, so that in general X\varepsilon 

zi represents the discretization of the directional derivative Xi, not
a partial derivative.

Here we can consider a matrix A\varepsilon (x) = (a\varepsilon ij(x))ij=1,...,m when x\in Q\varepsilon . With this notation,
the discrete Laplace operator can be written as follows:

L\varepsilon 
\Lambda u

\varepsilon (x) :=

m\sum 
i=1

X\varepsilon 
 - zi(a

\varepsilon 
ij(x)X

\varepsilon 
ziu

\varepsilon (x)).(5.2)

Consequently, the Dirichlet problem with second member f \varepsilon : Q\varepsilon \rightarrow \BbbR becomes

L\varepsilon 
\Lambda u

\varepsilon (x) = f \varepsilon (x) \forall x\in Q\varepsilon ,(5.3)

with u\varepsilon (x) = 0 if x\in \partial Q\Lambda 
\varepsilon .
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THE CORTICAL V1 TRANSFORM 401

Definition 5.1. We say that problem (5.3) is uniformly elliptic if there exist constant
c1, c2, \varepsilon 0 > 0 such that for any \eta \in \BbbR d represented as \eta =

\sum m
i=1 \eta izi one has

| a\varepsilon ij(x)| \leq c1 \forall x\in Q\varepsilon \forall i, j = 1, . . . ,m,(5.4)

c2 \cdot \| \eta \| 2E \leq 
m\sum 

i,j=1

a\varepsilon i,j(x)\eta i\eta j \forall x\in Q\varepsilon ,(5.5)

where \| \eta \| E is the Euclidean norm.

Let us now define suitable functional spaces where we will look for the solution. We
consider v\varepsilon : \varepsilon \BbbZ d \rightarrow \BbbR , and we define the analogue of the L2-norm as

\| u\varepsilon \| 2L2(Q\varepsilon )
:= \varepsilon d

\sum 
x\in Q\varepsilon 

| v\varepsilon (x)| 2.

If we consider v\varepsilon : \varepsilon \BbbZ d \rightarrow \BbbR , we say that v\varepsilon is in W 1,2
0 (Q\varepsilon ) if v

\varepsilon (x) = 0 for any x /\in Q\varepsilon ; this
is in fact a translation of the notion of Sobolev space to the discrete setting. The notion of
discrete gradient descends from this setting straightforwardly.

Definition 5.2. Consider v\varepsilon \in W 1,2
0 (Q\varepsilon ),

\nabla \varepsilon 
\Lambda v

\varepsilon (x) :=

m\sum 
j=1

X\varepsilon 
zjv

\varepsilon (x)X\varepsilon 
zj \forall x\in Q\varepsilon .

Due to the uniform ellipticity condition, we can choose the following norm on W 1,2
0 :

\| v\varepsilon \| 2W 1,2
0 (Q\varepsilon )

:= \varepsilon d \cdot 
\sum 
x\in Q\varepsilon 

m\sum 
i=1

,
\bigm| \bigm| \bigm| X\varepsilon 

zjv
\varepsilon (x)

\bigm| \bigm| \bigm| 2 .
We denote by W - 1,2(Q\varepsilon ) the dual space to W 1,2

0 (Q\varepsilon ).
We will provide a definition of solutions of the equation of the operator L\varepsilon 

\Lambda generalizing
to the discrete setting a mean value formula. Indeed it is well known that if \Delta is the standard
Laplacian, B(x, \varepsilon ) is the ball of radius \varepsilon , and | B(x, \varepsilon )| is its Lebesgue measure, then

u(x) - 1

| B(x, \varepsilon )| 

\int 
B(x,\varepsilon )

u(y)dy=
\varepsilon 2

4 + 2d
\Delta u+ o(\varepsilon 2) as \varepsilon \rightarrow 0.

The same formula still holds for large classes of linear operators.
In the discrete setting we will consider the following formula introduced in [43, Proposition

1.3].

Proposition 5.3. Consider a function p\varepsilon zi : Q\varepsilon \rightarrow \BbbR defined for any zi \in \Lambda if it satisfies the
following three properties:

1. p\varepsilon zi(x)\geq 0 and
\sum m

i=1 p
\varepsilon 
zi(x) = 1 \forall x\in Q\varepsilon ;

2. \exists \delta > 0 such that p\varepsilon \pm ei \geq \delta for i= 1, . . . , d;
3. p\varepsilon zi(x) = p\varepsilon  - zi(x+ \varepsilon zi).
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402 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Then the following problem is uniformly elliptic:

u\varepsilon (x) - 
m\sum 
i=1

p\varepsilon zi(x)u
\varepsilon (x+ \varepsilon zi) = \varepsilon 2 \cdot f \varepsilon (x) in Q\varepsilon , u\varepsilon (x) = 0 \forall x\in \partial QH

\varepsilon ,(5.6)

for any f \varepsilon : Q\varepsilon \rightarrow \BbbR .

Remark 5.4. The operator associated to the previous mean value formula can be rewritten
in the form (5.3) with a\varepsilon ij(x) = p\varepsilon zi(x) if zi = zj \not = 0, and 0 otherwise.

In order to compare the functions defined over Q\varepsilon with those having a continuous argu-
ment, we follow Kozlov [34] in defining a mesh completion. In particular if f \varepsilon : Q\varepsilon \rightarrow \BbbR , then
we denote by \~f \varepsilon : Q\rightarrow \BbbR the function such that

\~f \varepsilon (x) = f(yx) \forall x\in Q,

where yx is the point in Q\varepsilon of components yx = (y1, . . . , yd) such that

yi  - 
\varepsilon 

2
\leq xi < yi +

\varepsilon 

2
\forall i= 1, . . . , d.

In what follows, if it is clear from the context, we will allow some abuse of notation by denoting
\~f \varepsilon \in W 1,2

0 (Q) also by f \varepsilon . Furthermore, we will say that f \varepsilon converges (strongly or weakly) to
f in L2(Q\varepsilon ), W

1,2(Q\varepsilon ), or W
 - 1,2(Q\varepsilon ) when the mesh completion \~f \varepsilon converges to f in L2(Q),

W - 1,2(Q). If needed, we will replace this mesh completion with a piecewise linear one \~f \varepsilon in
W 1,2(Q). In this case we will say that f \varepsilon converges (strongly or weakly) to f in W 1,2(Q\varepsilon ) if
the piecewise linear mesh completion \~f \varepsilon converges to f in W 1,2(Q).

5.2. Convergence results---deterministic model. We are interested in treating the con-
vergence of difference operators to usual differential operators when imposing \varepsilon \rightarrow 0. We start
by considering an existence result and its uniform estimates.

Proposition 5.5. If problem (5.3) is uniformly elliptic and f \varepsilon \in L2(Q\varepsilon ), then there exists a
unique solution of the problem u\varepsilon \in W 1,2

0 (Q\varepsilon ) and there exists c > 0 such that

\| u\varepsilon \| W 1,2
0

\leq c \cdot \| f \varepsilon \| L2 ,

uniformly in \varepsilon .

In what follows we denote as usual by \rightharpoonup the weak convergence. The weak convergence of
difference operators preserves in fact the notion of partial derivative.

Proposition 5.6 ([34, p. 355]). If u0 \in W 1,2
0 (Q) (or L2(Q)) and u\varepsilon \rightharpoonup u0 in W 1,2

0 (Q\varepsilon ) (or
L2(Q\varepsilon )), then

X\varepsilon 
eiu

\varepsilon \rightharpoonup 
\partial u0

\partial ei
in L2(Q\varepsilon ) or W - 1,2(Q\varepsilon ).

We will denote by A an uniformly elliptic matrix and by A\varepsilon its discretization on the \varepsilon 
grid. Consider a family of uniformly elliptic discrete Dirichlet problems (5.3). As before we
denote by A\varepsilon (x) the coefficient matrix. We will also denote by A(x) an m\times m real matrix
defined for x\in Q, whose coefficients will be denoted by aij .

Denote by u\varepsilon the solution of the Dirichlet problem associated to u\varepsilon and by u0 the solution
of the continuous Dirichlet problem (5.1).
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THE CORTICAL V1 TRANSFORM 403

Definition 5.7. We say that the matrix A\varepsilon H-converges to A, A\varepsilon H -  -  - \rightarrow 
\varepsilon \rightarrow 0

A, if for any sequence

f \varepsilon \in W - 1,2(Q\varepsilon ) such that f \varepsilon \rightarrow f \in W - 1,2(Q) we have

u\varepsilon \rightharpoonup u0 in W 1,2
0 (Q\varepsilon ),

Da\varepsilon u\varepsilon =
\sum 

j=1,...,m

a\varepsilon ijX
\varepsilon 
ju

\varepsilon \rightharpoonup Dau
0 =

m\sum 
j=1

aijXju
0 in L2(Q\varepsilon ).

Definition 5.8. Given a matrix-valued function A1(x) = (a1ij(x)) with i, j = 1, . . . ,m and

x\in \BbbZ d, and a sequence of induced matrices A\varepsilon (x) :=A1(x/\varepsilon ) for any x\in Q\varepsilon , if the associated

problem (5.3) is uniformly elliptic and there is a constant matrix A0 such that A\varepsilon H - \rightarrow A0, then
we call the matrix A0 the homogenized matrix for A\varepsilon .

5.3. Convergence results---stochastic model. We will now consider an operator with
random coefficients, similar to the one introduced in (2.5) and in section 4.2 to describe the
action of the receptive profiles.

In order to treat the case of random coefficients, consider a probability space (\Omega ,\scrF , \mu )
and a group \{ Tx : \Omega \rightarrow \Omega | x \in \BbbZ d\} of \scrF -measurable transformations respecting the following
properties:

1. Tx : \Omega \rightarrow \Omega is \scrF -measurable \forall x\in \BbbZ d;
2. \mu (Tx\scrB ) = \mu (\scrB ) \forall \scrB \in \scrF and \forall x\in \BbbZ d;
3. T0 = id and Tx \circ Ty = Tx+y \forall x, y \in \BbbZ d.

Definition 5.9. The group Tx is ergodic if for any f \in L1(\Omega ) such that f(Tx\omega ) = f(\omega ) for
\mu -a.e. \omega \in \Omega and for any x\in \BbbZ d, there exists a constant K such that \mu -a.s. f =K.

In what follows we suppose the group Tx to be ergodic and we build a family of random
operators. Consider an \scrF -measurable function with matrix values \scrA (\omega ) = (aij(\omega )) for \omega \in \Omega 
such that \scrA is an m\times m symmetric matrix. We define the family of operators

A\varepsilon (x)(\omega ) :=\scrA (Tx/\varepsilon \omega ) \forall \omega \in \Omega , x\in \varepsilon \BbbZ d.

Remark 5.10. We state a condition on \scrA that implies the uniform ellipticity of the family
A\varepsilon . Consider \eta \in \BbbR d represented as \eta =

\sum m
i=1 \eta izi. If there exist c1, c2 > 0 such that the

inequalities

| aij(\omega )| \leq c1,

c2 \cdot \| \eta \| E \leq 
\sum 

zi,zj\in \Lambda \setminus \{ 0\} 

a\varepsilon ij(\omega )\eta i\eta j , \forall x\in Q\varepsilon 

for all \eta \in \BbbR d represented as \eta =
\sum m

i=1 \eta izi are true a.s., then the A\varepsilon are uniformly elliptic in
any regular domain \Omega .

Theorem 5.11 ([43, Theorem 2.17]). If the operators A\varepsilon are built as above, with Tx ergodic
group and the matrix \scrA respecting the conditions of Remark 5.10, then a.s. the family A\varepsilon 

admits a homogenization and the homogenized matrix A0 does not depend on \omega .

Let us now apply our theoretical results to (2.5), and to the choice of orientation (2.4)
under the simplified assumption that the only possible directions are vertical or horizontal.
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404 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

We consider a particular family of operators A\varepsilon and analyze its asymptotic behavior. In
particular we work in dimension d= 2 and use some results of percolation theory in order to
show that for some well-defined families, the operator converge asymptotically to a Laplacian.

Randomly chosen horizontal or vertical orientation. We split \BbbR 2 into squares \{ [ - 1
2 ,

1
2 ]

+ j| j \in \BbbZ 2\} and consider a random variable \kappa r defined over \BbbR 2, such that if \delta > 0, then

\kappa r =

\biggl\{ 
\delta with probability r,
1 with probability 1 - r,

where 0 < r < 1. Given a finite subset \Lambda \subset \BbbZ 2 symmetric with respect to 0, we consider the
transition functions pzi(x) for any x \in \BbbR 2 and zi \in \Lambda , and suppose the pzi(x) are functions
defined on the set \{ \kappa r(x+ zi)| zi \in \Lambda \} .

The independence of \kappa r(j) for different j \in \BbbZ 2 implies that the transformation group
allowing the construction of the families \{ pzi(x)| x \in \BbbR 2\} is ergodic, or equivalently that if
\forall zi \in \Lambda if pzi(x) = pzi(0) a.s., then a.s. pzi equals a constant.

From the pzi(x) we define the transition functions p\varepsilon zi(x) in order to describe a uniformly
elliptic problem as in (5.6),

p\varepsilon zi(x) := pzi(x/\varepsilon ) \forall x\in Q\varepsilon \subset \varepsilon \BbbZ 2.

The operators A\varepsilon = (a\varepsilon ij) are defined by a\varepsilon ii(x) = p\varepsilon zi(x) if zi \not = 0, and a\varepsilon ij(x) = 0 otherwise.

Proposition 5.12 ([34, sect. 2]). If the functions p\varepsilon zi built as above satisfy a.s. the three
hypotheses of Proposition 5.3, then the A\varepsilon H-converge a.s. to an elliptic operator A0 with
constant coefficients, and moreover A0 is isotropic,

A0 = (a0ij) = a\delta (r) \cdot id,

where a\delta (r)\in \BbbR .

The work [43] focuses on the case where the functions pzi are defined by

pzi(x) :=

\Biggl\{ 
2\kappa r(x)\cdot \kappa r(x+zi)

4(\kappa r(x)+\kappa r(x+zi))
if zi \in \Lambda \setminus \{ 0\} ,

1 - 
\sum 

zi \not =0 pzi(x) if zi = 0.

Second and higher order operators. Let us explicitly state that the convergence theory
developed up to this point can be applied only to second order operators. It is not clear if
similar results could be obtained for operators of order different from one point to another.

6. Results. The reconstruction model of (3.4) is implemented by numerically solving the
parabolic equation (3.6),

ut =L\Lambda u - L\Lambda I,(6.1)

with the heterogeneous operator L\Lambda given by (3.3) and \beta = 2, so that to take into account
three main kind of receptive profiles, we have the following:

L\Lambda = a1\Delta + a2X
2
\theta ,1  - a3X

4
\theta ,1.(6.2)
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THE CORTICAL V1 TRANSFORM 405

The spatial domain Q is discretized with uniform spacing \varepsilon to obtain the matrix Q\varepsilon on
which the solution u\varepsilon is defined. Centered finite differences are used to approximate spatial
derivatives of the Laplacian

\Delta = \partial 2
x1x1

+ \partial 2
x2x2

as well as the second ordered sub-Riemannian term

X2
\theta ,1 = cos2(\theta )\partial 2

x1x1
+ 2cos(\theta ) sin(\theta )\partial 2

x1x2
+ sin2(\theta )\partial 2

x2x2
,

where (x1, x2) denotes a point in Q\varepsilon . The fourth order sub-Riemannian term is computed by
applying twice the second order term,

X4
\theta ,1 =X2

\theta ,1(X
2
\theta ,1).

Time evolution is discretized with forward finite difference, and Neumann boundary con-
ditions are applied. A typical time step of the evolution is dt = 0.1 if just second order
operators are involved, while dt = 0.001 is adopted if fourth order operators are present, in
order to guarantee the stability of a finite difference method [52, p. 26]. The stopping crite-
rion is directly related to the error of convergence of the solution so that the evolution stops
when

\sum 
x\in Q\varepsilon 

| u\varepsilon k+1(x)  - u\varepsilon k(x)| < \varepsilon c, where u\varepsilon k and u\varepsilon k+1 are solutions corresponding to two

subsequent time steps and \varepsilon c = 10 - 4.
The three bands of the RGB image stimulus shown in Figure 4 (left) have been processed

separately. Different mixtures of second and fourth order operators in Euclidean and sub-
Riemannian metrics have been considered by changing the parameters a1, a2, a3.

In our first numerical test, only isotropic Laplacians have been considered (Figure 5)
setting a1 = 1, a2 = 0, a3 = 0. The set of Ps are visualized in a subsampled set of points (upper
left) and they are all equal. Equation (3.4) corresponds in this case to the classical Poisson
problem introduced by Morel to solve the Retinex algorithm with differential instruments
[39]. The solution is visualized (bottom right) and corresponds to the image stimulus up to
a harmonic function. The Green function \Gamma (x1, x2) (see section 4.4.1) is computed for some
points \gamma . Its level lines are visualized (upper right) as well as its surface (bottom left). In

Figure 4. Original painting of Piero della Francesca (left) and its second order differentiation with randomly
chosen horizontal or vertical orientation (right).
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406 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Figure 5. Classical Laplacians. Upper left: Ps are visualized in a subsampled set of points. Upper right:
Level lines of the fundamental solution sampled in some points. Bottom left: Surface of the fundamental
solution. Bottom right: Reconstructed image.

the case of classic Laplacians the Green function in two dimensions is analytically known,
\Gamma (r) = log(r), where r=

\sqrt{} 
x21 + x22.

If a1 = 0, a2 = 1, a3 = 0, and \theta = 0 in every point, then the set of operators is constituted
by directional derivatives with all the same orientation (Figure 6) and the corresponding
parabolic equation is

ut = \partial 2
x1x1

u - \partial 2
x1x1

I.

The Green function is very anisotropic, and the reconstruction is corrupted by artifacts. This
is due to the fact that many one-dimensional Poisson problems are solved independently in
the direction of the derivations, and solutions are uncorrelated.

The case with a mixture of directional derivatives changing from point to point in the
horizontal and vertical directions, considered in Figure 7, is very different. As in the previous
case, a1 = 0, a2 = 1, a3 = 0, but now direction \theta is randomly chosen depending on the position
x = (x1, x2) with values \theta = 0 or \theta = \pi /2. The result of the differentiation of the stimulus
image is shown in Figure 4 (right). Notice that the Green functions of the mixture of operators
change from point to point. Although the direction is randomly chosen, the Green function
maintains a certain regularity and symmetry. This allows us to obtain a reconstruction of the
perceived image without visible artifacts. The formal proof of convergence of this distribution
of operators towards classical Laplacians is given in section 5.

A typical distribution of Ps in rodents is a random salt-and-pepper mixture of Mexican
hats as well as simple cells with different number of cycles (Figure 8). These correspond to
the case where the coefficients ai are chosen as a partition of the unit such that in any point
(x1, x2) of the domain Q\epsilon just one parameter has value 1, while the others are null. The choice

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE CORTICAL V1 TRANSFORM 407

Figure 6. Homogeneous sub-Riemannian second order operators L\Lambda = \partial 2
x1x1

. Upper left: Ps are visualized
in a subsampled set of points. Upper right: Level lines of the fundamental solution. Bottom left: Surface of the
fundamental solution. Notice that fundamental solutions are strongly asymmetric. Bottom right: Reconstructed
image: Artifacts appear as uncorrelated horizontal lines.

Figure 7. Sub-Riemannian second order operators in the vertical and horizontal directions. Upper left: Ps
are visualized in a subsampled set of points. Upper right: Level lines of the fundamental solution. Bottom
left: Surface of the fundamental solution. Notice that fundamental solutions are different point to point and
are quite round, although they are composed of anisotropic operators. Bottom right: The reconstructed image
appears free from artifacts.
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408 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Figure 8. Heterogeneous operators in the cortex of rodents: Either second or fourth order, Euclidean, or
sub-Riemannian operators are randomly distributed with random n-orientations. Upper left: Ps are visualized.
Upper right: Level lines of the fundamental solution. Bottom left: Surface of the fundamental solution. Notice
that fundamental solutions are different point to point and are quite symmetric, although they are composed
of very anisotropic operators of different degree. Bottom right: The reconstructed image appears free from
artifacts.

of the nonnull parameter in every point is random. The distribution of the \theta angles is also
random over the spatial domain.

Green functions of the mixture are different from point to point and are quite symmetric,
although they are composed of very anisotropic operators of different degree. In this case
the reconstructed image is the original stimulus I(x1, x2) up to a harmonic function, where
harmonic means the annulation of the heterogeneous operator L\Lambda = 0. No artifact is visible
in the reconstructed-perceived image.

Ps in primates are organized in orientation maps following a pinwheels structure (Figure
9). Also in this case there is a mixture of operators of different orders as on the previous
example but with orientations prescribed by the pinwheel structure given by (2.4). Although
there is a regularity in the distribution of preferred orientations, the fundamental solutions
are very different from those of homogeneous sub-Riemannian second order operators shown
in Figure 6. In fact, the presence of a variation of orientation across the domain allows the
emergence of weakly anisotropic Green functions. This feature allows for the reconstruction
of the perceived image without visible artifacts.

In the following we present a series of simulations on different kind of images with Ps orga-
nized as in the cortex of primates. Operators are either second or fourth order, with Euclidean
or sub-Riemannian metric. They are randomly distributed with orientations prescribed by
the typical pinwheel structure.

In Figure 10 we considered a classical image of simultaneous contrast illusion. In the
origin image the background presents a gray level increasing from left to right, and the central
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THE CORTICAL V1 TRANSFORM 409

Figure 9. Heterogeneous operators in the cortex of primates: Operators are either second or fourth order,
Euclidean, or sub-Riemannian. They are randomly distributed with orientations prescribed by the typical ori-
entation map of primates (pinwheel structure). Upper left: Ps are visualized. Upper right: Level lines of the
fundamental solution. Bottom left: Surface of the fundamental solution. As in the case of rodents, the fun-
damental solutions are different point to point and quite symmetric. Bottom right: The reconstructed image
appears free from artifacts.

Figure 10. Simultaneous contrast illusion. Top: Original image. The background presents a linear profile
of gray and the central strip has a uniform gray value, but it is perceived as a graded gray level. Bottom: The
outcome of simulation shows the graded gray level typical of the perceptual illusion.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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410 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

Figure 11. X-ray test image. Left: Original image. Right: The cortical transform.

Figure 12. Upper left: Original image. Upper right: The cortical transform without any parameter. Bottom:
The Retinex algorithm proposed in [31] with different choice of the 4 parameters. Photo by Stephen Wolf.
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THE CORTICAL V1 TRANSFORM 411

Figure 13. A test image from [39]. Top left: Original image. Top right: The best result of the Retinex
algorithm proposed in [39] after the choice of one parameter. Bottom: The cortical transform without any
parameter. (Reprinted, with permission, from [39]).

strip has a uniform gray value, but it is perceived as a graded gray level. The outcome of
simulation shows the perceived graded gray level in the occluding strip.

In Figure 11 we considered a medical image. In the reconstructed image the structure of
the vertebrae is much clearer.

In Figures 12 and 13 two photographs are considered. The first one was used in [31],
where a Retinex algorithm depending by a parameter was proposed. Our image (top right)
is comparable with the best result of their algorithm (bottom right), but the algorithm is
simpler, since it does not depend on parameters. The fact that it slightly blue is compatible
with perceptual laws. In fact, the presence of a yellow part in the stimulus image induces
white areas to be perceived with its complementary color, blue. The emergence of antagonistic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

2/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



412 ALESSANDRO SARTI, MATTIA GALEOTTI, AND GIOVANNA CITTI

pairings of colors correspond to the way our visual system is wired and it is very much
supported by the present model.

7. Conclusions. In this paper we have presented a cortical transform model based on the
heterogeneous distribution of receptive profiles and the short-range connectivity in the visual
cortex. The action of Ps has been expressed via nonnegative operators with random coefficients
(random metric and order), the connectivity inverts their action, and the resulting cortical
transform corresponds to a heterogeneous Poisson equation. Our main result is that the
reconstruction of the perceived image is possible even in the presence of a totally heterogeneous
operator whose order varies from one point to another. We provide here a formal proof of the
convergence of the operator with random coefficients only in the special case of second order
operator; in this case we prove convergence to a deterministic isotropic Laplacian. But other
possibilities are at stake. For mixed order operators the experimental results are convincing
even if a homogenization theory is still lacking. All these possibilities will be the object of
further work in the future.
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