

CONVR 2023

Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

MANAGING THE DIGITAL TRANSFORMATION OF CONSTRUCTION INDUSTRY University of Florence, Florence, Italy, November 13-15, 2023

edited by

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

PROCEEDINGS E REPORT

ISSN 2704-601X (PRINT) - ISSN 2704-5846 (ONLINE)

- 137 -

CONVR 2023
PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON CONSTRUCTION APPLICATIONS OF VIRTUAL REALITY
MANAGING THE DIGITAL TRANSFORMATION OF CONSTRUCTION INDUSTRY

Editors

Pietro Capone, University of Florence, Italy Vito Getuli, University of Florence, Italy Farzad Pour Rahimian, Teesside University, UK Nashwan Dawood, Teesside University, UK Alessandro Bruttini, University of Florence, Italy Tommaso Sorbi, University of Florence, Italy

CONVR 2023

Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Managing the Digital Transformation of Construction Industry

edited by Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality : Managing the Digital Transformation of Construction Industry /edited by Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi. - Firenze : Firenze University Press, 2023.

(Proceedings e report; 137)

https://books.fupress.com/isbn/9791221502893

ISSN 2704-601X (print) ISSN 2704-5846 (online) ISBN 979-12-215-0289-3 (PDF) ISBN 979-12-215-0257-2 (XML) DOI 10.36253/979-12-215-0289-3

Graphic design: Alberto Pizarro Fernández, Lettera Meccanica SRLs

Front cover image: Ad Alto Angolo Di Paesaggio Urbano, by Pixabay/Pexels.com, https://www.pexels.com/it-it/foto/fotografia-ad-alto-angolo-di-paesaggio-urbano-208213, CC0 1.0 Universal

The Proceedings of the CONVR2023 are published with the contribution of the University of Florence, which hosted and partially funded the Conference, and Teesside University that collaborated with its organization.

Peer Review Policy

Peer-review is the cornerstone of the scientific evaluation of a book. All FUP's publications undergo a peer-review process by external experts under the responsibility of the Editorial Board and the Scientific Boards of each series (DOI: 10.36253/fup best practice.3).

Referee List

In order to strengthen the network of researchers supporting FUP's evaluation process, and to recognise the valuable contribution of referees, a Referee List is published and constantly updated on FUP's website (DOI: $10.36253/\text{fup}_\text{referee}_\text{list}$).

Firenze University Press Editorial Board

M. Garzaniti (Editor-in-Chief), M.E. Alberti, F. Vittorio Arrigoni, E. Castellani, F. Ciampi, D. D'Andrea, A. Dolfi, R. Ferrise, A. Lambertini, R. Lanfredini, D. Lippi, G. Mari, A. Mariani, P.M. Mariano, S. Marinai, R. Minuti, P. Nanni, A. Orlandi, I. Palchetti, A. Perulli, G. Pratesi, S. Scaramuzzi, I. Stolzi.

FUP Best Practice in Scholarly Publishing (DOI: 10.36253/fup_best_practice)

 $\ensuremath{\mathfrak{d}}$ The online digital edition is published in Open Access on www.fupress.com.

Content license: except where otherwise noted, the present work is released under Creative Commons Attribution-NonCommercial 4.0 Internationa license (CC BY NC 4.0: https://creativecommons.org/licenses/by-nc/4.0/). This license allows you to share any part of the work by any means and format, modify it for any purpose, including commercial, as long as appropriate credit is given to the author, any changes made to the work are indicated and a URL link is provided to the license.

Metadata license: all the metadata are released under the Public Domain Dedication license (CC0 1.0 Universal: https://creativecommons.org/publicdomain/zero/1.0/legalcode).

© 2023 Author(s)

Published by Firenze University Press Firenze University Press Università degli Studi di Firenze via Cittadella, 7, 50144 Firenze, Italy www.fupress.com

This book is printed on acid-free paper Printed in Italy

Table of Contents

CONFERENCE COMMITTEE XIII
ORGANIZING INSTITUTIONS XVI
FOREWORD XVII

A - Extended reality technologies in construction

INVESTIGATION OF THE ACCEPTANCE OF VIRTUAL REALITY FOR PLANNING DECISIONS IN EARLY DESIGN PHASES	
Daniel Napps, Markus König	1
BUILDING INSPECTOR XR: STREAMLINING SCAN-TO-BIM WITH VIRTUAL AND MIXED REALITY Christoph Blut, Tristan Kinnen, Jörg Blankenbach, Dirk Heidermann, Felix Schellong	13
THE VALUE OF EXTENDED REALITY TECHNIQUES TO IMPROVE REMOTE COLLABORATIVE MAINTENANCE OPERATIONS: A USER STUDY	
Corentin Coupry, Paul Richard, David Bigaud, Sylvain Noblecourt, David Baudry	23
CREATION AND ACCEPTANCE OF LOW-THRESHOLD MOBILE TRAINING ON SUSTAINABILITY IN CONSTRUCTION Mario Wolf, Jochen Teizer	34
A COLLABORATIVE PLANNING MODEL FOR OFFSITE CONSTRUCTION BASED ON VIRTUAL REALITY AND	
GAME ENGINES Mohamed Assaf, Rafik Lemouchi, Mohamed Al-Hussein, Xinming Li	46
PREDICTION OF COGNITIVE LOAD DURING INDUSTRY-ACADEMIA COLLABORATION VIA A WEB PLATFORM	
Anthony Yusuf, Abiola Akanmu, Adedeji Afolabi, Homero Murzi	57
TRANSITIONING FROM 2D TO VR IN DESIGN REVIEW – RESISTANCE TO ENGAGEMENT Shahin Sateei, Mattias Roupe, Mikael Johansson	69
COLLABORATIVE SITE LAYOUT PLANNING USING MULTI-TOUCH TABLE AND IMMERSIVE VR Mikael Johansson, Mattias Roupé, Mikael Viklund Tallgren	81
APPLICATION OF SMART TECHNOLOGIES FOR ASSESSING USERS' WELL-BEING FOR IMMERSIVE DESIGN STRATEGIES: A STATE-OF-THE-ART REVIEW Eleonora D'Ascenzi, Vito Getuli, Irene Fiesoli	91
INVESTIGATING THE ABILITY OF IMMERSIVE VIRTUAL ENVIRONMENTS TO FACILITATE OCCUPANT THERMAL STATE DATA COLLECTION INVOLVING FACE MASKS Girish Srivatsa Rentala, Yimin Zhu	100
SEAMLESS INDOOR/OUTDOOR MARKER-LESS AUGMENTED REALITY REGISTRATION SUPPORTING FACILITY MANAGEMENT OPERATIONS Leonardo Messi, Francesco Spegni, Massimo Vaccarini, Alessandra Corneli, Leonardo Binni	109
INTEGRATING REAL-TIME OBJECT DETECTION INTO AN AR-DRIVEN TASK ASSISTANCE PROTOTYPE: AN APPROACH TOWARDS REDUCING SPECIFIC MOTIONS IN THERBLIGS THEORY Xiang Yuan, Qipei Mei, Xinming Li	121
VISUALIZATION OF WEATHER-AWARE AMBIENT HEAT RISKS WITH GLOBAL ILLUMINATION IN GAME ENGINE	
Naotaka Sumida, Taira Ozaki, Satoshi Kubota, Dan Hiroshige, Yoshihiro Yasumuro	133
IMPROVING SENSE-MAKING FOR CONSTRUCTION PLANNING TASKS USING VISUAL AND HAPTIC STIMULI IN VIRTUAL REALITY ENVIRONMENTS Ivan Mutis, Marina Oberemok, Nishanth Purushotham	142

ENHANCING THE REALISM OF VIRTUAL CONSTRUCTION SAFETY TRAINING: INTEGRATION OF REAL-TIME LOCATION SYSTEMS FOR REAL-WORLD HAZARD SIMULATIONS

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi (edited by), CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality. Managing the Digital Transformation of Construction Industry, © 2023 Author(s), CC BY NC 4.0, published by Firenze University Press, ISBN 979-12-215-0289-3, DOI 10.36253/979-12-215-0289-3

VISIBILITY ENHANCEMENT OF CRANE OPERATORS USING BIM-BASED DIMINISHED REALITY Roghieh Eskandari, Ali Motamedi	167
ADAPTING BIM-BASED AR POSITIONING TECHNIQUES TO THE CONSTRUCTION SITE Khalid Amin, Grant Mills, Duncan Wilson, Karim Farghaly	175
SAFETY TRAINING FOR RIGGING USING VIRTUAL REALITY Rafik Lemouchi, Mohamed Assaf, Mohamed Al-Hussein, Khaoula Boutouhami, Ahmed Bouferguene	184
APPLICATION OF DIMINISHED REALITY FOR CONSTRUCTION SITE SAFETY MANAGEMENT Alessandra Corneli, Berardo Naticchia, Massimo Vaccarini, Alessandro Carbonari, Francesco Spegni	195
DRIVING SIMULATOR FOR ROAD SAFETY DESIGN: A COMPARISON BETWEEN VIRTUAL REALITY TESTS AND IN-FIELD TESTS	206
Monica Meocci, Alessandro Terrosi, Andrea Paliotto, Francesca La Torre, Irene Infante	206
ASSESSING IMPACTS OF IMMERSIVE VIRTUAL REALITY BASED DESIGN REVIEWS ON LEARNERS' SELF- EFFICACY Fadi Castronovo, Seyedreza Razavialavi, Abdullahi Abdulrahman, Mohammed Rayan Saiba, Pablo Martinez Rodriguez	219
	21)
COGNITIVE DYNAMICS FOR CONSTRUCTION MANAGEMENT LEARNING TASKS IN MIXED REALITY ENVIRONMENTS Xuanchang Liu, Ivan Mutis	231
EVALUATION OF COMPUTER VISION-AIDED MULTIMEDIA LEARNING IN CONSTRUCTION ENGINEERING	
EDUCATION Anthony Yusuf, Adedeji Afolabi, Abiola Akanmu, Johnson Olayiwola	242
BIM-BASED OPEN LEARNING RESOURCES REPOSITORY FOR THE BENEDICT PROJECT Marco Bragadin, Caterina Morganti, Pier Carlo Ricci, Emlyn Witt, Kalle Kähkönen, Taija Puolitaival	254
TOWARDS A DIGITAL ERA IN AEC HIGHER EDUCATION: COMBINING THEORY AND TECHNOLOGY TO DEVE AND DELIVER ARCHITECTURAL MASTER CLASSES	LOP
Aso Hajirasouli, Vito Getuli, Alessandro Bruttini, Tommaso Sorbi, Pietro Capone	266
A FRAMEWORK FOR REALISTIC VIRTUAL REPRESENTATION FOR IMMERSIVE TRAINING ENVIRONMENTS Caolan Plumb, Farzad Rahimian, Diptangshu Pandit, Hannah Thomas, Nigel Clark	274
EVALUATION OF IMMERSIVE VR EXPERIENCES FOR SAFETY TRAINING OF CONSTRUCTION WORKERS: A SEMI-QUALITATIVE APPROACH PROPOSAL	
Vito Getuli, Valentina Fornasari, Alessandro Bruttini, Tommaso Sorbi, Pietro Capone	288
B - Advanced project management and control	
ENHANCING COLLABORATION WITH BLOCKCHAIN-ENABLED DIGITAL TWINS: PERSPECTIVES FROM	
STAKEHOLDERS IN THE BUILT ENVIRONMENT Nana Akua Adu-Amankwa, Farzad Rahimian, Nashwan Dawood	298
BLOCKCHAIN-BPMN INTEGRATED FRAMEWORK FOR CONSTRUCTION MANAGEMENT Xuling Ye, Xingyu Tao, Jack C. P. Cheng, Markus König	309
FAST AND SECURE BIM DESIGN USING BLOCKCHAIN: AN EXAMPLE OF MAKESHIFT HOSPITAL PROJECT	
FOR COVID-19 TREATMENT IN HONG KONG Xingyu Tao, Xingbo Gong, Moumita Das, Yuqing Xu, Hao Liu, Jack Cp Cheng, Chengliang Zheng	318
INTEGRATING ESG FACTORS INTO CONSTRUCTION PROJECTS: A BLOCKCHAIN-BASED DATA	
MANAGEMENT APPROACH Xingbo Gong, Xingyu Tao, Moumita Das, Helen H.L. Kwok, Jack C.P. Cheng	327
A BLOCKCHAIN-BASED SECURE SUBMISSION MANAGEMENT FRAMEWORK FOR DESIGN AND	
CONSTRUCTION PHASES Moumita Das, Xingyu Tao, Yuxing Xu, Jack C. P. Cheng	335

ADAPTIVE BLOCKCHAIN BIM IDENTITY AUTHENTICATION Lingming Kong, Rui Zhao, Fan Xue	343
LEVERAGING SMART CONTRACTS IN BUILDING INFORMATION MODELING (BIM) FOR UNIFIED PROJECT EXECUTION: A THEORITICAL FRAMEWORK. Oluwatoyin Lawal, Nawari Nawari	352
ISAFEINCENTIVE: TRANSFORMING CONSTRUCTION SAFETY CULTURE THROUGH BLOCKCHAIN INCENTIVES	
Mehrtash Soltani, Dohyeong Kim, Akeem Pedro, Jaehun Yang, Si Tran, Doyeop Lee, Chansik Park	360
MULTI-ASPECTUAL KNOWLEDGE ELICITATION FOR PROCUREMENT OPTIMIZATION IN A WAREHOUSE COMPANY	
Franck Romuald Fotso Mtope, Sina Joneidy, Diptangshu Pandit, Farzad Rahimian	368
A SYSTEMATIC LITERATURE REVIEW TO IDENTIFY A METHODOLOGICAL APPROACH FOR USE IN THE MODELLING AND FORECASTING OF CAPITAL EXPENDITURE OF HYPERSCALE DATA CENTRES David King, Nadeeshani Wanigarathna, Keith Jones, Joseph Ofori-Kuragu	380
A VALUE STREAM MAPPING APPROACH TO THE IDENTIFICATION OF LEAN MANAGEMENT OPPORTUNITIES FOR OFF-SITE CONSTRUCTION PRODUCTION: A CASE OF REINFORCED CONCRETE SLABS Zhe Chen, Zhengting Guo, Fan Xue	388
BAYES THEORY AS A METHODOLOGICAL APPROACH TO ASSESS THE IMPACT OF LOCATION VARIABLES OF HYPERSCALE DATA CENTRES: TESTING A CONCEPT David King, Nadeeshani Wanigarathna, Keith Jones, Joseph Ofori-Kuragu	398
UNIVERSITY ASSET DIGITALIZATION GUIDELINES: THE PILOT CASE OF POLITECNICO DI MILANO REAL ESTATE	407
Giuseppe Martino Di Giuda, Elisa Cacciaguerra, Francesco Paleari, Marco Schievano, Stefano Campi, Alessandro Tucci	407
BIM-GIS AND BI INTEGRATION FOR FACILITY AND OCCUPANCY MANAGEMENT OF UNIVERSITY ASSETS: THE UNITO PILOT CASE	
Giuseppe Martino Di Giuda, Daniele Accardo, Paola Gasbarri, Silvia Meschini, Lavinia Chiara Tagliabue, Laura Scomparin	419
TOWARDS A FRAMEWORK FOR RAILWAY NETWORK ASSETS MANAGEMENT BASED ON BIM/GIS INTEGRATION	421
Mattia Mangia, Carla Di Biccari, Mattias Roupé	431
INTEGRATION BETWEEN ENTERPRISE RESOURCE PLANNING AND BUILDING INFORMATION MODELLING Paola Federici, Daniela Julea, Sara Comai, Kavita Raj, Silvia Mastrolembo Ventura, Giuseppe Rigamonti, Giorgio Paolo Maria Vassena, Angelo Luigi Camillo Ciribini	443
DEVELOPMENT OF AN AUTOMATED WORKFLOW IN THE FIELD OF FIRE PREVENTION USING BUILDING INFORMATION MODELING	
Vincenzo Donato, Andrea Bongini, Marco Sparacino	454
DATA-DRIVEN CONSTRUCTION AND OPERATING COST DECISION SUPPORT THROUGH TECHNO-ECONOMIC ANALYSIS: RESIDENTIAL CASE STUDY Panos Karaiskos, Tulio Sulbaran	466
BUILDING INFORMATION MODELLING (BIM) FOR CONSTRUCTION SUPPLY CHAIN: A SCIENTOMETRIC	
ANALYSIS Syed Haseeb Ahmad, Melissa Chan, Wei Yang, Hongyu Jin, Amirhossein Heravi	477
E-PROCUREMENT IN THE AUSTRALIAN CONSTRUCTION INDUSTRY: BENEFITS, BARRIERS AND ADOPTION Eleanor Hayden, Melissa Chan, David van Kan, Victor Arowoiya, Mohd. Amizan Mohamed	489
A PRELIMINARY INVESTIGATION OF KNOWLEDGE MANAGEMENT TOOLS FOR THE CONSTRUCTION SECTOR	
Bartu Kologlu, Deniz Artan	499

IMPROVING BIM AUTHORING PROCESS REPRODUCIBILITY WITH ENHANCED BIM LOGGING Suhyung Jang, Ghang Lee	508
TOWARDS CONSTRUCTION SAFETY MANAGEMENT MATURITY MODEL IN THE INDUSTRY 4.0 ERA: A STATE-OF-THE-ART REVIEW	
Nazi Soltanmohammadlou, Sara Rashidian, Carol K. H Hon, Robin Drogemuller, Sara Omrani	515
INTEGRATED GEOBIM REQUIREMENTS DEFINITION FOR DIGITAL BUILDING PERMIT Silvia Mastrolembo Ventura, Sara Comai, Francesca Noardo, Kavita Raj, Angelo L.C. Ciribini	526
A SYSTEMATIC REVIEW OF THE IMPACTS OF DIGITALIZATION ON PROJECT MANAGEMENT Ailin Zerafat, Emmanuel Daniel, Louis Gyoh	538
EVALUATING THE COMPREHENSION OF CONSTRUCTION SCHEDULES OF AN ARTIFICIAL INTELLIGENCE Tulio Sulbaran	545
MULTI-ROBOT FEDERATED EDGE LEARNING FRAMEWORK FOR EFFICIENT COORDINATION AND INFORMATION MANAGEMENT IN SMART CONSTRUCTION Xinqi Liu, Jihua Wang, Ruopan Huang, Wei Pan	553
ROBOTIC ASSEMBLY AND REUSE OF MODULAR ELEMENTS IN THE SUPPLY CHAIN OF A LEARNING FACTORY FOR CONSTRUCTION AND IN THE CONTEXT OF CIRCULAR ECONOMY Jochen Teizer, Kepeng Hong, Asger D. Larsen, Marcus B. Nilsen	564
IDENTIFYING AND DEVELOPING PREREQUISITES FOR TAKT PLANNING IN A BIM-BASED CONSTRUCTION PROCESS	
Efraim Ljung, Mikael Viklund Tallgren, Mattias Roupe, Mikael Johansson	574
FCM-ENABLED APPROACH FOR INVESTIGATING INTERDEPENDENCIES OF BIM PERFORMANCE FACTORS IN THE SUSTAINABLE BUILT ENVIRONMENT Pavan Kumar, Aritra Pal, Yun-Tsui Chang, Shang-Hsien Hsieh	585
A ROBOTIC METHOD TO INSERT BATT INSULATION INTO LIGHT-FRAME WOOD WALL FOR PANEL PREFABRICATIONS	
Xiao Han, Cheng-Hsuan Yang, Yuxiang Chen, Alejandra Hernandez Sanchez	594
THE IMPACTS OF DIGITAL FABRICATION ON THE CONSTRUCTION INDUSTRY: A SYSTEMATIC REVIEW Mehdi Keshtkar, Emmanuel Daniel, Louis Gyoh	605
C - AI, data science and analytics	
EFFICIENT DATA CURATION USING ACTIVE LEARNING FOR A VIDEO-BASED FIRE DETECTION Keyur Joshi, Angelina Aziz, Philip Dietrich, Markus König	616
IDENTIFYING HAZARDS IN CONSTRUCTION SITES USING DEEP LEARNING-BASED MULTIMODAL WITH CCTV DATA	
Dai Quoc Tran, Yuntae Jeon, Seongwoo Son, Minsoo Park, Seunghee Park	625
DEEP LEARNING-BASED POSE ESTIMATION FOR IDENTIFYING POTENTIAL FALL HAZARDS OF CONSTRUCTION WORKER	
Minsoo Park, Seungsoo Lee, Woonggyu Choi, Yuntae Jeon, Dai Quoc Tran, Seunghee Park	634
DEEP LEARNING BASED POSE ESTIMATION OF SCAFFOLD FALL ACCIDENT SAFETY MONITORING Seungsoo Lee, Seongwoo Son, Pa Pa Win Aung, Minsoo Park, Seunghee Park	641
PREDICTIVE SAFETY MONITORING FOR LIFTING OPERATIONS WITH VISION-BASED CRANE-WORKER CONFLICT PREDICTION	(40
Peter Kok-Yiu Wong, Synge C. P. Lam, Isabel Y. N. Lee, Felix C. L. Ting, Jack C. P. Cheng, Pak Him Leung	648
LOCALIZING AND VISUALIZING THE DEGREE OF PEOPLE CROWDING WITH AN OMNIDIRECTIONAL CAMERA BY DIFFERENT TIMES Tomu Muraoka, Satoshi Kubota, Yoshibiro Yasumuro	657
LOUBLIVIDIAUNA, MAIONOLN HOORA, LONGHINO LANGHINO	(1) 1/

ISAFE WELDING SYSTEM: COMPUTER VISION-BASED MONITORING SYSTEM FOR SAFE WELDING WORK Syed Farhan Alam Zaidi, Rahat Hussain, Muhammad Sibtain Abbas, Jachun Yang, Doycop Lee, Chansik Park	669
COMPUTER VISION-BASED MONITORING FRAMEWORK FOR FORKLIFT SAFETY AT CONSTRUCTION SITE Muhammad Sibtain Abbas, Aqsa Sabir, Nasrullah Khan, Syed Farhan Alam Zaidi, Rahat Hussain, Jachun Yang, Chansik Park	676
AUTOMATED EXTRACTION OF BRIDGE GRADIENT FROM DRAWINGS USING DEEP LEARNING Hakan Bayer, Benedikt Faltin, Markus König	683
PREDICTING MENTAL WORKLOAD OF USING EXOSKELETONS FOR CONSTRUCTION WORK: A DEEP LEARNING APPROACH	
Abiola Akanmu, Adedeji Afolabi, Akinwale Okunola	691
UTILIZING 360-DEGREE IMAGES FOR SYNTHETIC DATA GENERATION IN CONSTRUCTION SCENARIOS Aqsa Sabir, Rahat Hussain, Syed Farhan Alam Zaidi, Akeem Pedro, Mehrtash Soltani, Dongmin Lee, Chansik Park	701
MACHINE LEARNING-BASED CONSTRUCTION PLANNING AND FORECASTING MODEL Ahmet Esat Keser, Onur Behzat Tokdemir	711
CONCEPT FOR ENRICHING NISO-STS STANDARDS WITH MACHINE-READABLE REQUIREMENTS AND VALIDATION RULES	
Sven Zentgraf, Sherief Ali, Markus König	718
TRANSFORMING BUILDING INDUSTRY KNOWLEDGE MANAGEMENT: A STUDY ON THE ROLE OF LARGE LANGUAGE MODELS IN FIRE SAFETY PLANNING Ori Ashkenazi, Shabtai Isaac, Alberto Giretti, Alessandro Carbonari, Dilan Durmus	729
SCHEDULING OPTIMIZATION OF ELECTRIC READY MIXED CONCRETE VEHICLES USING AN IMPROVED MODEL-BASED REINFORCEMENT LEARNING Zhengyi Chen, Changhao Song, Xiao Zhang, Jack C. P. Cheng	739
TESTING CHATGPT-AIDED SPARQL GENERATION FOR SEMANTIC CONSTRUCTION INFORMATION RETRIEVAL	
Yuan Zheng, Olli Seppänen, Sebastian Seiß, Jürgen Melzner	751
EXTRACTING INFORMATION FROM CONSTRUCTION SAFETY REQUIREMENTS USING LARGE LANGUAGE MODEL	561
Si Van-Tien Tran, Nasrullah Khan, Emmanuel Charles Kimito, Akeem Pedro, Mehrtash Sotani, Rahat Hussain, Taehan Yoo, Chansik Park	761
MODELLING AND MANAGING BUILT HERITAGE KNOWLEDGE: AN ONTOLOGY-BASED APPROACH FOR MULTI-LAYERED ARCHAEOLOGIES AND HISTORICAL PRODUCTION PROCESS REPRESENTATION Cassia De Lian Cui, Antonio Fioravanti, Edoardo Currà, Davide Simeone, Stefano Cursi	768
LINKED DATA FOR THE CATEGORIZATION OF FAILURES MECHANISMS IN EXISTING UNREINFORCED MASONRY BUILDINGS	
Maria Laura Leonardi, Stefano Cursi, Daniel V. Oliveira, Miguel Azenha, Elena Gigliarelli	781
VIRTUAL HUMAN-BUILDING INTERACTION EXPERIMENTATION ONTOLOGY (VHBIEO): A VHBIEO-BASED METADATA-DRIVEN EXPLORATION Chanachok Chokwitthaya, Yimin Zhu, Weizhuo Lu	791
Chanachok Chokwitthaya, 1 iliilii Zhu, weizhuo Lu	/91
CONSISTENCY VERIFICATION BETWEEN COST AND GEOMETRIC INFORMATION BASED ON IFC: APPLICATION ON STRUCTURAL ELEMENTS Income Consistency Claudia Mineralia Alberta Paran Maria Creatia Departually Code Zeneloste	901
Jacopo Cassandro, Claudio Mirarchi, Alberto Pavan, Maria Grazia Donatiello, Carlo Zanchetta	801
SEMANTIC WEB BASED INTEGRATION BETWEEN BIM COST AND GEOMETRIC DOMAINS Jacopo Cassandro, Claudio Mirarchi, Alberto Pavan, Andrea Zamborlini, Carlo Zanchetta	813
ONTOLOGY-BASED CONSTRUCTION INSPECTION PLANNING: A CASE STUDY OF THERMAL BUILDING INSULATION	
Sebastian Seiß, Markus Boden, Jürgen Melzner, Yuan Zheng, Delval Thibaut, Rayan El Chamaa	824

AN AUTOMATED FRAMEWORK FOR ENSURING INFORMATION CONSISTENCY IN PRICE LIST TENDERING DOCUMENT	
Chiara Gatto, Maryam Gholamzadehmir, Marta Zampogna, Claudio Mirarchi, Alberto Pavan	837
ENHANCING INTERACTIONS IN AUGMENTED REALITY FOR CONSTRUCTION SITES: INTRODUCING THE ARCHI ONTOLOGY Karim Farghaly, Khalid Amin, Grant Mills, Duncan Wilson	848
Karini Farghary, Khand Amin, Grant Mins, Duncan Wilson	040
A REVIEW OF COMPUTER VISION-BASED PROGRESS MONITORING FOR EFFECTIVE DECISION MAKING Roy Lan, Tulio Sulbaran	856
SEMI-AUTOMATED VISUAL QUALITY CONTROL INSPECTION DURING CONSTRUCTION OR RENOVATION OF RAILWAYS USING DEEP LEARNING TECHNIQUES AND AUGMENTED REALITY VISUALIZATION Apostolia Gounaridou, Evangelia Pantraki, Vasileios Dimitriadis, Athanasios Tsakiris, Dimosthenis Ioannidis, Dimitrios Tzovaras	865
A COMPARATIVE STUDY OF DEEP LEARNING MODELS FOR SYMBOL DETECTION IN TECHNICAL DRAWINGS Benedikt Faltin, Damaris Gann, Markus König	877
TOPOLOGICAL RELATIONSHIP MODELLING FOR INDUSTRIAL FACILITY DIGITISATION USING GRAPH NEURAL NETWORKS Haritha Jayasinghe, Ioannis Brilakis	887
INDOOR TRAJECTORY RECONSTRUCTION USING BUILDING INFORMATION MODELING AND GRAPH	
NEURAL NETWORKS Mingkai Li, Peter Kok-Yiu Wong, Cong Huang, Jack Chin-Pang Cheng	895
IMAGE SEGMENTATION APPLIED TO URBAN SURFACE AND AERIAL CONSTRAINTS ANALYSIS Marco Lorenzo Trani, Federica Madaschi	907
GENERATIVE DESIGN INTUITION FROM THE FINE-TUNED MODELS OF NAMED ARCHITECTS' STYLE Youngjin Yoo, Hyun Jeong, Youngchae Kim, Seung Hyun Cha, Jin-Kook Lee	917
PLANNING ALTERNATIVE BUILDING FAÇADE DESIGNS USING IMAGE GENERATIVE AI AND LOCAL IDENTITY	
Hayoung Jo, Sumin Chae, Su Hyung Choi, Jin-Kook Lee	926
EARLY DETECTION AND RECONSTRUCTION OF ABNORMAL DATA USING HYBRID VAE-LSTM FRAMEWORK Fangli Hou, Jun Ma, Jack C. P. Cheng, Helen H. L. Kwok	933
REFLECTING USERS' PHYSICAL CHARACTERISTICS IN SPATIAL VISUALIZATION Sumin Chae, Hayoung Jo, Bomin Kim, Jin-Kook Lee	943
GEN AI AND INTERIOR DESIGN REPRESENTATION: APPLYING DESIGN STYLES USING FINE-TUNED MODELS Hyun Jeong, Youngchae Kim, Youngjin Yoo, Seunghyun Cha, Jin-kook Lee	950
EARLY VISUALIZATION APPROACH TO THE GENERATIVE ARCHITECTURAL SIMULATION USING LIGHT ANALYSIS IMAGES Bomin Kim, Sumin Chae, Youngjin Yoo, Jin-Kook Lee	958
	,,,,
REAL-TIME GEOMETRY ASSESSMENT USING LASER LINE SCANNER DURING LASER POWDER DIRECTED ENERGY DEPOSITION ADDITIVE MANUFACTURING OF SS316L COMPONENT WITH SHARP FEATURE Liu Yang, Boyu Wang, Jack C.P. Cheng, Peipei Liu, Hoon Sohn	965
OPTIMAL NUMBER OF CUE OBJECTS FOR PHOTO-BASED INDOOR LOCALIZATION Youngsun Chung, Daeyoung Gil, Ghang Lee	977

D - Environmental sustainability

INTEGRATING GREEN ROOFS INTO BUILDING INFORMATION MODELING (BIM): A COMPUTATIONAL APPROACH FOR SUSTAINABLE BUILDING DESIGN

Stefano Cascone 988

PROCESSING FOR CONSISTENT OPEN-ENDED INTERVIEWS	
Milad Katebi, Mani Poshdar, Mostafa Babaeian Jelodar, Morteza Zihayat	998
ENGINEERING ANALYSIS IMPACT ON CARBON EMISSION REDUCTION OF AN INFRASTRUCTURE PROJECT: A CASE STUDY OF SEMANTOK DAM PROJECT	
Gregorius A. Sentosa, Agung Fajarwanto, Amy R. Widyastuti, Achmad Luthfi Naufal, Ni Putu Pande Dhea, Abdul Rahman Kadir, Muhamma Yunus Amar	ad 1010
SOLAR POTENTIAL AND ENERGY ASSESSMENT DATA IN U-BEM MODELS: INTEROPERABILITY ANALYSIS BETWEEN PERFORMANCE SIMULATION TOOLS AND OPENBIM/GIS PLATFORMS Carlo Zanchetta, Martina Giorio, Maria Grazia Donatiello, Federico Rossi, Rossana Paparella	1021
IMPLEMENTATION OF BUILDING INFORMATION MODELING BIM FOR ECONOMIC SUSTAINABLE CONSTRUCTION MINIMIZING MATERIAL WASTE IN TERMS OF VALUE ENGINEERING	
Aya Ali Shihata, Mohamed Anwar Fekry, Wessam Hamdy Abbas	1033
BUILDING ROOFTOP ANALYSIS FOR SOLAR PANEL INSTALLATION THROUGH POINT CLOUD CLASSIFICATION - A CASE STUDY OF NATIONAL TAIWAN UNIVERSITY Aritra Pal, Yun-Tsui Chang, Chien-Wen Chen, Chen-Hung Wu, Pavan Kumar, Shang-Hsien Hsieh	1042
SEMI-AUTOMATIC WORKFLOW FOR AIR-CONDITIONING SYSTEM ZONING AND SIMULATION Yikun Yang, Yiqun Pan, Georg Suter	1049
GOING BEYOND ENERGY CONSUMPTION: DIGITAL TWINS FOR ACHIEVING SOCIO-ECOLOGICAL SUSTAINABILITY IN THE BUILT ENVIRONMENT	1061
Dragana Nikolic, Ian J. Ewart	1061
APPLICATION OF THE INTERNET OF THINGS (IoT) FOR ENERGY EFFICIENCY IN BUILDINGS: A BIBLIOMETRIC REVIEW Nnaemeka Nwankwo, Ezekiel Chinyio, Emmanuel Daniel, Louis Gyoh	1072
CARBON TRACKING IN THE BUILDING SECTOR: A 'CABBAGE' FRAMEWORK Jiajia Wang, Geoffrey Qiping Shen, Fan Xue	1085
RETROFITTING OF BUILDINGS TO IMPROVE ENERGY EFFICIENCY: A COMPREHENSIVE SYSTEMATIC LITERATURE REVIEW AND FUTURE RESEARCH DIRECTIONS Elena Imani, Huda Dawood, Nashwan Dawood, Annalisa Occhipinti	1094
E - Advanced techniques for the conservation and management of bassets	ouilt
A DIM DACED ADDOACH TO THE MANAGEMENT OF HIGTORIC DRIDGES	
A BIM-BASED APPROACH TO THE MANAGEMENT OF HISTORIC BRIDGES Carlo Biagini, Alberto Aglietti, Andrea Bongini	1105
AS-BUILT DETECTION OF STRUCTURES BY THE SEGMENTATION OF THREE-DIMENSIONAL MODELS AND POINT CLOUD DATA Nobuyoshi Yabuki, Tomohiro Fukuda, Ryu Izutsu	1117
FIRE SAFETY ENGINEERING: THE COMPUTATIONAL SIMULATION OF THE ESCAPE IN A HISTORIC BUILDING	G
IN BOLOGNA Stefano Tagliatti, Marco Alvise Bragadin	1125
QUANTIFYING THE CONFIDENCE IN MODELS OUTPUTTED BY SCAN-TO-BIM PROCESSES Shirin Malihi, Frederic Bosche, Martin Bueno Esposito	1137
CONSTRUCTION OF A PRACTICAL FINITE ELEMENT MODEL FROM POINT CLOUD DATA FOR AN EXISTING STEEL TRUSS BRIDGE	
Nao Hidaka, Naofumi Hashimoto, Tetsuya Nonaka, Makoto Obata, Kazuya Magoshi, Ei Watanabe	1147

A BIM-BASED FRAMEWORK FOR FACILITY MANAGEMENT DATA INTEGRATION IN HERITAGE ASSETS Carlo Biagini, Alberto Aglietti, Luca Marzi, Andrea Bongini	1159
COMBINING LARGE-SCALE 3D METROLOGY AND MIXED REALITY FOR ASSEMBLY QUALITY CONTROL IN MODULAR CONSTRUCTION Wafa Bounaouara, Louis Rivest, Antoine Tahan	1171
BUILDING'S TWIN RECONSTRUCTION Cecilia Maria Roberta Luschi, Alessandra Vezzi	1181
F - Digital Twin	
A SEMANTIC DIGITAL TWIN PROTOTYPE FOR WORKPLACE PERFORMANCE ASSESSMENT Alessandro Bruttini, Philipp Hagedorn, Felix Cleve, Vito Getuli, Pietro Capone, Markus König	1193
A SYSTEMATIC REVIEW OF DIGITAL TWIN AS A PREDICTIVE MAINTENANCE APPROACH FOR EXISTING BUILDINGS IN THE UK Modupe Sobowale, Faris Elghaish, Tara Brooks	1206
PROJECT MANAGEMENT INFORMATION SYSTEM (PMIS) DASHBOARD AS A DIGITAL TWIN TO ENHANCE INFRASTRUCTURE PROJECT DELIVERY: A CASE STUDY OF AMERORO DAM PROJECT Rizky Agung Saputra, Agung Fajarwanto, Amy Rachmadhani Widyastuti, Sari Gita Wardani, Danang Aris Munandar, Herdy Setiawan, Abdul Rahman Kadir, Muhammad Yunus Amar	1219
HUMAN-IN-THE-LOOP DIGITAL TWIN FRAMEWORK FOR ASSESSING ERGONOMIC IMPLICATIONS OF EXOSKELETONS Abiola Akanmu, Adedeji Afolabi, Akinwale Okunola	1233
URBAN CENTRES MANAGEMENT: A DIGITAL TWIN APPROACH Alessandra Corneli, Marianna Rotilio	1245
DIGITAL TWINS FOR SMART DECISION MAKING IN ASSET MANAGEMENT	

1255

Chady Elias, Raja R. A. Issa

Conference Committee

Conference Chair

Prof. Pietro Capone

Department of Architecture - University of Florence, Italy

Conference Founding Chair

Prof. Nashwan Dawood

School of Science and Technology- Teesside University, UK

Chairs of the International Scientific Committee

Dr. Eng. Vito Getuli

Department of Architecture - University of Florence, Italy

Prof. Farzad Rahimian

School of Science and Technology- Teesside University, UK

Technical Organizing Committee

Prof. Carlo Biagini

Department of Architecture - University of Florence

Eng. Alessandro Bruttini

Department of Civil and Environmental Engineering - University of Florence

Eng. Valentina Fornasari

Department of Civil and Environmental Engineering - University of Florence

Dr. Vito Getuli

Department of Architecture - University of Florence

Dr. Tommaso Giusti

Department of Architecture - University of Florence

Dr. Aso Hajirasouli

School of Engineering, Design and Built Environment, Western Sydney University

Eng. Tommaso Sorbi

Department of Civil and Environmental Engineering - University of Florence

International Scientific Committee

Robert Amor	The University of Auckland, New Zealand	
Saeed Banihashemi	University of Canberra, Australia	
Stefano Bertocci	University of Florence, Italy	
Carlo Biagini	University of Florence, Italy	
Marco Alvise Bragadin	University of Bologna, Italy	
Alessandro Bruttini	University of Florence, Italy	
Pietro Capone	University of Florence, Italy	
Alessandro Carbonari	Polytechnic University of Marche, Italy	
Federico Cinquepalmi	Sapienza University of Rome, Italy	
Angelo Ciribini	University of Brescia, Italy	
Alessandra Corneli	Polytechnic University of Marche, Italy	
Bruno Daniotti	Polytechnic University of Milan, Italy	
Nashwan Dawood	Teesside University, UK	
Pierluigi De Berardinis	University of L'Aquila, Italy	
Borja García De Soto	New York University Abu Dhabi, United Arab Emirates	
Mariangela De Vita	University of L'Aquila, Italy	
Giuseppe Martino Di Giuda	University of Turin, Italy	
Maria Grazia Donatiello	University of Padua, Italy	
Vishak Dudhee	Teesside University, UK	
Faris Elghaish	Queen's University Belfast, UK	
Vito Getuli	University of Florence, Italy	
Andrea Giordano	University of Padua, Italy	
Alberto Giretti	Polytechnic University of Marche, Italy	
Tommaso Giusti	University of Florence, Italy	
Philipp Hagedorn	Ruhr University Bochum, Germany	
Aso Hajirasouli	Western Sydney University, Australia	
Timo Hartmann	Technical University of Berlin, Germany	
Patrick Herbers	Ruhr University Bochum, Germany	
M. Reza Hosseini	Deakin University, Australia	
Marco Imperadori	Polytechnic University of Milan, Italy	
Shabtai Isaac	Ben-Gurion University of the Negev, Israel	
Georgios Kapogiannis	University of Nottingham, UK	
Andrea Kindinis	ESTP – Paris, France	
Markus König	Ruhr University Bochum, Germany	
Bimal Kumar	Northumbria University, UK	

Massimo Lemma	Polytechnic University of Marche, Italy	
Haijiang Li	Cardiff University, UK	
Liu Liu	Ruhr University Bochum, Germany	
Giuseppe Lotti	University of Florence, Italy	
Sonia Lupica Spagnolo	Polytechnic University of Milan, Italy	
Luca Marzi	University of Florence, Italy	
Gabriele Masera	Polytechnic University of Milan, Italy	
Silvia Mastrolembo Ventura	University of Brescia, Italy	
Monica Meocci	University of Florence, Italy	
Emmanuel Natchitz	ESITC – Paris, France	
Berardo Naticchia	Polytechnic University of Marche, Italy	
Paolo Nesi	University of Florence, Italy	
Dragana Nikolic	University of Reading, UK	
Robert Osei-Kyei	Western Sydney University, Australia	
Anna Osello	Polytechnic University of Turin, Italy	
Daniel Paes	Massey University, New Zealand	
Chansik Park	Chung-Ang University, South Korea	
Sandro Parrinello	University of Florence, Italy	
Alberto Pavan	Polytechnic University of Milan, Italy	
Mani Poshdar	Auckland University of Technology, New Zealand	
Farzad Rahimian	Teesside University, UK	
Giuseppe Ridolfi	University of Florence, Italy	
Marianna Rotilio	University of L'Aquila, Italy	
Matteo Francesco Ruta	Polytechnic University of Milan, Italy	
Antonio Salzano	University of Naples, Italy	
Miroslaw Jan Skibniewski	University of Maryland, USA	
Tommaso Sorbi	University of Florence, Italy	
Lavinia Chiara Tagliabue	University of Turin, Italy	
Marco Tanganelli	University of Florence, Italy	
Jochen Teizer	Technical University of Denmark	
Ziga Turk	University of Ljubljana, Slovenia	
Giorgio Verdiani	University of Florence, Italy	
Valentina Villa	Polytechnic University of Turin, Italy	
Emlyn Witt	Tallinn University of Technology, Estonia	
Carlo Zanchetta	University of Padua, Italy	
Sven Zentgraf	Ruhr University Bochum, Germany	

Organizing Institutions

Con il patrocinio di

Sponsors and Workshop Partners

Conference Sponsor

Workshop Partners

Foreword

The International Conference on Construction Applications of Virtual Reality (CONVR), as one of the world's leading conferences in the areas of immersive realities and digital transformation in AECO Industry, and the local organizing committee are pleased to present the Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality (CONVR 2023) with the overarching theme "MANAGING THE DIGITAL TRANSFORMATION OF CONSTRUCTION INDUSTRY".

The 23rd CONVR was held on November 13-15, 2023, in Florence, Italy and was proudly hosted by the Department of Architecture of the University of Florence.

CONVR 2023 brought together AECO researchers and practitioners from around the globe to report on and exchange the latest development, ideas, improvements and applications stemming from innovative research activities in the following fields: Virtual Reality (VR) and Augmented Reality (AR), Reality capture and Photogrammetry, H-BIM for heritage management, Simulation and Automation techniques, Computer Vision and Image Processing, Linked Data and Semantic Web for Knowledge Management, Smart Contracts, Distributed Ledger Technologies and Blockchain, Data Science, Machine Learning, and Data-Driven Approaches, Health & Safety, Green and smart buildings, Occupant-centric building design and operation, Building Information Modeling (BIM), Digital Twins, Internet of Everything, Mobile and wearable computing, Construction site management. Those topics were articulated in eight different areas: Methodology, Technology transfer, Technology, State of Art, Theoretical Study, Policy and Standardization, Education and Training, Case Study and Application.

A total of 123 high-quality contributions were accepted after a rigorous review process from 71 esteemed members of the conference's International Scientific Committee. The accepted papers include a total of 374 authors from 32 countries, from Europe, the Americas, Asia and the Middle East.

More than 150 experts attended the conference contributing to enriching the exciting program which included 6 keynote speeches on the first day and 4 parallel presentation sessions on the following days, together with 5 workshop sessions.

The editors trust that this publication is stimulating and inspiring for academics, scholars and industry experts in the field; hoping that this could be a driving force for innovation, growth and global collaborations among researchers and stakeholders. We believe in the significant role that human interactions, networks, knowledge exchange and transfer play in developing high-value and groundbreaking research. This event provides a platform for networking and intellectual exchange of ideas.

We take this opportunity to express our gratitude to the CONVR2023 Technical Organizing Committee as well as our esteemed reviewers and sponsors. The creation of such a broad and high-quality conference program would not have been possible without their involvement and support. We also thank all the authors who dedicated much of their time and efforts to contribute to CONVR2023. We extend our best wishes to you and look forward to seeing you next year for CONVR2024.

CONVR2023 Local Chairs

Prof. Pietro CaponeConference Chair

Hetelafare

Dr. Vito Getuli

Chair of the International Scientific Committee

BIM-BASED OPEN LEARNING RESOURCES REPOSITORY FOR THE BENEDICT PROJECT

Bragadin Marco, Morganti Caterina & Ricci PierCarlo Alma Mater Studiorum University of Bologna

Witt Emlyn D.Q

Tallinn University of Technology

Kahkonen Kalle & Poulitaival Taija Tampere University

ABSTRACT: In the field of AEC, Architecture Engineering and Construction, Building Information Modelling has increasingly assumed an important role, especially for construction simulation. BIM is needed for various building and management systems, particularly for project construction management. Students, teachers and operators of AEC need to have the availability of data, reports, pieces of information that allows to create BIM. "BENEDICT" is an European Erasmus project that has the aim of developing a web-based platform for BIM teaching that has a tight relationship with the AEC industry. Therefore, a BIM-enabled Learning Environment (BLE) can be used to implement BIM-based project planning and control system for learners and future practitioners, with Open Learning Resources. Open Learning Resources (OLR) are learning, teaching and research materials in any format and medium that are useful for teaching, learning, and assessing and for research purposes. In addition to the BLE platform, a BIM-model repository was developed to store information for each component of the project and of the learning activities. The repository can also store OLR and students' outputs. The BLE repository has the task of helping students and practitioners to implement BIM actual project models by developing an on-line repository of digital models, objects and elements, therefore providing knowledge transfer between different players.

KEYWORDS: Building Information Modelling, Benedict project, Open Learning Resources, Construction.

1. INTRODUCTION

The construction industry is one of the largest in the world economy, with about \$ 10 trillion spent every year for construction related goods and services. However, the industry productivity has lagged behind that of other industrial sectors, such as manufacturing and retail, that have implemented digitization and innovation, increasing their productivity over time. This productivity gap has many causes, and Building Information Modelling (BIM) is considered one fundamental strategy to recover the desired level of performance (European Construction Sector Observatory, 2021). Building Information Modelling (BIM) is the use of a shared digital representation of a built object to facilitate design, construction and operation processes to form a reliable basis for decisions (ISO 294811:2016). A built object can be a building, a road, a bridge, a process plant, everything that belongs to the built environment. A building construction information model is a shared digital representation of physical and functional characteristics of a built object (ISO TS 12911), therefore the term modelling addresses the process of managing information related to the facilities and project in order to coordinate multiple inputs and outputs, regardless of the specific implementation. Therefore, BIM is a method or strategy, not a tool. In the construction sector, knowledge transfer between different players, owner, designers, construction specialists, and project operators, together with project procurement take place by data exchange, i.e. information exchange. Among the specific features of the BIM methodology there is the ability to store information for each individual component of the project, including three dimensional properties and data concerning materials, building products, structure, quality performances, construction operations, transformation or installation stages, maintenance, time and cost data, sustainability and health and safety related information. Therefore, the fundamental element of this method is a digital model capable of n-dimensional representation of a building. BIM is considered a powerful approach to improve productivity in Architecture, Engineering and Construction sector. The use of BIM is spreading rapidly in many countries, covering a wide range of project both in the public and private sectors. Digitization of construction sector involves the need of helping students and practitioners to implement BIM actual project models by developing an on-line repository of digital models, objects and elements. Particularly focusing on educational processes, there is a strong need of developing a shared, online BIM models repository to provide an effective and coherent basis for BIM project implementation (Becerik-Gerber, 2012, Boeykens et al., 2013, Clevenger et al. 2013, Puolitaival, Forsythe, 2016) The BENEDICT project, BIM-Enabled Learning Environment for Digital Construction, is an Erasmus+ strategic partnership between the Department of Civil Engineering and Architecture at Tallinn University of Technology (Estonia), the Civil Engineering Unit of Tampere University (Finland) and the Department of Architecture at the University of Bologna (Italy). The BENEDICT project deals with how to teach courses at university level with BIM tools, in particular through the use of an IT platform for BIM models (Olowa et al. 2022, Ruutman et al., 2022, Witt, Kahkonen, 2019). The fundamental needs of Real Estate and Construction professionals and students, Architects, Engineers, Construction Managers, concerning Building Information Modelling involve the design, development and implementation of various building and management systems, for instance:

- Architectural systems and space coordination: i.e architectural layout and spatial units (size and coordination, proximity relationships, internal partitions),
- Structural systems: i.e foundations, poles, structural slabs and basement structures, superstructure, reinforced concrete framework, GLT and solid timber frame, CLT and prefabricated panels, floors and roof structures;
- Enclosure systems: i.e. architectural language and facades, doors and windows, architectural finishes, waterproofing, roofing;
- Mechanical / Electrical / Plumbing MEP systems: i.e. connection systems i.e. elevators, mobile staircases,
- Construction project systems: i.e construction site provisions and equipment (e.g. scaffoldings, tower crane, formworks etc.).
- Project Construction Management systems: i.e project control methods and tools concerning project description, integration and implementation, project planning and time management, project risk management, project cost, quality and resources management.

The needs of BLE users – learners, teachers, system administrators – consist in having the availability of data, reports, pieces of information concerning architecture – engineering systems. The technical data and information concerning design, development and installation of the building and its project management allows BLE users to create the Building Information Model. For example, construction management students will need a set of case studies to be tested with practical exercises and the Open Learning Resources will be supplied as actual case studies – each case study consisting of a building or facility that has been designed and engineered in industry or in previous courses. Learning experiences using these will greatly enhance BIM-enabled learning where BIM-based workflows will provide immersive learning and training opportunities. BIM – enabled learning can use a virtual platform, a web site and repository, where all BIM models, examples and data can be stored and used. This creates a BIM enabled Learning Environment, BLE. The BLE provides the learning environment or web platform specifically designed to support this type of learning. Key resources for the use of the BLE are Open Learning Resources.

2. OPEN LEARNING RESOURCES AND VIRTUAL DATA ENVIRONMENTS

The simulation of actual design and project management activities that takes place in teaching AEC modules with BIM as a media has the need of a common data environment. A Common Data Environment CDE is a single source of information for any given project, used to collect, manage, and disseminate all relevant approved project documents for multidisciplinary teams in a managed process (BS EN ISO 19650). A CDE has four different environments where models and data can be stored: the work in progress area, the shared area, the published area and the archive. With the aim of creating a virtual environment for learning and teaching activities two different virtual environment were developed, the BLE platform and the OLR repository. The OLR repository is not a CDE because does not fulfill the requirements of ISO 19650, but was developed with the aim of storing BIM models and data. The BLE platform and repository create a virtual environment where teachers, learners and system administrators can store data, reports, pieces of information concerning architecture and engineering systems of the built object under design. All of these technical data and information concerning the different stages of production of a building, design, i.e. concept design, space coordination and technical design, construction and installation, operation and maintenance allows user to create the Building Information Model. Construction Management students, as an example, will need to use a set of case studies to be tested with practical exercises.

Open Learning Resources (OLR) or Open Educational Resources (OER) will be supplied as actual case studies – each case consisting of a building or a facility that has been designed and engineered in industry or in previous courses. The BLE, will be used to store and manage both OLR and BIM models, output of the students' work. Therefore, the BIM - Enabled learning environment will provide a virtual environment where educational activities in the AEC sector can be performed using BIM-based technology. Open Educational Resources (OER) are learning, teaching and research materials in any format and medium that reside in the public domain or are under copyright that have been released under an open license, that permit no-cost access, re-use, re-purpose, adaptation and redistribution by others (UNESCO, 2019). Open educational resources (OER) are freely accessible, openly licensed instructional materials such as text, media, and other digital assets that are useful for teaching, learning, and assessing, as well as for research purposes. The term "OER" describes publicly accessible materials and resources for any user to use, re-mix, improve, and redistribute under some licenses. These are designed to reduce accessibility barriers by implementing best practices in teaching and to be adapted for local unique contexts. The BENEDICT project has the aim of promoting a new concept of learning/training in the REC sector. The Open Learning Resources are essential for users to benefit from the BLE as they provide real (or near-real) project data for learners to work with and this will demonstrate the practical implementation of BIM workflows. The BIMenabled learning environment creates a repository of OLR that can be descriptions of projects, technical BIM models, and project plans (table 1).

Table 1: Type of Open Learning Resources.

OLR	Examples	File format		
Descriptions of projects	project objectives; site description and analysis;	.docx; .xlsx; .pdf; .dwg; dxf;		
	media concerning the site; building overall	xml; mp4; JPG; ()		
	concept description; statement of work (SOW);			
	building systems reports, drawings and			
	calculation			
Technical BIM models	BIM objects; BIM model .ifc			
Project Plans	architecture and envelope layout; structure	docx; .xlsx; .pdf; .dwg; dxf;		
	layout; MEP systems layout, construction	xml; mp4; JPG; ()		
	process. bills of quantities; budgets; schedules;			
	resource estimation, procurement			
	documentation concerning materials, products,			
	components and other supplies; safety plans			

Open learning resources for BLE need to be checked before model processing. BIM models should be checked also concerning the achievement of the desired level of detail / level of development (LOD) and quality assessment consisting in code checking and model checking. The purpose of defining the level of information need is to prevent delivery of too much or too little information (ISO 19650-1:2018). In particular, the project information requirements (PIR), in relation to the delivery of an asset indicate for what, when, how and for whom information is to be produced. The Level of Information Need (LOIN) has to be set by applying the BS EN 17412-1 that indicates the framework to set the LOIN. Firstly, four pre-requirements addressing the context needed to identify the information content have to be set: BIM uses, milestone, actors, object. After this stage, the level of information need must be set concerning geometrical information, alphanumerical information, and documentation (BS EN17412-1:2020) (figure 1, figure 2). In the specific case of construction management – oriented applications, Open Learning Resources will be supplied to students and applicants as actual case studies. Each case study consists in one or more than one building or civil engineering facility that has been designed and engineered in previous courses of the university programme, or provided by teachers or by the BENEDICT project associated partners. As an example, the following documentation / information can be produced by the students of construction engineering and management courses with Building Information Modeling.

- Project Planning, job site design & safety planning;
- Work Breakdown Structure;

- Construction project schedule;
- Construction site design;
- 4D BIM animation.

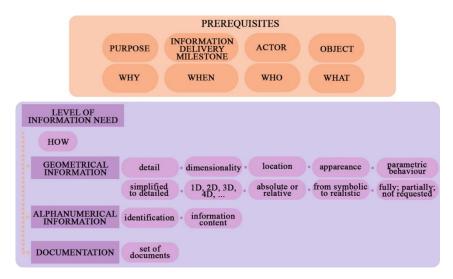


Fig. 1: Relationship diagram on level of information need.

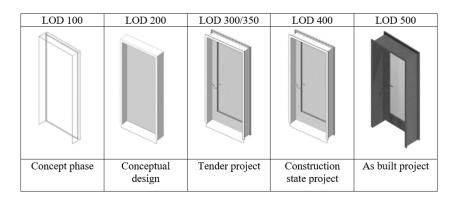


Fig. 2: Example of the concept of "continuum" associated to the detail of a door.

3. BIM ENABLED LEARNING ENVIRONMENT AND OLR CATEGORIZATION

The BLE (BIM enabled learning environment) virtual environment has the task of integrating BIM strategy and technologies into curricular activities, i.e. course modules. The BLE environment consists of the BLE Platform, that hosts pilot modules OLR and a repository that includes a Content Management System and a server that hosts BIM models and other OLR (fig. 3). The pilot modules section addresses the different pilot modules of the BENEDICT project: integrated design module, risk management module and time management module (fig 4). The repository includes a Content Management System CMS and a Data base DB for storage of OLR and students'outputs, (fig. 5). Both sections can be used by different actors, with different navigation capacities, depending on the type of user, teacher, learner, and system administrator (fig. 3).

The navigation capacity is of capital importance as depends on data and BIM object categorization. BIM models can be classified as types of models and model elements. All models are composed of model elements that have properties and attributes. Each native BIM authoring tool, as well as IFC, uses its own unique terminology to describe these components. It is therefore important to first understand what is considered an element and how elements relate to one another in order to discuss them.

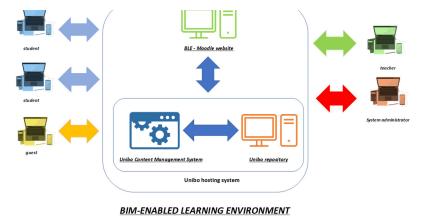


Fig. 3: BIM-enabled Learning Environment (BLE) – system architecture.

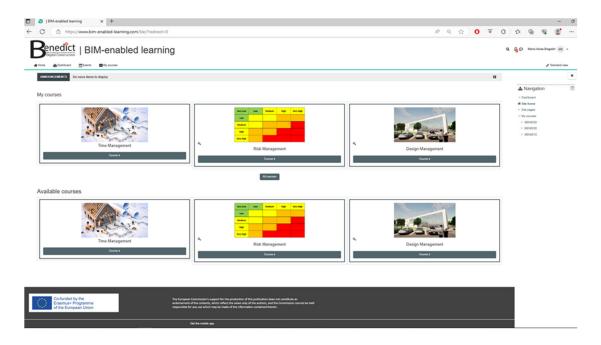


Fig. 4: BIM-enabled Learning Environment (BLE) – BLE platform.

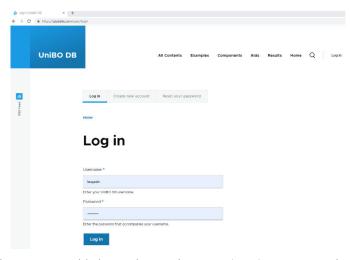


Fig. 5: BIM-enabled Learning Environment (BLE) – OLR repository.

Due to the complexity of buildings and BIMs, a simple hierarchy does not suffice to describe the relationship between model elements (US GSA BIM Guide 07). A sophisticated ontology is required to develop an understanding of how model elements may relate to one another. All the levels in the model ontology have properties associated with them, and thus the properties of one model element are associated with related model elements. A BIM ontology is an informal, semi-structured, conceptual domain ontology used for knowledge acquisition and communication between people.

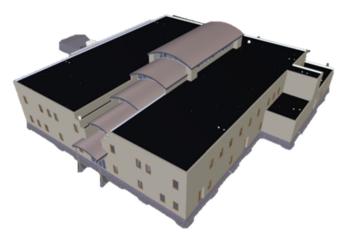


Fig. 6: Federated Model (from US GSA BIM guide 07).

A federated building information model is an assembly of distinct discipline models to create a single, complete model of the building. A federated model is a model composed of multiple linked models that contains architectural, structural, and mechanical, electrical, and plumbing (MEP) information of a building (US GSA BIM guide 07). Federation is the creation of a composite information model from separate information containers (ISO 19650 -1). A stand-alone model is a single discipline model, an information model that is a set of structured and unstructured information containers (ISO 19650 -1). The Association of General Contractor of America, AGC, in the AGC Consensus Docs 301- BIM Addendum (AGC, 2015) defines a federated model as a model consisting of linked but distinct component models, drawings derived from the models, texts, and other data sources that do not lose their identity or integrity by being so linked, so that a change to one component model in a federated model does not create a change in another component model in that federated model. A single federated model is useful for design co-ordination, clash avoidance and clash detection, approvals processes, design development, estimating and so on, but the individual models do not interact, they have clear authorship and remain separate. This means that the liabilities of the originators of the separate models are not changed by their incorporation into the federated model (fig. 6, fig. 7).

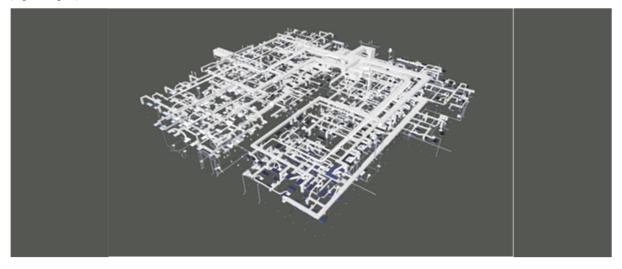


Fig. 7: Single discipline model- stand alone MEP Model of the Building (from US GSA BIM guide 07)

Categorization is of capital importance to achieve effective information management. Classification can be defined as: 'The act or process of dividing things into groups according to their type. Uniclass is based on the general

structure described in ISO 12006, which promoted the use of classification classes, each of which relates to a classification need. As well as products (or objects), some of the other classes suggested by ISO 12006 are:

- Entity e.g. a building, a bridge, a tunnel;
- Complex (a group of entities) e.g. airports, hospitals, universities, power stations;
- Space e.g. office, canteen, parking area, operating theatre;
- Product e.g. boiler, door, drain pipe;
- Facilities, this combines the space with an activity which can be carried out there, for example, an
 operating theatre;
- Other classes can be added, such as 'system', which works very well in an MEP environment. Similarly, an 'activities' class would be very helpful for defining a range of activities which might be able to be done within a particular space, as an alternative to using the 'facilities' class.

The organization of information about construction works is of capital importance for Building Information Modelling, therefore a framework for classification is proposed by ISO 12006 standard as showed in the following tables (table 2). Information are relevant to particular stages in a building construction project, therefore, life cycle stages should be defined on a common basis. Building life cycle stages proposed by ISO standards are the following: inception; brief; design; production; maintenance and demolition. These principal stages are further decomposed to provide a meaningful set of stages for exchange requirements.

Table 2: Standard principal and decomposed life cycle stages (ISO 12006-2:2015).

Life cycle stage	Principal life cycle stage	Decomposed life cycle stage
Pre-life cycle stages	Inception	Portfolio requrements
, ,	Brief	Conception of need
		Outline feasibility
		Substantive feasibility
Pre-construction stages	Design	Outline conceptual design
		Full conceptual design
		Coordinated design and procurement
Construction stages	Production	Production information
		Construction
Post-construction stages	Maintenance	Operation and maintenance
	Demolition	Disposal

Different classes of information are proposed by ISO 12006 standard, related to resources, as construction information, products, agents and aids; or relatated to process as management and construction process; related to result as construction complex, entity, built space, element and work result; or related to property (table 3).

Table 3: Framework for classes of information about construction works (ISO 12006-2:2015).

CI.	CI. IT II	
Class	Classified by	
Classes related to resource		
Construction information	Content	
Construction product	Function or form or material or any combination of these	
Construction agent	Discipline or role or any combination of these	
Construction aid	Function or form or material or any combination of these	
Classes related to process		
Management	Management activity	
Construction Process	Construction activity or construction process life cycle stage or any combination of these	
Classes related to result		
Construction complex	Form or function or user activity or any combination of these	
Construction entity	Form or function or user activity or any combination of these	
Built space	Form or function or user activity or any combination of these	
Construction element	Form or function or user activity or any combination of these	
Work result	Form or function or user activity or any combination of these	
Classes related to property		
Construction property	Property type	

Table 4: Some examples of BIM classification.

BIM oriented classification	BIM community Classification system
Uniclass 2015	Language
OmniClass	• Type
MasterFormat®	Project
 UniFormatTM 	o Implementation
CoClass	o Research
• CCS	 Collaborative initiative
• TALO 2000	o Other
• NS 3451 & TFM	Category:
Industry Foundation Classes	o 3D – Virtual Design & Construction
buildingSMART Data Dictionary	 Lean & industrialized construction
• ETIM	 Planning and budgeting
	 Subcategory:
	 Strategies
	 Edification
	■ Project
	Workflows

The framework for classification of ISO 12006 about construction works also introduces a set of different relationships between the different classes of information. The organization model or user activity of the built asset uses the built space that is defined by a construction result, that is part of a construction complex. A construction

complex is an aggregate of construction entities, composed by construction elements. A construction results is developed by a construction process that is divided in pre-design, design, production and maintenance processes. Construction process uses construction resources that can be construction product, construction aid, construction agent and construction information (ISO 12006-2:2015). Classifying data means structuring it in an agreed way so that different actors can easily find what they need and understand it. A classification system is like a common language. In BIM, classification lets people, software and machines share and use building information efficiently and accurately. Different classification systems have been developed for different types of BIM data and actors, and for different geographic areas and situations. In table 4 some other examples of BIM classification are presented.

Table 5: Metadata of BIM education Models.

Information	Value	Values	Description
Category	Туре		
Model Language	Text	English, Finnish, Estonian, Italian	The language(s) used in the model to describe the content
Building Type	Text	Office, Teaching, Care, Residential	Property used to describe the dominant function/use case for the facility
Discipline	Text	Urban, Architecture, Landscape, Interior Design, Structural Engineering, Building Services Engineering (HVAC and MEP), Construction Engineering, Facility Maintenance	The model discipline prepared by or for the purpose of the given discipline.
Program	Text	Small, Medium, Large	Reflecting on the size of the building, relative to its building type.
Model	Text	Mass, Room/Space/Zone, and Element models	The type of model content
Categorization			
Life-Cycle Stage	Text	Strategic Planning, Brief, Programming, Schematic Design, Preliminary Design, Design Development, Detailed Design, Pre-Construction, Construction, Commissioning, Hand-Over, Use, Renovation, Disassembly, Demolition	The stage of the model prepares in or for
Model Use	Text	Gather, Generate, Analyze, Communicate, Realize	Penn state classification for BIM uses
Model Maturity	Text	Initial, Defined, Managed, Integrated, Optimized	The mature of the model in any specific stage.
Geometry Maturity	Text	Symbolic, Generic, Detailed, Fabrication	Average accuracy of geometry in the model.
Model Information Reliability	Text	Preliminary, Proposed, Coordinated, As-Built	The state of the information in the model, its reliability with respect to itself and others in the process
Content Classification	Text	CCI, Uniclass, Masterformat	

As a first approach the following classification systems for Open learning resources OLR were proposed for the BLE platform: metadata, building type, size of the project, different plans, life cycle period, model categories, model functions, language/country. Metadata classification was chosen as the easiest way of OLR categorization. Many metadata of BIM models can be detected, and different categories of information can be listed in the repository for each piece of OLR. Again, a list of metadata of BIM education models is presented in table 5.

The BIM-enabled learning environment is a prototype for online BIM models repository (fig. 5; fig.8). The proposed categorization system of BIM models is based upon five categories: discipline, type of building project, life cycle stage, model use and BIM dimension (fig. 9).

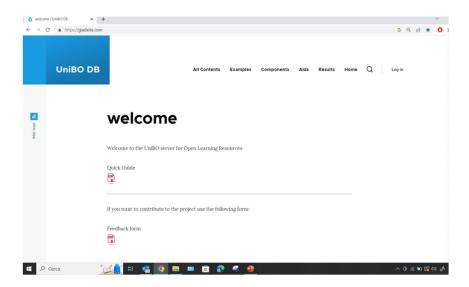


Fig. 8: BENEDICT DB – Unibo server and project data repository.

A prototype for Unibo server that host the CMS and the OLR database was developed for the proposed online BIM models repository of the BENEDICT project (http://ble.unibo.it). In the welcome page (fig. 8) it is possible to download a guideline to help end users better use the platform . From the home page, end users also could access several sub-pages including "Examples", fully solved BIM solutions that students can use as examples, "Components" or BIM objects, "Aid" including BIM documentation, standards, project data, and "Results" where students' outputs are stored. The repository also provides a powerful searching engine to help quickly find useful information from the repository.

4. CONCLUSIONS

In conclusion, Building Information Modelling (BIM) has become increasingly important in the field of Architecture Engineering and Construction (AEC), particularly for construction simulation and project construction management. The availability of data, reports, and information is crucial for students, teachers, and operators in the AEC industry to create BIM models. The BENEDICT project, a European Erasmus plus KA2 project, aims to develop a web-based platform for BIM teaching that is closely connected to the AEC industry. This platform, known as the BIM-enabled Learning Environment (BLE), provides a repository for BIM models, open learning resources (OLR), and students' outputs that includes a Content Manaagment System CMS and a Data Base. The CMS and the DB are freely accessible to registered users that can access OLR are essential for BIM-enabled learning processes and provide real-life project data for learners to work with. The BLE platform categorizes BIM models and elements, allowing for effective information management and knowledge transfer between different players in the AEC industry. By incorporating OLR and BIM workflows, the BLE platform enhances learning experiences and supports the implementation of BIM-based project planning and control. Ultimately, the BENEDICT project and the BLE platform contribute to bridging the productivity gap in the construction industry by promoting the use of BIM and providing a collaborative learning environment for students and future practitioners.

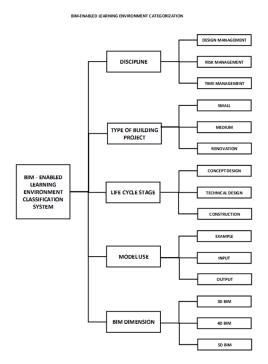


Fig. 9: BIM-enabled Learning Environment (BLE) categorization.

5. ACKNOWLEGMENTS

This research was supported by the BIM-enabled Learning Environment for Digital Construction (BENEDICT) project (grant number: 2020-1-EE01-KA203-077993), co-funded by the Erasmus+ Programme of the European Union. The European Commission support to produce this publication does not constitute an endorsement of the contents which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

REFERENCES

Association of General Contractor of America AGC – Consensus Docs (2015) Consensus Docs 301- BIM Addendum. November 2015. https://www.consensusdocs.org/ accessed may 2022.

Becerik-Gerber B., Ku, K. and Jazizadeh F. (2012) BIM-Enabled Virtual and Collaborative Construction Engineering and Management, Journal of Professional Issues in Engineering Education and Practice, Vol. 138, No. 3, 234–245.

Boeykens, S., De Somer, P., Klein, R., Saey, R. (2013) Experiencing BIM Collaboration in Education. In: Proceedings of the 31st International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Delft, The Netherlands.

British Standards International (2020). Building Information Modelling. Level of Information needs concepts and principles BS EN 17412-1; 2020.

Clevenger, C., M., Ozbek, M., E., Glick, S., Porter, D. (2010) Integrating BIM into construction management education. EcoBuild Proceedings of the BIM-Related Academic Workshop, Washington, DC, US.

European Construction Sector observatory (2021). Digitalization in the construction sector – Analytical report April 2021. European Commission EU.

ISO Technical Committee ISO/TC59/SC13. (2018) Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling part1 concepts and principles ISO 19650-1: 2018

ISO International Standard Organization (2016) Building information models — Information delivery manual — Part 1: Methodology and format ISO 294811:2016

ISO International Standard Organization (2023) Framework for building information modelling (BIM) guidance ISO/TS 12911:2023

ISO International Standard Organization (2015) Building construction — Organization of information about construction works — Part 2: Framework for classification ISO 12006-2:2015

Kiviniemi, A. (2013) Challenges and opportunities in the BIM education - how to include BIM in the future curricula of AEC professionals. BIM Academic Workshop 2013, Düsseldorf.

Olowa, T., Witt, E., Morganti, C., Teittinen, T., Lill, I. (2022) Defining a BIM - Enabled Learning Environment - An Adaptive Structuration Theory Perspective. BUILDINGS, 12, pp. 1 - 19.

Puolitaival,, T., Forsythe, P. (2016) Practical challenges of BIM education. Structural Survey, Vol. 34 No. 4/5, pp. 351-366

Rüütmann, T., Witt, E., Olowa, T., Puolitaival, T., Bragadin, M., (2022). Evaluation of immersive project-based learning experiences. In: 18th CDIO International Conference Proceedings, pp. 313 - 323.

Unesco (2019) Recommendation on Open Educational Resources (OER). https://www.unesco.org/en/open-educational-resources (accessed on may 2022)

US General Services Administration (2016) Building Information Modeling (BIM) Guide 07 Building Elements www.gsa.gov/bim accessed may 2022.

Witt, E., & Kähkönen, K. (2019). A BIM-Enabled Learning Environment: a Conceptual Framework. In 10th Nordic Conference on Construction Economics and Organization (pp. 271-279). (Emerald Reach Proceedings Series). Emerald Press.

Within the overarching theme of "Managing the Digital Transformation of Construction Industry" the 23rd International Conference on Construction Applications of Virtual Reality (CONVR 2023) presented 123 high-quality contributions on the topics of: Virtual and Augmented Reality (VR/AR), Building Information Modeling (BIM), Simulation and Automation, Computer Vision, Data Science, Artificial Intelligence, Linked Data, Semantic Web, Blockchain, Digital Twins, Health & Safety and Construction site management, Green buildings, Occupant-centric design and operation, Internet of Everything. The editors trust that this publication can stimulate and inspire academics, scholars and industry experts in the field, driving innovation, growth and global collaboration among researchers and stakeholders.

PIETRO CAPONE, Professor of Construction Management, Department of Architecture (DIDA), University of Florence, Italy.

VITO GETULI, Researcher of Construction Management and Digital Transformation, Department of Architecture (DIDA), University of Florence, Italy.

FARZAD POUR RAHIMIAN, Professor of Digital Engineering and Manufacturing, Centre for Sustainable Engineering, Teesside University, United Kingdom.

Nashwan Dawood, Research Director, NetZero Industrial Innovation Centre, Professor of Digital Construction, Centre for Sustainable Engineering, Teesside University, United Kingdom.

ALESSANDRO BRUTTINI, PhD Candidate, Department of Civil and Environmental Engineering (DICEA), University of Florence, Italy.

TOMMASO SORBI, PhD Candidate, Department of Civil and Environmental Engineering (DICEA), University of Florence, Italy.