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Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic
dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections
between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared
with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic
metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of
polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome
distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and
TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined
two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut
AML) and showed increased serum choline+ trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures
of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-
encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations.
This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential
vulnerabilities, worthy of being therapeutically explored.
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INTRODUCTION
Current personalized therapeutic approaches in acute myeloid
leukemia (AML) are generally restricted to those patients with
identifiable and targeteable genomic lesions [1–3]. However, these
approaches do not target interactions between cancer-related
features and homeostatic mechanisms that define the leukemic
phenotype.
The metabolome is the result of genome- and proteome-

wide interactions and is shaped by microenvironmental factors.

The biofluid metabolome has been extensively investigated to
identify predictive signatures in cardiovascular disorders [4],
diverticular disease [5] and diabetes [6], and specific metabolic
profiles have been associated with cancer risk [7]. In oncology,
metabolomics is a valuable approach for diagnosis, prognos-
tication, and disease monitoring [8]. A paradigmatic
example in AML is the accumulation of serum, urine, and
intracellular 2-hydroxyglutarate (2-HG) in IDH1/2-mutated (mut)
cases [9, 10]. 2-HG is an oncometabolite [11, 12], predicts
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clinical outcome [13], and is a noninvasive biomarker of disease
activity [10].
Aberrant enzymatic activity drives cancer metabolic reprogram-

ming and cooperates with mutations of tumor suppressors and
oncogenes in pathogenesis. For example, AML cells reduce both
host insulin sensitivity and secretion to increase glucose
availability for malignant cells [14]. The glycolytic pathway sustains
leukemia maintenance and progression. AML cells have a higher
mitochondrial (mt) mass and oxygen consumption rate than
normal hematopoietic cells [15]. Moreover, leukemia stem cells
(LSCs) are addicted to oxidative phosphorylation (OXPHOS) for
energy production [16]. OXPHOS is sustained by elevated amino
acid metabolism in LSC from de novo AML [17], with cysteine
playing a crucial role [18], and is controlled by glutamine levels
[19]. Targeted inhibition of these pathways, among others,
induces cell death and/or differentiation of AML cells [15, 17–
21]. However, the specific response of AML molecular subtypes to
agents targeting metabolism has been rarely investigated [22–25].
Here we report an integrated genomic-metabolic study in AML

that identified, based on intracellular and the biofluid metabolic
profile, a specific NPM1-mut AML subgroup characterized by
mutations of genes involved in DNA damage response and/or
chromatid cohesion (NPM1/cohesin-mut) and high levels of serum
choline+ trimethylamine-N-oxide, and leucine. In silico modeling
of the intracellular metabolome based on transcriptomic data
highlighted perturbations in the purine and NAD metabolic
pathways as NPM1/cohesin-mut-specific alterations.

MATERIALS/SUBJECTS AND METHODS
Metabolomic study design
Participants were included if they were free from infective,
autoimmune, celiac, or metabolic diseases such as diabetes and
dyslipidaemia. Kidney and liver integrity were also checked.
Subjects with acute or chronic renal or hepatic disease, renal or
hepatic impairment, cardiovascular disease or a history of
neoplasia were excluded from the control cohort. Serum samples
from of 119 AML and 145 healthy subjects and urine samples of
103 AML and 139 controls were collected in the fasting state (in
the morning). All participants were Caucasian except for 5 (3.4%)
healthy controls and six (5%) AML patients. To reduce potential
bias and variation unrelated to AML pathogenesis and to ensure
that the observed metabolic differences were not due to external
confounders, we collected, when possible, two independent
serum and urine samples from each patient (more than 50% of
cases). Moreover, information on age, gender (the cohorts were
balanced for gender), race, health status, diet, drug intake,
physical exercise was collected along with specimens and used
to filter nuclear magnetic resonance (NMR) spectra during the
quality control procedures.

Nuclear magnetic resonance (NMR) spectroscopy
Serum and urine samples were analyzed by NMR spectroscopy
(Supplementary Methods). A stochastic GridSearch was imple-
mented to select the best combination of parameters for
dimensionality reduction and classifier performances. Unsuper-
vised and supervised dimensionality reduction were performed
using principal component analysis (PCA) and partial least squares
discriminant analysis (PLSDA)-sparse(s)PLSDA, respectively. For
subset extraction, weights were obtained after signal smoothing
via signal-to-noise ratio threshold (which was essential due to
unavoidable use of data scalers for dimensionality reduction). The
latent components of spectra containing maximum information
related to molecular features were identified by a genomic-guided
semisupervised approach. This means that the combination of
urine and sera latent components used for clustering is extracted
with classifiers-derived scores, from classifiers trained with the
purpose of discriminating TP53-mut/aneuploid, NPM1-mut and

chromatin/spliceosome-mut samples. Signals in the spectra
corresponding to loadings and weights emerging from different
tasks were checked for alignment. To minimize the possibility of
confounding effects, every step of each classification and
clustering task was crossvalidated through suitable k-folds,
stratified for gender and age when possible depending on class
sizes and sample sizes for the tasks.

Mass spectrometry (MS)-based metabolomics and data
analysis
MS-based meabolomics was performed using an ultra-
performance liquid chromatography (Waters ACQUITY, Waters,
Milford, MA, USA) and a Q-Exactive high resolution/accurate mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
interfaced with a heated electrospray ionization (HESI-II) source
and Orbitrap mass analyzer operated at 35.000 mass resolution
(Metabolon, Morrisville, NC, USA). Raw data were extracted, peak-
identified and QC processed. Compounds were identified by
comparison with library entries of purified standards or recurrent
unknown entities. Peaks were quantified using area-under-the-
curve. Metabolite levels were normalized to DNA content.

Whole exome sequencing (WES)
WES was performed on 100 AML cases, 17 belonging to a
published dataset [26] and 83 new cases. Libraries were prepared
from matched tumor and germline DNA (saliva or complete
remission samples, Nextera Rapid Capture Expanded and TruSeq
Rapid Exome kits, Illumina, San Diego, CA, USA) according to
manufacturer’s protocol, and 75/125-bp paired-end sequences
were generated (Illumina NextSeq550/HiSeq2500, Illumina). A
detailed description is reported in the Supplementary Methods
and Tables S1, S2. Sequencing data are available in the European
Genome-Phenome Archive (EGAS00001005422).

Constraint-based metabolic network analysis
We translated gene expression alterations into constraints
reducing the feasible space of a metabolic network model
(adapted from Shlomi et al. [27]). The impact of a set of these
constraints on the feasible space of the metabolic network was
evaluated by calculating the minimum and maximum reaction
rates (flux variability analysis, FVA), and the instantaneous
capability of the network to produce/consume a certain metabo-
lite. Details are reported in the Supplementary Methods. Codes
used in constraint-based metabolic network analysis are available
in https://github.com/cladelpino/GenePerturbations.

Statistics
Associations in contingency tables were performed by the Monte
Carlo (B= 1000,000) simulated Fisher’s exact test. Continuous
variables were compared with Mann–Whitney,
Kolmogorov–Smirnov, Kruskal–Wallis test, or Welch’s t-test. All
tests were performed using either python v3.6.5 [28] (packages
scipy v1.3.2 [29], statsmodels v0.10.1 [30]) or Rv3.6.3 [31]. When
appropriate, p values were adjusted for multiple comparisons
using the Bonferroni or Benjamini–Hochberg method. To inves-
tigate the distribution of sera profile according to blast
percentage, samples were divided in three classes (bone marrow:
20–49%, 50–74%, ≥75% blasts, peripheral blood: <30%, 30–69%,
≥70% blasts, according to tertiles). In the drug response analysis,
the average area-under-the curve values of the two cohorts were
compared. NMR peaks, signal integrals (related to metabolite
concentration) and intracellular metabolite levels among three
groups were compared by Kruskal–Wallis test. For intracellular
metabolite levels Welch t-test was also used as post-hoc test.
Random Forest analysis was used to estimate the accuracy of
individual classification in each group based on metabolomic data.
Metabolic pathway analysis was performed using Metaboanalyst
(http://www.metaboanalyst.ca) with KEGG annotation. A threshold
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of five standard deviations from the mean of the control
population was used for the identification of outliers.

RESULTS
The combined analysis of serum and urine profiles improves
AML metabolic characterization
Given that the metabolite composition of biofluids reflects the
real-time activity of all biochemical processes in the body and that

leukemic cells alter systemic physiology [14], we compared the
profile of blood (Table S3) and urine (Table S4) metabolites of AML
patients (serum: 88 at diagnosis and 31 at relapse, urine: 80 at
diagnosis and 23 at relapse) and healthy controls (CTRL, serum:
145, urine: 139).
The metabolomic profile provided efficient discrimination

between patient and CTRL both at serum and urine level, with
an accuracy of 83% (Figs. 1A and S1) and 85% (Figs. 1B and S2),
respectively. Since patient and CTRL cohorts were not age-
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matched (median age: AML, 67-years (18–90), CTRL, 57-years
(23–75)), we verified that age had no significant effects on the
classification (Table S5). Notably, the integration of serum and
urine data yielded an average accuracy of 90% in the separation of
AML and CTRL (Fig. 1C), by using a reduced number of features
(Fig. S3) compared with the analysis of each biofluid per se. In
serum, PC2–3 space gave the best 2D combination for AML-CTRL
separation, with 13 metabolites showing signficantly different
levels (p < 0.05, Fig. 1D and Table 1). These metabolites were not
significantly correlated with age or gender (Table S6). Amino acid
and tricarboxylic acid cycle (TCA) cycle byproducts, that had
increased concentration in AML except for glutamine and
threonine, mainly represented variance in PC3, while lactate and
fatty acid metabolism compounds accounted for variance in PC2
(Fig. 1D). When looking at sample distribution along serum PC3,
that provided a good discrimination between AML and CTRL, we
observed that all AML subgroups were significantly different from
normal cases, independently of bone marrow or peripheral blast
percentage (Fig. 1E, F). Moreover, a low bone marrow blast
percentage (20–49%, Fig. 1E) and a high peripheral blood blast

percentage (≥75%, Fig. 1F) resulted in a reduced and increased
distance from CTRL, respectively.
Moreover, we detected increased concentration of 3-

aminobutyrate and phenylalanine in the urine of AML patients
compared with CTRL (Fig. 1G, Tables 1 and S6). Citrate, creatinine,
and hippurate, which are among the most abundant urine
components, showed low levels in AML, suggesting reduced
excretion. Similarly, decreased glycine was indicative of reduced
catabolism.
Notably, two groups of patients were distinguished by serum

metabolites in PC4 (p < 0.001), and one of them included 70% of
TP53-mut/deleted(del) AML (Fig. 1H). When comparing TP53-mut/
del and wild-type (wt) AML, we found lower levels of threonine
and glucose in TP53-mut/del cases (Fig. 1I), that suggested an
increased cellular uptake, likely aimed at satisfying macromolecule
biosynthesis and bioenergetic requirements [32], with reduced
lactate excretion [33].
Overall, integration of serum and urine metabolomics improved

the prediction accuracy with respect to single biofluid
classification.

Fig. 1 Serum and urine metabolic profile of AML. A 3D representation of principal component (PC)1, PC2, and PC3 projection of serum NMR
data of AML and healthy controls (CTRL), which accounted for 53% of the total explained variance. B 3D representation of PC1, PC2, and PC4
projections of urine NMR data of AML and healthy controls. C Hierachical clustering of AML and controls using integrated serum (n= 3) and
urine (n= 4) PCs, selected as the best combination of predictive features by comparing an AdaBoost Classifier and a SVM Classifier. The
integration yielded an enhanced coherence in adjacency between AML and controls compared with single biofluid analysis. Each component
contains linear combinations of signature metabolites shown in biplots for both sera and urine samples. Colors indicate the score on each PC.
D BiPlot on PCA reduced space of serum NMR data. Metabolites showing significant alterations (p < 0.05) were plotted along their maximum
variance direction in the PCA score space. Only completely template-matched signals were reported. E Estimated probability density functions
(PDFs) of serum PC3 scores of AML cases according to bone marrow blast percentage (20–49%: p= 1.66e−04; 50–74%: p= 6.47e−10; ≥75%: p
= 1.67e−15) and F peripheral blood blast percentage (<30%: p= 8.85e−08; 30–69%: p= 5.98e−10; ≥70%: p= 8.33e−15). The similarity
between each AML blast count class and CTRL was computed using the score distribution of serum PC3, which is the latent variable best
separating AML and CTRL in the metabolic latent space (DKS: absolute value of the maximal difference between the cumulative function of
two distributions, representing the maximal distance between them, according to Kolmogorov–Smirnov statistics). G BiPlot on PCA reduced
space of urine NMR data. Metabolites were plotted as in (D). H Serum PC4 scores in AML patients (median value: group 1, −1.94 and group 2,
6.35). I BiPlot on PLSDA reduced space (from a 5-PLSDA-component AdaBoost classification) for TP53-wt and TP53-mut/del AML. Metabolites
were plotted along their maximum variance direction in the PLSDA score space (LV latent variables).

Table 1. Metabolic alterations in serum and urine samples from AML patients compared with those from controls.

Metabolite Biplot name Changes in AML vs. CNTRL Biofluid Kruskal–Wallis
p -value

3-Hydroxybutyrate 3HB ↑ Serum <0.001

Glycerol of lipids Gl-Lipids ↑ Serum <0.001

Glucose Glucose ↑ Serum 0.015

Glutamine Glutamine ↓ Serum <0.001

Lactate Lactate ↑ Serum 0.033

Low density/very low density lipids1 LDL1/VLDL1 ↓ Serum <0.001

Low density/very low density lipids2 LDL2/VLDL2 ↑ Serum 0.019

N-acetylglycoproteins (1 and 2) NAC1/NAC2 ↑ Serum <0.001

Polyunsaturated fatty acids Poly-UFA ↑ Serum 0.008

Pyruvate+ Succinate Pyruvate+ Succinate ↑ Serum 0.033

Threonine Threonine ↓ Serum <0.001

Valine Valine ↑ Serum 0.022

Phenylalanine Ph-Alanine ↑ Serum/urine 0.008/<0.001

3-Aminobutyrate 3-Aminobutyrate ↑ Urine 0.006

Citrate Citrate ↓ Urine <0.001

Creatinine Creatinine ↓ Urine <0.001

Glycine Glycine ↓ Urine 0.007

Hippurate Hippurate ↓ Urine <0.001

↑: up; ↓: down.
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CD34+ and CD33+ AML cells have dysregulated lipid, amino
acid, nucleotide, and bioenergetic metabolism
To obtain a metabolic fingerprint of AML, we performed intracellular
metabolic profiling of leukemic cells (35 CD34+ and 15 CD33+

isolated bone marrow (BM) blasts) and compared them with 21
normal cord blood (CB) CD34+ and 21 normal CD33+ peripheral
blood (PB) samples from healthy subjects. CD34+ AML and CD33+

AML segregated from their normal counterparts (Fig. 2A, B), with a

Fig. 2 Intracellular metabolomics of AML. PCA of the metabolic profile of A CD34+ and B CD33+ AML cells compared to their healthy control
populations (CD34+ CB and CD33+ PB cells). C Biochemical importance plot of the top 30 metabolites contributing to group separation
between CD34+ AML and CD34+ CB stem-progenitor cells. Red and blue arrows indicate increased or decreased metabolite levels in AML cells
compared with CTRL cells (|fold change | ≥ 2, q ≤ 0.05), respectively. D Altered metabolic pathways in CD34+ AML cells. The most significant
pathways with the strongest impact on CD34+ AML cells are shown. E Biochemical importance plot of the top 30 metabolites contributing to
group separation between CD33+ AML blasts and CD33+ PB cells from CTRL (red and blue arrows as in (C)). F Altered metabolic pathways in
CD33+ AML cells. The most significant pathways with the strongest impact on CD33+ AML cells are shown.
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predictive accuracy of 85.7% and 94.4%, respectively (Fig. S4A, B),
but not from each other (Fig. S4C). Among the 300 detected
metabolites, 66 and 35 were down- and upregulated, respectively, in
CD34+ AML cells, while 102 and 19 showed reduced and increased
levels, respectively, in CD33+ AML compared with their control
group. No significant differences in metabolite levels were detected
between CD34+ and CD33+ AML.
The top scored 30 biochemicals that distinguished CD34+ AML

from CD34+ CB cells were primarily involved in bioenergetics,
amino acid, and lipid metabolism (Fig. 2C). Overall, 41 pathways
were dysregulated in CD34+ AML, with TCA cycle, D-Arginine and
D-ornithine and linoleic acid metabolism showing the strongest
impact (Fig. 2D and Table S7).
When comparing CD33+ AML and CD33+ PB, the top

discriminating 30 biochemicals included lipids, nucleotides, and
amino acid metabolism (Fig. 2E), with alanine, aspartate and
glutamate, cysteine and methionine, purine and sphingolipid
metabolic pathways showing the strongest impact (Fig. 2F and
Table S8).
Lipid, amino acid, nucleotide, and bioenergetic metabolism

were confirmed as the most widely altered pathways when
comparing the whole AML and CTRL cohorts (Fig. S4D and
Table S9; 17 increased and 147 decreased metabolites),
which were separated with a predictive accuracy of 89.1%
(Fig. S4E).

Integrated intracellular and biofluid metabolomics
highlighted alterations in the metabolism of polyamine,
purine, keton bodies and polyunsaturated fatty acids and in
the TCA cycle in AML
After showing a distinct metabolomic profile for leukemic
compared to normal CD34+ or CD33+ cells, we next focused on
the significantly dysregulated metabolic pathways. We observed
decreased arginine, methionine, and proline in leukemic cells,
that suggested elevated polyamine biosynthesis (S-adenosyl-
methionine, 5-methylthioadenosine, and N1-acetylspermidine in
CD33+ and CD34+ cells, respectively, Fig. 3A), which in turn
supports cell proliferation [34]. Accordingly, the low levels of
purine nucleotides (Fig. 3B) may indicate enhanced production of
adenosine 5′-triphosphate and guanosine 5′-triphosphate that
are crucial for providing cellular energy and intracellular
signaling, respectively [35]. Tumor growth was also supported
by elevated N-acetylaspartate levels in leukemic cells (Fig. 4A)
[36]. Of note, in the CD33+ cohort, NPM1-mut AML scored as
outliers for their high levels of the N-acetylaspartate derivative N-
acetyl-aspartyl-glutamate (90.9% and 25.0% of NPM1-mut AML
among outliers and non-outliers, respectively, p= 0.033). More-
over, high levels of reduced glutathione (Fig. 3A) and ophtalmate
(data not shown) were indicative of elevated cellular oxidative
stress, and increased 3-hydroxybutyrate in the serum of patients
and of 3-hydroxybutyrylcarnitine in leukemic cells reflected
heightened ketogenesis in AML (Fig. 4A and Table S10).
Polyunsaturated fatty acids (Fig. 4B) and glucose (Fig. 4A) were
elevated in the serum of patients but reduced in CD33+ and/or
CD34+ leukemic cells compared with normal ones, suggesting
the need for a constant energy reservoir that is rapidly consumed
by cells. The reduced levels of intracellular TCA intermediates and
of serum glutamine were also indicative of increased bioener-
getics requirement, especially in the CD34 compartment (Fig. 4A).
This requirement was further supported by decreased levels of
amino acid sources of pyruvate (e.g. threonine, glycine, serine,
alanine), with a significant increase of serum lactate, an end-
product of glycolysis and glutaminolysis (Fig. 4A). In parallel,
intracellular lactate levels were lower in both CD34+ and CD33+

AML than normal cells, thus suggesting a high excretion capacity
(Table S10).

Metabolic clusters define AML subgroups with different
genomic features
We then classified AML cases according to their intracellular
metabolic profile. Unsupervised hierarchical clustering clearly
defined 3 clusters (Fig. 5A and Table S11). The top 15 metabolites
that better distinguished the 3 clusters included amino acids and
their derivatives (e.g. tyrosine, phenylalanine, tryptophan, threo-
nine, lysine), intermediates of purine and pyrimidine metabolism
(e.g. hypoxanthine, adenosine 5′-monophosphate, uridine) and
lipids (e.g. palmitoyl sphingomyelin, cholesterol), that showed
high, intermediate and low levels in cluster 1, 2 and 3, respectively
(Fig. 5B). In order to integrate genomics (Table S12) and
metabolomics, we assigned each sample to a molecular class
[3]. Cluster-1 was enriched for NPM1-mut AML (50.0%), cluster-2
for cases with altered chromatin/spliceosome genes (37.5%), and
cluster-3 for TP53-mut/aneuploid AML (34.4%, p= 0.023, Fig. 5C).
We then investigated differences at serum and urine level across
genetic categories (chromatin/spliceosome-mut, NPM1-mut, TP53-
mut/aneuploid AML, n= 71) and identified 4 NMR clusters (Fig.
5D). Genomic categories associated with specific biofluid meta-
bolic cluster (clusters 2, 3, and 4, p= 0.040, Fig. 5E), in accordance
with the intracellular metabolic profiles.
High levels of serum tyrosine, threonine, and citrate

correlated with the cluster enriched for chromatin/spliceo-
some-mut. Viceversa, low levels of these metabolites were
detected in the cluster enriched for NPM1-mut (Fig. 5F). The
cluster associated with TP53-mut/aneuploid AML displayed
intermediate threonine and tyrosine levels and high citrate in
the serum compared to the other two clusters. Notably, tyrosine
and threonine showed high intracellular levels in the NPM1-mut
enriched cluster compared with the other clusters (mean
decrease accuracy= 0.010 and 0.005, respectively, Fig. 5B),
suggesting an increased intracellular need and/or uptake
leading to serum depletion.

NMR-driven metabolic classification identifies two subgroups
of NPM1-mut patients
Our data so far described a significant association between
genomic and metabolic profiles. However, even within the same
genomic category, different subgroups can be identified accord-
ing to combinatorial mutation patterns and consequently they
may show metabolic differences. This hypothesis was confirmed in
patients carrying NPM1 mutations, in whom the metabolic profiles
defined two distinct subgroups. NPM1-mut patients with higher
serum levels of choline+ trimethylamine N-oxide, leucine and
leucine+ lysine (p < 0.05, Fig. 6A) were enriched for co-occurring
mutations in cohesin complex and DNA damage genes (SMC1A,
SMC3, RAD21, STAG2, ATM, ATR, BRCA2, named NPM1/cohesin-
mut), compared with NPM1-mut patients from the other metabolic
group (60.0% versus 9.1% of cases, respectively, p= 0.024).
In order to gain insights into molecular mechanisms

associated with the metabolic differences between NPM1/
cohesion-mut and NPM1-mut AML, we analyzed paired exome
and transcriptome (Fig. S5) data from the TCGA and BEAT AML
datasets for the same genetic subgroups. Twenty-three percent
of NPM1-mut AML (32/137) also carried at least one alteration in
recurrently mutated genes [1] belonging to the cohesin complex
or DNA damage pathways. Compared with NPM1-mut AML,
NPM1/cohesin-mut cases were characterized by a lower white
blood cell count (39.7 vs. 64.1 cells/mm3, p= 0.006) and a
significantly higher mutation load (average mutation number:
15 vs. 9, p < 0.001), with lower frequency of IDH1–2/TET2
mutations (21.9% vs. 46.7% of NPM1-mut, p= 0.014, Fig. 6B).
FLT3 alterations were evenly distributed between the two
groups (Fig. 6B) and no differences were observed in clinical
outcome (Fig. S6A).
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At transcriptional level, signatures of cellular response to
cytokines and JAK-STAT cascade were significantly downregulated
in NPM1/cohesin-mut AML (Fig. 6C). Accordingly, NPM1/cohesin-
mut AML showed reduced expression of genes involved in the
regulation of immune and inflammatory response, along with
others related to cell differentiation and metabolism (Fig. 6D).
We then compared the ex vivo response of NPM1/cohesin-mut

and NPM1-mut AML to a panel of targeted agents (n= 122, BEAT
AML [1]). NPM1/cohesin-mut AML showed decreased sensitivity to
the Aurora kinase A inhibitor MLN8054 and the FLT3/JAK inhibitor

Midostaurin but responded better to SYK, MET, and EGFR
inhibitors (Entospletinib, JNJ-38877605, Crizotinib, Foretinib, Lapa-
tinib, Pelitinib, Fig. 6E).
These data suggest that the co-occurrence of different

mutations with altered NPM1 may confer a distinct metabolic,
transcriptomic, and drug sensitivity profile to the leukemic cells.

Predicting metabolic specificities of NPM1/cohesin-mut AML
Seven downregulated genes in NPM1/cohesin-mut compared with
NPM1-mut AML encoded for enzymes involved in nucleotide

Fig. 3 Schematic representation of polyamine, cysteine, and purine metabolic pathways integrating intracellular and biofluid
metabolomic data. A Polyamine and cysteine metabolic pathway and urea cycle. B Purine metabolism. Red and blue arrows/text
indicate increased or decreased metabolite levels in AML cells compared with their CTRL, respectively (|fold change | ≥2, q ≤ 0.05) and in
the urine of patients compared with CTRL (p < 0.05). Gray metabolite boxes indicate the ones that were not detected by MS analysis.
The schemes report the most relevant metabolites in the pathway according to metabolomic data (ADP adenosine 5′-diphosphate,
ADS adenosine, AMP adenosine 5′-monophosphate, ATP adenosine 5′-triphosphate, dcSAM decarboxylated S-adenosylmethionine,
GDP guanosine 5′-diphosphate, GMP guanosine 5′-monophosphate, GTP guanosine 5′-triphosphate, GSH reduced glutathione, IMP inosine
5′-monophosphate, MET methionine, MTA 5-methylthioadenosine, SAH S-adenosylhomocysteine, SAM S-adenosylmethionine, XMP
xanthosine 5′-monophosphate).
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(ADCY9, DPYSL2), lipid (LPL) and carbohydrate (CHST13) metabo-
lism, energy production (CYP1B1) and transporter/exchanger
(SLC8A1, SLC1A3, Figs. 7C and S6B). We thus modeled the
consequences of gene expression alterations of NPM1/cohesin-

mut AML on the intracellular metabolome by reconstructing
genome scale metabolic network models. Based on the analysis of
diverse cellular models (Fig. S7A) and our MS data (Fig. S7B), we
selected a hematopoietic model derived from Recon2. The

Fig. 4 Summary of AML metabolic alterations in the TCA cycle, linoleic acid metabolism, and related pathways. A TCA cycle and related
amino acid pathways. B Linoleic acid metabolism. Red and blue arrows/text indicate increased or decreased metabolite levels in AML cells
versus their CTRL, respectively (|fold change | ≥ 2, q ≤ 0.05) and in the serum or urine of patients compared with CTRL (p < 0.05). Gray
metabolite boxes indicate the ones that were not detected by MS analysis. The schemes report the most relevant metabolites in the pathway
according to metabolomic data (HETE hydroxyeicosatetraenoic acid, NAA N-acetylaspartate, poly-UFA polyunsaturated fatty acids, TCA
trycarboxylic acid cycle).
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selected reconstruction was validated by modeling the effect of
IDH mutations (Table S13 and Fig. S7C, D).
We first predicted the changes in metabolic fluxes (Table S14)

induced by the altered expression of enzymes between NPM1-mut
and NPM1-wt AML (transcriptomic data from the TCGA and BEAT
AML cohorts, Fig. S8). Interestingly, among the perturbed
metabolites, experimental evidence confirmed increased N-
acetylaspartate and glutamine, reduced spermidine levels (among
others) in NPM1-mut compared with NPM1-wt AML (Fig. 7A). We
then simulated the intracellular metabolome of NPM1/cohesin-

mut AML by adding the 7 downregulated genes to the model
(Table S15). Eleven metabolites and 42 reactions were predicted to
be specifically perturbed in the NPM1/cohesin-mut model
(Table S16). A metabolic network reconstruction of the altered
reactions showed a major cluster centered on nicotinate,
nicotinamide, and inosine exchange/modification, with connec-
tions to glycolysis and metabolism of leukotriene inflammatory
molecules (Fig. 7B), that were also confirmed by pathway
enrichment analysis of genes catalyzing the network reactions
(Fig. S9 and Table S17). Notably, NPM1/cohesin-mut AML showed
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lower intracellular levels of inosine-5′-monophosphate and
glucose when compared with NPM1-wt and/or NPM1-mut AML
(Fig. 7C). Overall, our multistep approach defined the metabolic
specificities of NPM1/cohesin-mut AML.

DISCUSSION
Few studies have previously analyzed the metabolic profile of AML
patient serum [37–41] or of a limited number of primary cells
[17, 42, 43]. Here, we have performed integrated genomics and
metabolomics analysis in AML, which showed genetic-related
differences in the metabolic profiles and defined multiple
subgroups with distinct constellations of mutations and metabolic
features.
Among the endogenous factors influencing the human

metabolome, age and sex have a strong influence, at least in
healthy subjects [44]. However, we can exclude confounding
effects in our results for the following reasons: (i) the majority of
metabolic alterations occurred in the opposite direction to the one
expected as a readout of confounding factors [44]; (ii) the
correlation coefficient for the identified metabolites with age
and gender was not significant; (iii) some of the data obtained on
serum were also reported in previous studies [37–41].
First, integrated serum and urine analysis accurately discrimi-

nated between AML and normal patients, suggesting a robust
approach for evaluating disease metabolic subgroups and a valid,
low-cost approach for noninvasive population analyses.
Second, we integrated biofluid and intracellular metabolomics.

We used NMR and MS as complementary techniques for biofluids
and primary cell profiling, respectively. The rationale of this
approach is twofold: it allowed us to benefit from the
reproducibility of NMR, which offers unbiased information and
could enable a rapid translation to the clinical practice, and from
the high sensitivity of MS in metabolite detection from low cell
numbers. Our comprehensive view showed alterations in the TCA
cycle and in the metabolism of purine nucleotides, amino acid,
fatty acids, keton bodies, polyamine, glutamine and other amino
acids. The incomplete overlap between the metabolic alterations
observed when comparing CD34+ and CD33+ blasts with their
respective healthy populations may be partly due to the usage of
CD34+ CB and CD33+ PB cells, as controls. Notably, many of the
identified pathways can be therapeutically exploited (e.g. gluta-
minolysis, arginine uptake, aspartate production, fatty acid
oxidation, polyamine metabolism, ketogenesis) and the inhibition
of some of them achieved promising results in AML [17, 45] or in
cancer [46, 47] models.
When integrated with genetic features, the metabolic profiles

showed association with NPM1-mut, chromatin/spliceosome-mut
and TP53-mut/aneuploid AML classes. Chromatin/spliceosome-

mut and TP53-mut/aneuploid AML shared some metabolic
features, according to their clustering. This may be partly
explained by the recurrence of aneuploidies in the chromatin/
spliceosome-mut class (42.9% of those classified in the TP53-mut/
aneuploid AML associated cluster). NPM1-mut AML showed high
intracellular levels of N-acetyl-aspartyl-glutamate, that have been
previously associated with MYC activation [48]. Indeed, mutant
NPM1 indirectly stabilizes c-MYC protein [49] and an oncogenic
MYC mutation was also detected in a NPM1-mut AML case, in line
with previous findings [3].
Our data also classified NPM1-mut AML carrying mutations in

cohesin or DNA damage-related genes as a distinct metabolic
subgroup. This group does not associate with IDH1–2/TET2
mutations, which are also frequently observed in NPM1-mut cases
[1, 2, 50] but it was characterized by higher mutation burden,
lower white blood cell count and dowregulation of immune-
related genes [51]. Accordingly, in silico modeling of the NPM1/
cohesin-mut-specific metabolic perturbations predicted changes
in the balance of leukotrienes. Among the metabolic genes
downregulated in NPM1/cohesin-mut compared with NPM1-mut
AML, CHST13, ADCY9, PRR16, LPL, and SLC1A3 were confirmed by
STAG2-deficient model of NPM1-mut leukemia [52]. Moreover, flux
and network analysis based on the identified transcriptomic
changes pointed at alterations in the purine and NAD super-
pathways as NPM1/cohesin-mut-specific ones. Inosine-5′-mono-
sphate, an intermediate in the purine metabolism, showed low
levels in NPM1/cohesin-mut compared with NPM1-mut AML cells.
Of note, inosine favors spontaneous mutations, since a base
transition is introduced when it is incorporated into newly
synthesized DNA [53]. In addition, both purines and NAD regulate
immune function and cytokine release [54, 55]. Given that NAD
modulates gene expression [56] and that cohesin gene mutations
alter chromatin accessibility [57], the targeting of NAD metabo-
lism could restore the myeloid differentiation program in NPM1/
cohesin-mut leukemic cells. Future studies taking into account
leukemic cell metabolism and microenvironmental factors, will
further investigate the suggested vulnerabilities. With regard to
therapeutics, NPM1/cohesin-mut AML were more sensitive than
NPM1-mut AML to EGFR inhibition, which may lead to the release
of the differentiation brake [58] and to drugs targeting the
tyrosine kinase receptor MET, likely due to a mild autocrine
pathway activation in these cases, who express low levels of the
ligand [59].
Overall, our results provide a map of the crosstalk between

metabolic pathways and between genomics and metabolomics
in AML, reflecting functional interactions and dependencies
that could be therapeutically exploited and provide the rationale
for a switch to a genomic- and phenotypic-driven personalized
medicine.

Fig. 5 Intracellular and biofluid metabolomics show association with AML molecular classification. A Unsupervised hierarchical clustering
of AML according to intracellular metabolomic profiles (MS, each row denotes a metabolite, each column a sample). B Top 15 metabolites
contributing to separation of the three MS metabolic clusters (1, 2, 3). The metabolites belong to the following superpathways: amino acids
and their derivatives (tyrosine, N-acetylalanine, phenilalanine, tryptophan, threonine, lysine), intermediates of purine and pyrimidine
metabolism (hypoxanthine, adenosyne-5′-monophosphate, uridine) and lipids (sphingolipid, phosphatidylinositol, phosphatidylethanola-
mine, phosphatidylcholine, cholesterol, phosphatidylserine. Colored squares on the right indicate metabolite levels in each cluster. C
Molecular classification of MS metabolic clusters [3]. Due to the low number of t(8;21) and inv(16)/t(16;16) cases, they were grouped in the
core-binding factor (CBF) category and a t(6;9) patient with complex karyotype was included in the TP53/aneuploidy category (NPM1 NPM1-
mut, chr/spl chromatin/spliceosome-mut, TP53/A TP53-mut/aneuploidy, inv(3) inv(3)/t(3;3), KMT2A KMT2A-rearranged). D Hierarchical clustering
of AML patients belonging to the NPM1-mut, chromatin/spliceosome-mut or TP53/aneuploidy molecular classes according to biofluid
metabolomic profile (NMR). These components were selected as the combination of urine and serum spectral features that best described the
above mentioned genomic stratification. Of the ten features selected via stochastic gridsearch, seven came from serum spectra, indicating
serum as the principal vector of information for this particular stratification. Colors indicate the score on each PC. E Molecular classification of
NMR metabolic clusters. F Top scoring serum metabolites separating NMR clusters 2, 3, and 4. Signature metabolites were extracted from sera
samples by selecting the highest scoring signals in terms of presence amongst the sera PC responsible for the best separation of molecular
subgroups and the average of absolute values of their loadings. Statistical significance was obtained with SciPy.Stats Kruskal–Wallis H-test
using stepdown Sidak correction. Notch width corresponds to the confidence interval of the median.
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Fig. 6 Metabolic, genomic, transcriptomic and drug response differences between NPM1/cohesin-mut and NPM1-mut AML. A Serum
metabolites separating NPM1/cohesin-mut and NPM1-mut AML (TMAO trimethylamine-N-oxide). B Oncoprint of mutations in AML-related
genes (frequency >3% in the overall population) in NPM1/cohesin-mut and NPM1-mut AML. WES data were obtained from the TCGA (n= 13
NPM1/cohesin-mut, n= 33 NPM1-mut) and BEAT AML (n= 19 NPM1/cohesin-mut, n= 72 NPM1-mut, including 7 relapse cases) cohorts. Rows
denote genes or groups of genes (cohesin/DD cohesion/DNA damage-related genes). Columns represent frequency of mutations and single
patients (ITD internal tandem duplication). C Signatures of cytokine receptors and JAK-STAT cascade from GSEA showing significance in both
datasets (TCGA, left to right: cytokine–cytokine receptor binding, regulation of JAK-STAT cascade, n= 9 NPM1/cohesin-mut, n= 25 NPM1-mut;
BEATAML, left to right: cytokine receptor activity, JAK/STAT cascade, n= 14 NPM1/cohesin-mut, n= 47 NPM1-mut, including 3 relapse cases). D
Genes involved in immune response, cell differentiation, tumor growth regulation, cytoskeleton, metabolism and other cellular processes,
showing a significantly different expression between NPM1/cohesin-mut and NPM1-mut AML in both cohorts. E Area under the curve (AUC)
for the drugs showing a significantly different response between NPM1/cohesin-mut and NPM1-mut AML was plotted for the two cohorts
(NPM1/cohesin-mut, n= 6–13; NPM1-mut, n= 31–45) [1]: MLN8054 (Aurora kinase A inhibitor), Entospletinib (SYK inhibitor), Midostaurin (FLT3,
JAK inhibitor), JNJ-38877605 (MET inhibitor), Crizotinib (ALK, MET, ROS1, NTRK inhibitor), Foretinib (MET, KDR, TIE inhibitor), Lapatinib (ErbB-2,
EGFR inhibitor), Pelitinib (EGFR inhibitor). Boxes represent the mean (horizontal line) and extend from the 25th to 75th percentiles; whiskers
extend from the minimum to the maximum value and each value is plotted (*p ≤ 0.05, **p ≤ 0.01).
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