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Simple Summary: Low survival rates and a growing incidence characterize esophageal adenocarci-
noma (EAC). MicroRNAs (miRNAs) have been linked to the development and progression of cancer,
according to earlier research. Our study showed a significant correlation between poor cancer–related
survival, tumor recurrence, and advanced disease stages with the overexpression of miR–221 and
miR–483–3p. In particular, we have found that in low–risk EAC patients, miR–221 overexpression
was linked to a lower survival rate. Therefore, these findings may help define patient stratification
and determine targeted treatment for EAC.

Abstract: Alterations in microRNA (miRNA) expression have been reported in different cancers.
We assessed the expression of 754 oncology–related miRNAs in esophageal adenocarcinoma (EAC)
samples and evaluated their correlations with clinical parameters. We found that miR–221 and 483–3p
were consistently upregulated in EAC patients vs. controls (Wilcoxon signed–rank test: miR–221
p < 0.0001; miR–483–3p p < 0.0001). Kaplan–Meier analysis showed worse cancer–related survival
among all EAC patients expressing high miR–221 or miR–483–3p levels (log–rank p = 0.0025 and
p = 0.0235, respectively). Higher miR–221 or miR–483–3p levels also correlated with advanced tumor
stages (Mann–Whitney p = 0.0195 and p = 0.0085, respectively), and overexpression of miR–221 was
associated with worse survival in low–risk EAC patients. Moreover, a significantly worse outcome
was associated with the combined overexpression of miR–221 and miR–483–3p (log–rank p = 0.0410).
To identify target genes affected by miRNA overexpression, we transfected the corresponding mimic
RNA (miRVANA) for either miR–221 or miR–483–3p in a well–characterized esophageal adenocarci-
noma cell line (OE19) and performed RNA–seq analysis. In the miRNA–overexpressing cells, we
discovered a convergent dysregulation of genes linked to apoptosis, ATP synthesis, angiogenesis, and
cancer progression, including a long non–coding RNA associated with oncogenesis, i.e., MALAT1.
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In conclusion, dysregulated miRNA expression, especially overexpression of miR–221 and 483–3p,
was found in EAC samples. These alterations were connected with a lower cancer–specific patient
survival, suggesting that these miRNAs could be useful for patient stratification and prognosis.

Keywords: esophageal adenocarcinoma; microRNA; miR–221; miR–483–3p

1. Introduction

Esophageal adenocarcinoma (EAC) is a severe malignancy with a low survival rate
and increasing incidence in Western countries. The causes of its high lethality may
be attributed to inadequate screening and early diagnosis programs as well as the rel-
ative inefficiency of treatments. Indeed, most patients are diagnosed at an advanced
stage, and the overall 5–year survival rate is 10–15% [1]. EAC may rise according to the
widely accepted sequence of gastro–esophageal reflux disease (GERD)/intestinal meta-
plasia/dysplasia/adenocarcinoma, but other oncogenic pathways cannot be ruled out [2].
Since the end of the past century, several screening and early diagnosis programs promoted
by scientific and professional medical societies have been implemented, particularly for
patients with histologically proven Barrett’s esophagus (BE) who are thought to have a
40–50–fold higher annual incidence of EAC than the general population. However, only
12% of EAC patients have a prior diagnosis of BE, implying either difficulty in detect-
ing BE in the diagnostic phase/surgical specimen or BE–independent pathways of EAC
development [3]. The American Joint Committee on Cancer TNM staging system and
the international guidelines on therapy consider EAC as a single entity [4]. However,
EAC is consistently heterogeneous; therefore, different biological behaviors may impair
the efficacy of unmodulated therapy [5–8]. EAC is among the tumors with the highest
incidence of copy number alterations (CNAs) and somatic structural rearrangements [9];
it exhibits a high mutation frequency, and recent omics studies suggest the existence of
distinct EAC subtypes based on different mutational signatures [10,11] and epigenetic
mechanisms [9–13]. These different subtypes show a correlation with prognostic factors
and potential response to therapy [13,14].

In this framework, we investigated the value of microRNA (miRNA) expression as a
potential biomarker in EAC subclassification and correlation with survival. MicroRNAs
(miRNAs) regulate many cell processes by binding to the 3′ untranslated region of target
mRNAs and therefore modulating their expression through translational repression, mRNA
degradation, or cleavage [15]. MiRNA dysregulation is implicated in different stages
of tumor progression [16,17], and miRNA expression can be modulated for therapeutic
purposes [18]. A few studies identified altered miRNA profiles in esophageal squamous
cell carcinoma [19–21] and in BE–derived cancer [22,23]. However, limited knowledge
exists regarding miRNAs that could discriminate among different subtypes of EAC (i.e.,
according to different histological subgroups).

This study aimed to assess the expression of a large number of oncology–related miR-
NAs in EAC samples derived from patients who underwent surgery without preoperative
chemo– and radiotherapy and to correlate miRNA dysregulation with clinical features and
histological subtypes to improve the efficiency of diagnosis and therapy for this aggressive
form of cancer.

2. Materials and Methods
2.1. Tumor Samples

Samples for which RNA was available from formalin–fixed paraffin–embedded (FFPE)
surgical resections from EAC patients among the Esophageal Adenocarcinoma Study
Group Europe (EACSGE) consortium were included (124 cases) in the study. Clinical
and pathological data [8,24] and EACSGE morphological classification have been previ-
ously reported [25]. The EACGSE classification was based on morphological features of
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esophageal/esophagogastric junction adenocarcinoma, which divided the cases into two
main categories with a different prognosis: lower risk, including glandular well differ-
entiated, mucinous muco–nodular carcinoma, and diffuse desmoplastic subgroups, and
higher risk, including glandular poorly differentiated, diffuse anaplastic, invasive muci-
nous carcinomas, and mixed subgroups. FFPE–derived gastric mucosal samples (n = 8)
derived from healthy individuals with no history of cancer were used as controls because
we had no access to FFPE–derived samples of esophageal mucosal samples from healthy
individuals. The study was approved (# L3P1223) by the Ethical Committee “Comitato
Etico IRST IRCCS AVR (CEIIAV)”–Italy (Reg. Sper. 109/2016 Protocol 7353/51/2016).

2.2. Cell Lines

The OE19 (RRID:CVCL_1622/ECACC: 96071721) [26], OE33 (RRID:CVCL_0471), and
FLO–1 (RRID:CVCL_2045) cell lines were used for functional studies. OE–19 and OE–33
cells were cultured in Roswell Park Memorial Institute (RPMI)–1640 medium (EuroClone,
Milan, Italy). FLO–1 cells were cultured in high–glucose DMEM (Dulbecco’s modified
Eagle’s medium). All cells were supplemented with 10% fetal bovine serum, 100 U/mL
penicillin, and 100 µg/mL streptomycin (supplements from Sigma Aldrich, St. Louis, MI,
USA) at 37 ◦C in a 5% CO2 atmosphere. The experiments were performed within 8 passages
of resuscitation, and all experiments were performed with mycoplasma–free cells.

2.3. RNA Isolation from FFPE Surgical Specimens

Total RNA was isolated starting from two 10 µm thick FFPE sections enriched in the
tumor area using the RecoverAllTM Total Nucleic Acid Isolation for FFPE Kit (Thermo Fisher
Scientific, Waltham, MA, USA) and treated with DNase I under RNase–free conditions,
according to the manufacturer’s protocol. The yield was assessed through a NanoDrop
spectrophotometer reading (Thermo Fisher Scientific), and an aliquot was run on a 1%
agarose gel in 1XTBE and visualized using Midori green staining (Nippon Genetics Europe,
Düren, Germany) under UV light.

2.4. MicroRNA Expression Profiling

The expression of 754 different human miRNAs was profiled in 8 FFPE EAC samples
and a pool of 8 FFPE healthy gastric mucosal samples using the TaqMan MicroRNA Array
card A2.1/B3.0 (Cat. Num. 4399966–4444303; Thermo Fisher Scientific). U6 snRNA,
RNU44, and RNU48 were used as endogenous controls. Fifty nanograms of total RNA was
reverse transcribed (RT) using the TaqMan microRNA Reverse Transcription Kit (Cat. Num.
00331121; Thermo Fisher Scientific) and Megaplex RT primer pools A or B (Thermo Fisher
Scientific). A preamplification step was performed combining 2.5 µL of the RT reaction with
the matching Megaplex PreAmp Primer Pool and TaqMan PreAmp Master Mix (Cat. Num.
4384266; Thermo Fisher Scientific) under the following conditions: 10 min at 95 ◦C; 2 min
at 55 ◦C; 2 min at 72 ◦C; 15 s at 95 ◦C and 4 min at 60 ◦C for 12 cycles; and 99 ◦C for 10 min.
A dilution of 1:4 in TE 0.1X was made, and 9 µL of each dilution was combined with the
TaqMan Universal Master Mix, NoAmpErase UNG (2X) (Cat. Num.4440040; Thermo Fisher
Scientific) and loaded on the matching TaqMan MicroRNA Array Card. The cards were run
on a 7900 HT Real Time PCR system (Thermo Fisher Scientific) with the following cycling
conditions: 10 min at 95 ◦C and 15 s at 95 ◦C and 1 min at 60 ◦C for 40 cycles. We employed
the comparative 2−∆∆CT method to analyze raw data with Expression Suite software v1.0
(Thermo Fisher Scientific).

2.5. Single microRNA Expression Assays

The validation of miR–221 and miR–483–3p expression was performed through real–
time quantitative PCR (RT–qPCR) using single TaqMan probes (Thermo Fisher Scientific).
Reverse transcription was performed starting from 150 ng of total RNA extracted from FFPE
sections or OE19, OE33, and FLO–1 cells using the TaqMan MicroRNA Assay (Cat. Num.
4427975; Thermo Fisher Scientific) with primers for RNU44 (#001094), miR–221 (#000524),
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and miR–483–3p (#002339) and using the TaqMan MicroRNA Reverse Transcription Kit
with a preamplification step as described above. RT–qPCR was performed using 2 µL of
the diluted preamplification product as outlined by the manufacturer. RNU44 was used as
an endogenous control. For each case, the reaction was performed in triplicate. The relative
miRNA expression levels for FFPE samples were calculated using the 2−∆∆CT method,
comparing FFPE tumor samples versus the healthy gastric mucosal samples. For the data
obtained in the single RT–qPCR assays, we applied the analysis methodology of ∆∆CT
for all statistical tests. The normality and homoscedasticity of the ∆∆CT data population
were verified, respectively, with the D’Agostino–Pearson normality test (the Omnibus K2
test) and the Bartlett’s test. To check the significance of the expression of the ∆∆CT of
the 2 individual miRNAs compared to the pool of controls, the one—sample Wilcoxon
signed–rank test was applied. The heat map was created using the Applied Biosystems™
Analysis Software using the assay–centric option. The heat map represents differences in
∆CT values compared to the ∆CT neutral/middle expression level. Thus, for each target,
the middle expression level was set as the mean of all of the ∆CT values from all samples
for that assay. Data can only be compared across a particular row/assay, and the colors
of the boxes represent changes in ∆CT gene expression and not absolute values. Please
find below a clarification on the Expression Suite Software v.1.0 (Thermo Fisher Scientific)
procedure for cluster analysis and process calculation (reference DataAssist™ v2.0 Software
User Instructions, https://assets.thermofisher.com/TFS%E2%80%93Assets/LSG/manuals/
cms_094612.pdf, accessed on 20 January 2024). The heat map graphically displays results
of hierarchical clustering (clustering of genes that show similar expression patterns across
samples). Distances between samples and assays were calculated for hierarchical clustering
based on the ∆CT values using Euclidean distance. The global control mean is the mean
∆CT value of all selected endogenous controls in the study. The colors and intensity of the
boxes are used to represent changes (not absolute values) in gene expression. The scale
bar is based on the ∆CT value of the neutral/middle expression level. The ∆CT value of
the neutral/middle expression level is set differently such that red indicates upregulated
with a ∆CT value below the middle level (thus a negative value compared to the middle
expression level), and green indicates downregulated with a ∆CT value above the middle
level (thus a positive value compared to the middle expression level).

miRNA expression from cell line RNA was evaluated using a commercial RNA from
the normal human esophagus (Cat. Num B209050; BioChain, Newark, CA, USA).

2.6. miR–221 and miR–483–3p Mimic Transfection

A total of 3× 105 cells were seeded in a 6–well plate to be 80% confluent at transfection.
Then, 25 nM of either mirVana™ miR–221 or miR–483–3p mimic (Cat. Num. 4464066;
Thermo Fisher Scientific) and the corresponding negative controls were transfected using
the TransIT–siQUEST transfection reagent (Cat. Num. MIR2114; Mirus Bio LCC; Madison
USA) according to the manufacturer’s protocol. Cells were incubated at 37 ◦C for 48 h
before RNA extraction. The validation of miR–221 and miR–483–3p overexpression was
performed through RT–qPCR using single TaqMan probes, as indicated above.

2.7. Bulk RNA Sequencing (RNA–seq) in Transfected OE–19 Cells

RNA (250 ng) was extracted from transfected cells with a Recoverall kit (Thermo
Fisher Scientific) and quantified using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific). Library preparation and indexing for mRNA sequencing were performed with
the Illumina TruSeq Stranded mRNA sample preparation kit (Illumina). Library sizes were
verified using the Agilent High Sensitivity assay (Agilent Technologies, Santa Clara, CA,
USA) and quantified with the dsDNA High Sensitivity Assay for Qubit v.3.0 (Thermo
Fisher). All samples were equally normalized, pooled, and run on the Illumina NexSeq550,
with the Mid Output Kit v2.5 flow cell (150 cycles, paired–ends). Quality control of all
the generated FASTQ files was performed with FastQC [27], and the results across all
samples were summarized using MultiQC [28]. Reads were mapped on the reference

https://assets.thermofisher.com/TFS%E2%80%93Assets/LSG/manuals/cms_094612.pdf
https://assets.thermofisher.com/TFS%E2%80%93Assets/LSG/manuals/cms_094612.pdf
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human genome hg38 adopting STAR [29]; duplicate removal and sorting were carried out
using SAMtools [30]. Gene expression was quantified and normalized as counts per million
(CPM), starting from raw gene counts generated by the python package HTseq–count [31].
In both one-to-one comparisons (OE19–C1 vs. miR–221 and OE19–C1 vs. miR–483–3p),
only genes with cpm > 0 in at least one sample were selected for further analysis. The log2
ratio of each gene was calculated as the difference between the log2cpm of samples derived
from the control cells transfected with a scramble sequence and the log2cpm of samples
from cells transfected with the corresponding miRVana from the two miRNAs. Subse-
quently, miR–221 and miR–483–3p duplicates were included to perform differential gene
expression (DGE) analysis using the R–bioconductor limma package [32]. Differentially ex-
pressed genes with p ≤ 10−3 were selected for the evaluation of the functional classification
of biological processes and pathway overrepresentation with the analytical tools PAN-
THER13.1 (Protein ANalysis THrough Evolutionary Relationships; http://pantherdb.org,
accessed on 20 January 2024). PANTHER is strongly connected with a variety of other
genomic resources, including the UniProt Reference Proteome datasets, the Quest for Or-
thologues Consortium, and the InterPro Consortium of protein classification resources. In
addition to the phylogenetically derived annotations, the PANTHER Overrepresentation
tool also provided functional annotations directly acquired from the Gene Ontology (GO)
Consortium [33].

For gene validation from RNA–seq datasets, total RNA was isolated from transfected
and control cells with TRIzol (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Five hundred nanograms of total RNA was retrotranscribed with SuperScript
IV VILO MasterMix with ezDNase Enzyme (Thermo Fisher Scientific). Ten nanograms
of cDNA was used as a template for the RT–qPCRs with PowerTrack SYBR Green Mas-
ter Mix 2X (Thermo Fisher Scientific) and 500 nM of both the forward– and reverse–
specific primers, according to the protocol. The primers were as follows: MALAT1 forward
5′–CGTAATGGAAAGTAAAGCCCT–3′ and reverse TCTTGTGTTCTCTTGAGGGACA;
ACTB forward 5′–CCTGGCACCCAGCACAAT–3′ and reverse 5′–GGGCCGGACTCGTCA-
TACT–3′. ACTB, encoding β–actin, was used as an endogenous control. Each reaction was
performed in triplicate. Data were analyzed with the 2−∆∆CT method using total RNA from
nontransfected cells as a normal control.

2.8. Data Analysis

Quantitative analysis of the expression data derived from the microRNA Array Card
experiments was performed with Expression Suite Software v.1.0 (Thermo Fisher Scien-
tific). The receiver operating characteristic (ROC) with the Youden index method was
used to optimize the cut–off values for miRNA classification into “high–expression” and
“low–expression” groups. Correlations between miRNA expression, tumor recurrence,
cancer–related survival, tumor stage, and EACGSE classification were investigated using
the Mann–Whitney and Kruskal–Wallis tests. Survival analysis was performed using the
Kaplan–Meier method and the log–rank test. The multivariate analysis was performed
according to the Cox regression analysis. The method of decision trees based on machine
learning was adopted to develop a predictive algorithm of cancer–specific survival. Data
analysis was performed using MedCalc 13.0.6.0 (MedCalc Software bvba, Østend, Belgium),
the SPSS15.0 software package (SPSS Inc., Chicago, IL, USA), Prism (GraphPad, San Diego,
CA, USA), and the R software package v.4.3.2 (R Project for Statistical Computing, Vienna,
Austria). The RT–qPCR experiments were analyzed with Student’s t–test and one–way
ANOVA. p values < 0.05 were considered statistically significant.

The data supporting this study findings are available from the corresponding author
upon request.

http://pantherdb.org
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3. Results
3.1. Discovery Dataset: Identification of Deregulated miRNAs in EAC

To study the differential expression of 754 tumor–related miRNAs, we first profiled
eight EAC samples vs. eight healthy tissue samples. Gene expression analysis revealed sev-
eral dysregulated miRNAs with a significant adjusted p < 0.05 (Supplementary Table S1).
Among them, miR–221 and miR–483–3p were consistently overexpressed, with mean
fold increases of 2.746 and 11.33, respectively (Figure 1A). We verified the expression of
miR–221 and miR–483–3p in human tissues in the Genotype–Tissue Expression (GTEx)
portal: miR–221 was expressed in different tissues, including the esophagus, where it
was more highly expressed in the esophageal mucosa compared to the esophageal junc-
tion (Figure 1B). A very low expression of miR–483–3p was identified in normal tissues
(Supplementary Figure S1).
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Figure 1. Discovery of deregulated miRNAs in EAC. (A) Heatmap target centric, showing the
differential expression of hsa (Homo sapiens) miR−221 and miR−483−3p in EAC samples and control
samples (pool CTR). For each target, the middle expression level is set as the mean of all of the ∆CT
values from all samples for that assay. Data can only be compared across a particular row. The
color and intensity of the boxes are used to represent changes (not absolute values). Red indicates
upregulated with a ∆CT value below the middle level (thus a negative value compared to the middle
expression level), and green indicates downregulated with a ∆CT value above the middle level
(thus a positive value compared to the middle expression level). Scale bar represents ∆CT values.
(B) Expression of miR–221 in different human tissues, image derived from the Genotype−Tissue
Expression (GTEx) portal.
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3.2. Replication Dataset (EACGSE Cohort): Single miRNA Analysis

We investigated the expression of miR–221 and miR–483–3p in a separate cohort
of 124 RNAs derived from FFPE surgical specimens from EAC patients (Supplementary
Table S2). In accordance with our preliminary array data, these two miRNAs were sig-
nificantly overexpressed in EAC tissues compared to normal tissues (miR–221 mean fold
increase 2.276, Wilcoxon signed–rank test: p < 0.0001; miR–483–3p mean fold increase
5.964 p < 0.0001; Figure 2A).
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Figure 2. miR–221 and miR–483–3p were significantly upregulated in the EAC replication group.
(A) miR–221 and miR–483–3p expression levels in a cohort of 124 EAC patients (All EACs). The
values are expressed as the fold increase compared to control FFPE–derived healthy gastric tissue
samples (green baseline) (Wilcoxon signed–rank test, p < 0.0001). (B,C) miR–221 expression levels
and correlation with clinical outcomes. Kaplan–Meier curves show the cancer–specific survival
for EAC groups stratified by miR–221 expression levels. (B) All EAC cases (log–rank p = 0.0025).
(C) EACSGE lower–risk subgroup (log–rank p = 0.0065). Blue line: samples with low expression
of miR–221; red line: samples with high expression of miR–221. (D) Correlation between miR–221
expression and recurrence in All EACs (Mann–Whitney p = 0.0002) in the lower–risk EACSGE sub-
group (Mann–Whitney p = 0.0005). (E) Correlation between miR–221 expression and TNM stages
(Mann–Whitney p = 0.0195 stage 1 versus stage 2–3–4). (F) miR–483–3p expression levels and corre-
lation with clinical outcomes. Kaplan–Meier curves show cancer–specific survival for EAC groups
stratified based on miR–483–3p expression levels in All EAC patients (log–rank p = 0.0235). (G) Recur-
rence in All EACs (Mann–Whitney p = 0.0173). (H) Correlation between miR–483–3p and TNM stages
(Mann–Whitney p = 0.0085 stage 1 versus stage 2–3–4). (I,J) Combined overexpression of miR–221
and miR–483–3p and correlation with survival. Kaplan–Meier curves for patients overexpressing both
miRNAs versus patients not overexpressing both miRNAs showing cancer–specific survival in (I) All
EAC cases (log–rank p = 0.0410) and (J) lower–risk EACSGE (log–rank p = 0.0340). (K) Predictive
algorithm of cancer–specific survival. By using the decision tree method, a predictive algorithm of
cancer–specific survival was developed. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001.
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3.3. Correlation between miRNA–221 Expression and EAC Clinicopathological Features

We studied the relationship between miR–221 dysregulation and several clinical
parameters in EAC samples. Using ROC curve analysis and the Youden index approach,
the 124 EAC patients were categorized into “high” and “low” miR–221 expression groups
(cut–off value of 1.32–fold change, p = 0.003, Supplementary Figure S2A). Patients with high
levels of miR–221 expression had a considerably worse prognosis, according to Kaplan–
Meier curves for cancer–specific survival (log–rank p = 0.0025, Figure 2B).

Next, we sought to correlate miRNA expression with EAC morpho–functional charac-
teristics using the recently published EACSGE classification [25]. We found a significant
correlation between miR–221 overexpression and worse outcome in the lower–risk sub-
group (log–rank p = 0.0065; Figure 2C), whereas there was no significant correlation in
the higher–risk subgroup (Supplementary Figure S3A). Moreover, when considering all
EAC cases, higher median expression levels of miR–221 were observed in relapsed patients
than in nonrelapsed patients, but this association was more significant in the lower–risk
subgroup (Mann–Whitney test p = 0.0005 and p = 0.0002, respectively, Figure 2D). In compar-
ison to stage I patients, those with advanced disease stages (stages II–IV) had significantly
greater expression levels of miR–221 (Mann–Whitney test p = 0.0195, Figure 2E).

3.4. Correlation between miRNA–483–3p Expression and EAC Clinicopathological Features

We evaluated the correlation between miR–438–3p expression and clinical variables in
our EAC cohort. All cases were divided into “high” or “low” miRNA–483–3p expression
groups by evaluating the ROC curve with the Youden index method (cut–off value of
3.15–fold–change, p = 0.0295, Supplementary Figure S2B).

In all EAC cases, patients with high miR–483–3p expression levels had a worse prog-
nosis, according to Kaplan–Meier analysis for cancer–specific survival (log–rank p = 0.0235;
Figure 2F), but it was not possible to observe specific differences in EACGSE lower– vs.
higher–risk groups (Supplementary Figure S3B,C, respectively).

Patients with relapses had significantly higher median expression levels of miR–483–3p
(Mann–Whitney test p = 0.0173; Figure 2G). For patients overexpressing miR–483–3p, we
also discovered a significant expression increase from stage I to later stages (Mann–Whitney
p = 0.0085; Figure 2H).

3.5. Concurrent miRNA–221 and 483–3p Overexpression Is Correlated with Poor Survival

To assess the combined effect of miR–221 and miR–483–3p on cancer–related survival,
Kaplan–Meier analysis was used to compare patients with both miRNAs overexpressed
versus the rest of the EAC patients (i.e., either only one miRNA overexpressed or both
not overexpressed). We found that the combined overexpression of miR–221 and miR–
483–3p was linked to a significantly worse outcome in all EAC patients, particularly in the
lower–risk EACGSE subgroup (log–rank p = 0.0410 and p = 0.0340, respectively, Figure 2I,J).

Multivariate Cox regression analysis identified as statistically significant predic-
tive variables for cancer–specific survival the histological classification in low–risk and
high–risk groups of EAC (p < 0.0001, HR 3.282, 95% CI 1.842–5.846) and the pathological
stage (p = 0.031, HR 9.279, 95% CI 1.229–70.056). The analysis to recognize a predictive prog-
nostic value for miRNA dysregulation showed a trend toward significance (overexpression
of miRNA–221, p = 0.071).

Nonetheless, when we used a predictive algorithm of cancer–specific survival devel-
oped using decision trees, the developed algorithm selected only the histological classifica-
tion of EAC and the dysregulation of miR–221 and miR–483–3p in relation to cancer–specific
survival (Figure 2K).
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3.6. miRNA Overexpression and Transcriptome Analysis In Vitro

We evaluated miR–221 and miR–483–3p expression in three different EAC cell lines.
Data were normalized using the RNA derived from a commercial pool of fresh normal
human esophageal tissues [34]. Basal expression was present for both miRNAs, with no
significant differences in the three cell lines regarding miR–221. However, an increased
expression of miR–483–3p could be observed in FLO–1 cells, although not reaching sta-
tistical significance (Supplementary Figure S4A,B). Therefore, we selected the OE–19 cell
line for further experiments to investigate the targets of miR–221 and miR–483–3p since
it carries a TP53–inactivating mutation and ERBB2 amplification, conditions present in
several of the EAC cases included in the analysis [11,24]. OE–19 cells were transfected with
either miR–221 or miR–483–3p mimic and a scramble negative control. Total RNA was
extracted 48 h post–transfection, and transfection efficiency was evaluated by RT–qPCR for
miR–221 and miR–483–3p, normalizing the expression with the endogenous control RNU44,
using the scramble–transfected cells as controls (ANOVA test p < 0.0001 and p < 0.0001,
respectively (Figure 3A). Next, we assessed the overall impact of miR–221 and 483–3p
overexpression on gene expression via RNA–seq. RNA–seq was carried out on two inde-
pendent transfected samples for each miRNA and scramble transfection. Data filtering,
annotation, and comparison were carried out according to our published pipeline [11].
Quantitative data analysis identified 220 altered genes with differential expression between
miRNA–transfected and scramble–transfected cells when miR–221 was overexpressed
(p ≤ 10−3, Supplementary Table S3). A total of 868 altered genes were identified when
miR483–3p was overexpressed (p ≤ 10−3, Supplementary Table S4). Notably, the majority
of the dysregulated genes were noncoding genes, such as long non–coding RNAs (lncR-
NAs), miRNAs, and small nucleolar RNAs (snoRNAs), suggesting an important role of
these miRNAs in the regulation of transcriptional complexes in EAC.

Analysis using the PANTHER Functional Classification test (PANTHER GO–Slim Pro-
cess) for miR–221 led us to functionally map a total of 159 out of 220 differentially expressed
genes to different biological processes, including ATP synthesis, the Wnt signaling pathway,
p53 pathways, apoptosis, inflammation, and neurodegenerative disorders (Figure 3B).

For miR–483–3p, we were able to map 172 of the 868 differentially expressed genes.
Pathway analysis revealed that angiogenesis, Notch and Ras signaling, and cell cycle regula-
tion were the main enriched pathways (Figure 3C). Several pathways were shared between
the two miRNAs, suggesting a possible convergence in regulating oncogenic pathways.

Among the shared dysregulated genes, MALAT1 (metastasis–associated lung adeno-
carcinoma transcript 1) [35] was downregulated in both miR221 and miR483–3p overex-
pression analysis (p = 3.32 × 10−55 and p = 3.52 × 10−21, respectively). Thus, we further
investigated MALAT1 via RT–qPCR in transfected OE–19 cells vs. those transfected with the
scramble sequence. RNA from untransfected cells was used for data normalization using
the ∆∆Ct method. As reported in Figure 3D, we confirmed the dysregulated expression of
MALAT1 in cells overexpressing either miR221 or miR483–3p (ANOVA test, p = 0.007 and
p = 0.0469, respectively).



Cancers 2024, 16, 591 10 of 16
Cancers 2024, 16, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 3. Differentially expressed genes (DEGs) in transfected OE19 cells. (A) OE19 cells were 
transfected with either miR–221 or miR–483–3p mimic and a scramble negative control (CTR). The 
transfection efficiency was evaluated by RT‒qPCR for miR–221 and miR–483–3p (ANOVA test p < 
0.0001 and p < 0.0001, respectively). After transfection, RNA–seq analysis of DEGs was performed 
vs. cells transfected with negative control. Biological processes of genes (GO–Slim Biological 
processes) differentially expressed in EAC, as identified by PANTHER Functional Classification 
analysis, are reported for (B) mir–221 and for (C) mir–483–3p. (D) Real–time qRT‒PCR data for 
MALAT1 expression. Data from transfected cells (overexpressing either miR–221 (pink circle) or 
miR–483–3p(blue triangle) were compared vs. cells transfected with a negative control CTR (black 
circle) and with untransfected cells (NT, green square) (normalization was performed on a 
commercial pool of esophageal control tissues); human beta–actin was used as an endogenous 
control gene (ANOVA test; p = 0.007 and p = 0.0469).* p < 0.05; ** p < 0.01; *** p < 0.0001. 

For miR–483–3p, we were able to map 172 of the 868 differentially expressed genes. 
Pathway analysis revealed that angiogenesis, Notch and Ras signaling, and cell cycle 
regulation were the main enriched pathways (Figure 3C). Several pathways were shared 

Figure 3. Differentially expressed genes (DEGs) in transfected OE19 cells. (A) OE19 cells were
transfected with either miR–221 or miR–483–3p mimic and a scramble negative control (CTR). The
transfection efficiency was evaluated by RT–qPCR for miR–221 and miR–483–3p (ANOVA test
p < 0.0001 and p < 0.0001, respectively). After transfection, RNA–seq analysis of DEGs was per-
formed vs. cells transfected with negative control. Biological processes of genes (GO–Slim Biological
processes) differentially expressed in EAC, as identified by PANTHER Functional Classification anal-
ysis, are reported for (B) mir–221 and for (C) mir–483–3p. (D) Real–time qRT–PCR data for MALAT1
expression. Data from transfected cells (overexpressing either miR–221 (pink circle) or miR–483–3p
(blue triangle) were compared vs. cells transfected with a negative control CTR (black circle) and
with untransfected cells (NT, green square) (normalization was performed on a commercial pool of
esophageal control tissues); human beta–actin was used as an endogenous control gene (ANOVA
test; p = 0.007 and p = 0.0469).* p < 0.05; ** p < 0.01; *** p < 0.0001.
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4. Discussion

EAC is characterized by high aggressiveness and poor prognosis [36,37]. The possibil-
ity of applying highly powered prognostic algorithms based on pathology and biomolecular
patterns would have a capital role in tailoring therapies according to biological characteris-
tics of EAC and in driving an appropriate choice and timing of therapeutic and surgical
options to improve their efficacy. EAC biological heterogeneity might be a barrier to achiev-
ing this fundamental goal. Several cancer–related characteristics are accelerated by EAC
genomic instability, and some acquired mutations can confer benefits to altered cells in
specific ways [38]. However, when a cancer genome is very heterogeneous, as in EAC, it is
difficult to fully characterize all the mutations, chromosomal rearrangements, and epige-
netic changes that give rise to tumor development and progression [38,39]. In our recent
study, we showed that a combination of high–throughput sorting technology and massive
sequencing could lead to a better definition of the EAC mutational status and inter– and
intratumor heterogeneity than analysis of whole–tumor samples [11]. The identification of
more/better prognostic markers, however, would help to subclassify the different forms of
EACs since the number of drivers per sample is frequently insufficient to fully explain the
disease. Our most recent research developed a diagnostic algorithm that classified specific
histotypes from adenocarcinomas with glandular architecture, further grading the former
and subclassifying the latter. When combined with stage, this morphological differentiation
was shown to have a statistically significant prognostic influence either on its own or when
dichotomized into lower– and higher–risk carcinomas. Indeed, the stage plus combination
showed a high discriminating power for five–year cancer–specific survival [25].

It is a well–known concept that miRNAs can play an active role in tumor development
and progression [16,40]. Specific miRNA signatures have been identified and translated
into clinically relevant diagnostic and prognostic markers in thyroid cancer and hemato-
logical diseases [41,42]. In our study, we found two dysregulated miRNAs, miR–221 and
miR–483–3p, that were reproducibly overexpressed in EAC samples. Their overexpression
had previously been reported in many human cancers, and in vitro and in vivo studies
supported a causal role for tumor progression according to their dysregulated expression.
In particular, in hepatocellular carcinoma, miR–221 overexpression correlates with tumor
aggressiveness in terms of the number of metastases and multifocal lesions [43]. A possible
role of miR–221 in EAC progression has been provided by Matsuzaki and colleagues since
they reported an increased level of miR–221/222 in EAC compared to the surrounding
BE [44]. Furthermore, in EAC, miR–221 is involved in 5–fluorouracile (5–FU) chemoresis-
tance, leading to alteration of the Wnt/β–catenin pathway [45]. In our EAC cohort, we dis-
covered an inverse relationship between increased miR–221 expression and cancer–specific
survival and a significant correlation between increased miR–221 expression and tumor
recurrence. Moreover, when we evaluated miRNA expression within the framework of
the EACGSE categorization that distinguishes different histotypes [25], we observed that
in lower–risk carcinomas, patients with high levels of miR–221 expression had inferior
cancer–specific survival and a significant correlation with recurrence. The correlation be-
tween EACGSE lower and higher risk, miR–221 overexpression, and prognosis was further
corroborated by the analysis using a predictive algorithm of cancer–specific survival.

The hsa–mir–483 gene (encoding both miR–483–5p and miR–483–3p) is a mammalian–con-
served microRNA located within intron 2 of the human insulin growth factor 2 (IGF2)
locus [46], an imprinted gene. Defects in the imprinting of the IGF2 locus are observed in
Beckwith–Wiedemann syndrome, characterized, among other features, by an increased
incidence of pediatric malignancies (nephroblastoma or Wilms’ tumor, hepatoblastoma,
and rhabdomyosarcoma) [47]. miR–483–3p is overexpressed in Wilms’ tumors [48] but also
in adult cancers such as colon, breast, and hepatocellular carcinoma [49–51]. In our EAC
cohort, a lower expression of miR–483–3p was found in EAC tumors at stage I compared
to other more advanced stages, suggesting that the miR–483–3p signature might also be
useful for patient stratification.
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To identify target genes modulated by miRNA upregulation, we enhanced the ex-
pression of miR–221 and miR–483–3p in OE–19 cells, a cell model of EAC that carries
both a loss–of–function TP53 mutation and ERBB2 amplification. We performed a tran-
scriptome analysis to identify the differentially expressed genes in cells overexpressing
the two different miRNAs vs. OE19 cells transfected with a control negative sequence.
Among the transcripts that exhibited significant dysregulation, many were noncoding
genes, suggesting a complex regulatory system influenced by these miRNAs and targeting
the transcription regulatory machinery. Among the protein–coding genes that we found
dysregulated, several genes of interest have already been reported in the literature to be
associated with cancer. For instance, in cells overexpressing miR–221, we observed an
upregulation of FRAT2, AMD1, and MTHFD1L, genes linked to tumor progression, severity,
invasiveness, and worse prognosis [52–60]. ENTP6 was found to be downregulated, as
previously reported in testicular cancer associated with cisplatin resistance [61].

It is interesting to identify MALAT1, a long non–coding RNA involved in cancer metas-
tasis, as a target of both miR221 and miR483–3p overexpression. MALAT1 is aberrantly
expressed in pancreatic cancer, lung cancer, breast cancer, colorectal cancer, gastric cancer,
nasopharyngeal carcinoma, hepatocellular carcinoma, and osteosarcoma [62]. MALAT1 is a
nuclear–enriched and highly conserved lncRNA abundantly expressed in cells and tissues
and is involved in mitochondrial homeostasis, cell proliferation, and apoptosis. It has been
shown that in lung epithelia, MALAT1 downregulation leads to reduced apoptosis and
promotes cell viability [63], suggesting a context–dependent regulation of different cell
processes for this lncRNA. It will be interesting to further evaluate the role and expression
of MALAT1 in additional independent EAC samples [26,34].

Overall, it will be of key importance to expand the analysis of the expression of miR221
and miR483–3p in independent cohorts of EAC patients, also in the context of circulating
fluid (liquid biopsy) testing. Indeed, liquid biopsy has emerged as a promising tool for
diagnosis, prognosis, and patient stratification for personalized therapy for various solid
tumors. Therefore, combining this molecular approach with clinical parameters could help
stratify EAC patients to improve their management with tailored therapies.

5. Conclusions

In conclusion, the study of miR–221 and miR–483–3p expression in our EAC cohort
revealed that they are significantly overexpressed, and this dysregulation is correlated
with worse clinical parameters. RNA sequencing analysis has demonstrated that this
dysregulation leads to differential expression of genes previously reported to have a role in
cancer development and progression.

Moreover, miR–221 profiling seems to be a promising strategy to identify patients
with worse survival, especially in the EACGSE lower–risk group, providing a valuable
molecular parameter to stratify EAC patients.

It will be important to characterize the expression of these miRNAs among circulating
fluids in EAC patients (liquid biopsy). Indeed, liquid biopsy has emerged as a promising
tool for diagnosis, prognosis, and patient stratification related to personalized therapy
for various solid tumors. Therefore, combining this molecular approach with clinical
parameters could help stratify EAC patients to improve their management and address
specific therapeutic options and targets for tailored therapies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16030591/s1, Figure S1: Differential expression of miR–483 in
human tissues, image from the Genotype–Tissue Expression (GTEx) portal. Figure S2. ROC curve
with Youden index method was used to optimize cut–off values for miRNAs classification into a “high
expression” and “low expression” groups. A. miR–221 (cut–off value of 1.32 fold–change; p = 0.003);
B. miR–483–3p (cut–off value of 3.15 fold–change; p = 0.0295). Figure S3. Kaplan–Meier curves show
cancer–related survival for A. EACSGE Higher risk subgroup stratified based on miR–221 expression
levels; B–C. EACSGE Lower (B) and Higher (C) risk subgroup stratified based on miR–483–3p
expression levels. Figure S4: MiRNA expression levels in OE–19 EAC cell lines. A. Expression
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levels in OE–19 and FLO–1 EAC cell lines of miR–221 and miR–483–3p compared to esophageal
healthy control tissue. B. mirVana 221 mimic and 483–3p mimic transient transfection efficiency
was evaluated with RT–qPCR using TaqMan single assay for miR–483–3p normalized with RNU44
(ANOVA test p < 0.0001 and p < 0.0001). Table S1: List of miRNAs differentially expressed in 8 EAC
cases vs. 8 healthy tissues. Table S2: Clinical and epidemiological data for the EAC cases included
in the study. Sex (0 = Male 1 = Female), age, Cancer Specific Survival (CSS, 1 = Death), follow up
(months), stage (1–4), EACSGE classification (L = Lower Risk; H=Higher Risk). Table S3: List of target
genes potentially dysregulated by miR–221 expression according to literature. Table S4: List of target
genes potentially dysregulated by miR–483–3p expression according to literature
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