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Abstract. We consider a variational problem involving competition between surface tension and
charge repulsion. We show that, as opposed to the case of weak (short-range) interactions where we
proved ill-posedness of the problem in a previous paper, when the repulsion is stronger the perime-
ter dominates the capacitary term at small scales. In particular, we prove existence of minimizers
for small charges as well as their regularity. Combining this with the stability of the ball under
small C 1; perturbations, this ultimately leads to the minimality of the ball for small charges. We
cover in particular the borderline case of the 1-capacity where both terms in the energy are of the
same order.
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1. Introduction

In this paper, we consider a geometric variational problem motivated by models for
charged liquid drops recently studied in a series of papers [7, 18, 19, 30–32]. One of the
main features of these problems is the strong competition between surface tension and
charge repulsion. In particular, as opposed to the much studied Gamow liquid drop model
(see [5, 22]), the non-local effects often dominate the cohesive forces leading to singular
behaviors. The aim of the paper is to consider the case of very strong short-range repulsion
between the charges, thus completing the program started in [18].

We now introduce the model. Given ˛ 2 .0; N / and a measurable set E � RN , we
define the Riesz interaction energy of E by

I˛.E/ D inf
�.E/D1

Z
RN�RN

d�.x/ d�.y/

jx � yjN�˛
: (1.1)
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This energy coincides with the inverse of the ˛-capacity; see (2.9). Letting P.E/ denote
the perimeter of E (see [27]), we consider for every charge Q > 0 the functional

F˛;Q.E/ D P.E/CQ
2I˛.E/:

While postponing the discussion about the precise class in which we are minimizing, the
aim of the paper is to study for m > 0 the problem

min
jE jDm

F˛;Q.E/:

By a scaling argument, up to renaming the constant Q, it is enough to consider the case
m D !N , where !N is the volume of the unit ball B1.

This question is motivated by the model for an electrically charged liquid drop in
absence of gravity, introduced by Lord Rayleigh [34] in the physically relevant caseN D 3
and ˛ D 2, and later investigated by many authors (see for instance [12, 18,21, 30, 31,38,
40]). We proved in [18] that, quite surprisingly, for every N � 2 and ˛ 2 .1; N / (in
particular in the Coulomb case ˛ D 2), the problem is ill-posed. Indeed, in that case, we
can show that

inf
jE jD!N ;E smooth

F˛;Q.E/ D P.B1/:

In words, starting from smooth sets the lower semicontinuous envelope of the energy
F˛;Q in L1.RN / reduces to the perimeter. To restore well-posedness of the problem one
needs to impose some extra regularity conditions such as bounds on the curvature [18],
entropic terms [30] or the convexity of competitors [19].

Later on, it was shown in [31] that at least if N D 2 and ˛ D 1, the problem admits
the ball as unique minimizer as long as Q lies below an explicit threshold, and that non-
existence occurs otherwise.

The aim of this paper is to complement the picture in the case ˛ 2 .0; 1� for N � 2.

1.1. Main results

As already mentioned above, the first difficulty with this model is to properly define the
class of competitors. Indeed, while both the perimeter and I˛ are well defined in the
class of smooth compact sets, this class does not enjoy good compactness properties.
For variational problems involving the perimeter, the usual setup is the one of sets of
finite perimeter (see [27]) where we identify two sets E and F if they are equal up to a
Lebesgue-negligible set. However, it is not hard to see that I˛ is not well-behaved under
such identification (we have I˛.E/ D I˛.F / if E D F outside a set of zero ˛-capacity;
see [18]). As advocated in [31, 32] for N D 2 and ˛ D 1, we will consider here the class

� D ¹E � RN W E is compact and P.E/ D HN�1.@E/ < C1º: (1.2)

We will always identify sets in � which differ only on a set of Lebesgue measure zero (and
thus actually agree HN�1 a.e.); see Remark 2.1. The variational problem we consider is
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thus
min

jE jD!N ;E2�
F˛;Q.E/: (1.3)

The main result of this paper is the following.

Theorem 1.1. For everyN � 2 and ˛ 2 .0; 1�, there existsQ0 DQ0.N;˛/ > 0 such that
for every Q � Q0, balls are the only minimizers of (1.3).

We recall that by [18], if ˛ 2 .1;N /, problem (1.3) does not admit minimizers for any
value of Q > 0. The proof of Theorem 1.1 follows the same general scheme as in [22]
(see also [1,3,4,11,29] where similar strategies have been used). Inspired by the proof [6]
of the quantitative isoperimetric inequality, the idea is to prove first existence of (general-
ized) minimizers for the problem. Then the challenge is to prove regularity estimates for
minimizers which are uniform inQ. This allows one, by compactness, to reduce the prob-
lem to a second order Taylor expansion of the energy close to the ball (this is the so-called
Fuglede type argument). As we will now see, in our case all three steps present serious
difficulties. Let us point out that when N D 2 and ˛ D 1, the proof in [31] is of totally
different nature. Indeed, it uses a combination of convexification and Brunn–Minkowski
inequalities.

While it could be interesting to see if this argument could be extended to the case
˛ 2 .0; 1/, it is intrinsically limited to N D 2. We start with existence of minimizers:

Theorem 1.2. For everyN � 2 and ˛ 2 .0; 1�, there existsQ1 DQ1.N;˛/ > 0 such that
for every Q � Q1 minimizers of (1.3) exist.

This result is proven in Theorem 3.11 where we prove actually a bit more. Indeed,
we show that if ˛ < 1, minimizers exist for every Q > 0, at least in a generalized sense
(see Definition 2.2). As in [3, 10, 17, 19], a classical first step is to transform the volume
constraint into a penalization; see Lemma 3.1. Following for example [3, 14, 17, 23, 33]
we would then like to prove Theorem 1.2 through a concentration-compactness argument.
However, since the class � is not closed under L1 convergence and because of the issues
related to the lower semicontinuity of I˛ raised above, it is not clear how to argue directly
for F˛;Q. The idea is thus to first regularize the functional by penalizing concentration of
the charge. While we believe that the precise choice of regularization is not essential, in
line with [30], for " > 0, we replace I˛ by

I˛;".E/ D min
�.E/D1

²Z
RN�RN

d�.x/ d�.y/

jx � yjN�˛
C "

Z
RN

�2
³
:

In particular, this functional is well defined in L1, i.e. I˛;".E/ D I˛;".F / if E D F a.e.,
and we can prove in Proposition 3.7 the existence of (generalized) minimizers.

In order to conclude the proof of Theorem 1.2 and send " to zero, we show in Propo-
sition 3.10 that minimizers enjoy density estimates which are uniform in ". This is a con-
sequence of a first almost-minimality property of minimizers proven in Proposition 3.8.
Indeed, using a relatively simple lower bound from [31] on the Riesz interaction energy
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of the union of two disjoint sets, we show that there exists a constant C > 0 such that if
E is a minimizer for the regularized functional and F is such that E 4 F � Br , then

P.E/ � P.F /C C.Q2
C r˛/rN�˛: (1.4)

The desired density bounds then follow from [20]; see also [27, 37] when ˛ < 1.
We then turn to regularity:

Theorem 1.3. For every N � 2 and ˛ 2 .0; 1�, there exist Q2 D Q2.N; ˛/ > 0 and  D
.N; ˛/ 2 .0; 1=2/ such that for Q � Q2 minimizers of (1.3) are uniformly .in Q/ C 1; .

This result is contained in Proposition 3.12 for ˛ < 1 (see also Remark 3.15) and
Proposition 3.21 for ˛ D 1. On the one hand, we see from (1.4) that when ˛ < 1, we may
directly appeal to the classical regularity theory for almost-minimizers of the perimeter
(see [27, 37]), and there is nothing to prove.

On the other hand, when ˛ D 1 the situation is much more delicate. In fact, Proposi-
tion 3.21 may be seen as one of the main achievements of this paper. When ˛ D 1, while
(1.4) is in general too weak to obtain C 1; regularity, it is still strong enough to yield
Reifenberg flatness of E (see Definition 3.13) when Q� 1 as recently shown in1 [20].

In order to improve it to the fullC 1; regularity we rely on a second almost-minimality
property. We show in Proposition 3.16 that if �E is the optimal charge distribution for E,
i.e. �E is a minimizer in (1.1), and if E 4 F � Br , then

P.E/ � P.F /C C

�
Q2

�Z
Br

�
2N
NC1

E

�NC1
N

C rN
�
: (1.5)

The proof is inspired by [7, Proposition 4.5]. Notice, however, that we have to deal with
difficulties which are quite different from the ones in [7]. Indeed, on the one hand our
operator is smooth (here it is just the half Laplacian, see (2.5)) as opposed to [7] where
the heart of the problem is the presence of irregular coefficients. On the other hand, in our
case the charge distribution �E is, a priori, just a measure while in [7] it is known to be a
function in L1. In fact, in light of (1.5), the main point here is to prove good integrability
properties of �E . This is done in Lemmas 3.17 and 3.18 where we prove that for any
 2 .0; 1=2/, if E is a sufficiently Reifenberg flat set, then�Z

Br

�
2N
NC1

E

�NC1
N

� CrN�1C2 : (1.6)

By comparing this result with the case of the ball, we can see that this estimate is optimal.
It may be seen as an extension to irregular domains of the boundary regularity for the
fractional Laplacian developed in [35]. As in the case of the Laplacian considered in [25],
the main ingredient for the proof is the monotonicity formula of Alt–Caffarelli–Friedman.

1As a matter of fact, the present paper served as motivation for [20].
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Combining (1.5) and (1.6) we find that also for ˛ D 1, minimizers of (1.3) are actually
classical almost-minimizers of the perimeter and thus Theorem 1.3 follows.

Let us point out that our proof actually applies to a more general class of functionals.
Indeed, for ƒ � 0 we say that E is a ƒ-minimizer of F˛;Q if for every set F ,

F˛;Q.E/ � F˛;Q.F /CƒjE 4 F j:

Arguing as in Theorem 1.3 we can prove the following result (we state it only for ˛ D 1
since ˛ 2 .0; 1/ is simpler):

Theorem 1.4. For every  2 .0; 1=2/, there is NQ D NQ.N; / > 0 such that for every
Q � NQ and ƒ � 0, every ƒ-minimizer E of F1;Q is C 1; regular outside a singular set
† with†D ; ifN � 7,† is locally finite ifN D 8 and satisfies H s.†/D 0 if s > N � 8
and N � 9.

In particular, this answers a question left open in [32].
Thanks to Theorem 1.3 and the quantitative isoperimetric inequality, if Q is small

enough then up to translation any minimizer of (1.3) is nearly spherical. By this we mean
that fixing  2 .0; 1/ (which remains implicit), jEj D !N , the barycenter of E is at zero
and there is � W @B1 ! R with k�kC1; .@B1/ � 1 such that

@E D ¹.1C �.x//x W x 2 @B1º:

The proof of Theorem 1.1 is thus concluded once we show the minimality of the ball
among nearly spherical sets:

Theorem 1.5. Let ˛ 2 .0; 2/. There existQ3 DQ3.N; ˛; / > 0 and " D ".N; ˛; / > 0
such that for every nearly spherical set E with k�kW 1;1.@B1/

� ", and every Q � Q3,

F˛;Q.B1/ � F˛;Q.E/:

Moreover, equality is attained only if E D B1.

This shows in particular the stability of the ball under small C 1; perturbations if Q
is small enough. The counterpart of Theorem 1.5 for the Coulomb case ˛ D 2 has been
obtained in [18, Theorem 1.7]. The main point of the proof is to show in Proposition 4.5
that

I˛.B1/ � I˛.E/ � C.Œ��
2
H˛=2.@B1/

C Œ��2
H .2�˛/=2.@B1/

/:

The proof of this quantitative estimate for I˛ follows the same general strategy as in [18].
As there, the difficulty comes from the fact that the optimal measure �E is not explicitly
given in terms ofE. There are however some important differences between the Coulomb
case ˛ D 2 and the non-local case ˛ 2 .0; 2/. In the Coulomb case, the charges are con-
centrated on the boundary. This makes it easier to express the Riesz interaction energy in
terms of � with respect to the case ˛ 2 .0; 2/ where the optimal measure �E has support
equal to E. Another difficulty here comes from the blow-up of �E near @E.

The last result of this paper is a non-existence result in dimension 2.
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Theorem 1.6. LetN D 2 and ˛ 2 .0; 1�. Then there existsQ4 DQ4.N;˛/ > 0 such that
for Q � Q4, there are no minimizers of (1.3).

The paper is divided into four parts. In Section 2, we collect the precise notation and
definitions used in the paper. In Section 3, we prove Theorems 1.2 and 1.3 about existence
and regularity of minimizers for (1.3). We then prove Theorem 1.5 in Section 4. The last
short section is dedicated to the proof of the non-existence result, Theorem 1.6.

2. Notation

We will use the notation A . B to indicate that there exists a constant C > 0, typically
depending on the dimension N and on ˛, such that A � CB (we will specify when C
depends on other quantities). We write A � B if A . B . A. We use in hypotheses the
notation A� B to indicate that there exists a (typically small) universal constant " > 0
depending only on N and ˛ such that if A � "B then the conclusion of the statement
holds.

For a measurable set E � RN and an open set � � RN , we denote by jEj the
Lebesgue measure of E and by P.E; �/ its relative perimeter in �. When � D RN

we simply write P.E/ (see [27]). We use @E for the topological boundary of E, @ME for
the measure-theoretic boundary and @�E for the reduced boundary.

2.1. Fractional Sobolev spaces, Laplacians and capacities

We collect here some standard notation and basic properties of fractional Sobolev spaces,
Laplacians and capacities. We refer for instance to [9, 24, 26] for more information. For
the Fourier transform we use the convention

yu.�/ D

Z
RN

e�2i���xu.x/ dx:

For s 2 R we then define the (homogeneous) H s seminorm as

Œu�2
H s.RN / D

Z
RN
j�j2sjyuj2d�:

When there is no risk of confusion we simply write Œu�H s for Œu�H s.RN /. We define the
s-fractional Laplacian by its Fourier transform:

2.��/su D j�j2syu;

so that by the Parseval identity,

Œu�2
H s.RN / D

Z
RN

u.��/su:



Isoperimetric problem with strong capacitary repulsion 7

For s 2 .0; 1/, there exists C.N; s/ > 0 such that

.��/su.x/ D C.N; s/

Z
RN

u.x/ � u.y/

jx � yjNC2s
dy; (2.1)

where the integral is understood in the principal value sense. We then have an alternative
formula for the H s seminorm,

Œu�2
H s.RN / D

C.n; s/

2

Z
RN�RN

.u.x/ � u.y//2

jx � yjNC2s
dx dy: (2.2)

We will also use fractional Sobolev spaces defined on the unit sphere @B . For these
we take (2.2) as starting point and define, for � W @B ! R and s 2 .0; 1/,

Œ��2H s.@B/ D

Z
@B�@B

.�.x/ � �.y//2

jx � yjN�1C2s
dx dy: (2.3)

Let us point out a slight abuse of notation here: we do not distinguish between the volume
measure on RN and the one on the sphere. We recall that for 0 < s < s0 < 1, if we denote
N� D 1

P.B/

R
@B
� we haveZ
@B

.� � N�/2 . Œ��2H s.@B/ � 2
2.s0�s/Œ��2

H s
0
.@B/

.
Z
@B

jr�j2; (2.4)

where we write r� for the tangential gradient and where the implicit constants depend
on N , s and s0. Indeed, the first inequality follows from Cauchy–Schwarz asZ

@B

.� � N�/2 �
1

P.B/2

Z
@B

�Z
@B

j�.x/ � �.y/j dy

�2
dx

�
1

P.B/2

Z
@B

�Z
@B

.�.x/ � �.y//2

jx � yjN�1C2s
dy

��Z
@B

jx � yjN�1C2s dy

�
dx

.
Z
@B�@B

.�.x/ � �.y//2

jx � yjN�1C2s
dx dy:

The second inequality in (2.4) is immediate while the third can be deduced from [8, Propo-
sition 2.4 and Remark 2.8].

For ˛ 2 .0; N / and � a Radon measure, we define the Riesz interaction energy of �
as

I˛.�/ D

Z
RN�RN

d�.x/ d�.y/

jx � yjN�˛
:

With this notation, definition (1.1) becomes

I˛.E/ D min
�.E/D1

I˛.�/:

Remark 2.1. Recalling the definition (1.2) of � , we see that for ˛ 2 .0; 1�, I˛ is well
defined in � in the sense that ifE;F 2 � with jE 4F j D 0 then actually HN�1.E 4F /

D 0 and thus I˛.E/ D I˛.F / (since I˛.E 4 F / D1, see e.g. [28, Theorem 8.7]).
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For every ˛ 2 .0; N /, there exists a constant C 0.N; ˛/ > 0 such that for any Radon
measure �, the associated potential

u.x/ D

Z
RN

d�.y/

jx � yjN�˛

satisfies (see [26])
.��/˛=2u D C 0.N; ˛/� in RN : (2.5)

In particular, since

I˛.�/ D

Z
RN

ud� D

Z
RN
.��/˛=2u.��/�˛=2� D C 0.N; ˛/

Z
RN

�.��/�˛=2�;

we have
I˛.�/ D C

0.N; ˛/Œ��2
H�˛=2.RN /

: (2.6)

Similarly,

I˛.�/ D
1

C 0.N; ˛/
Œu�2
H˛=2.RN /

: (2.7)

Moreover, ifE is compact and�E is the equilibrium measure ofE, i.e. I˛.E/D I˛.�E /,
then the corresponding potential uE satisfies

uE � I˛.E/ on EI (2.8)

see [18, 24] for a precise justification. We finally point out that if we define the fractional
capacity as

C˛.E/ D
1

I˛.E/
;

then it is not hard to check that at least for smooth enough sets E, uE=I˛.E/ is a mini-
mizer of

min
v��E ; v!0 at1

Œv�2
H˛=2.RN /

;

so that by (2.7) and (2.2),

C˛.E/ D
C.N; ˛=2/

C 0.N; ˛/
inf

u2C1c .RN /; u��E

Z
RN�RN

.u.x/ � u.y//2

jx � yjNC2s
dx dy: (2.9)

We refer to [24, 28] for further information on fractional capacities.

2.2. Generalized sets and minimizers

For (possibly finite) sequences zE D .Ei /i�1 of sets z� D .�i /i�1 of measures, we define

I˛.z�/ D
X
i

I˛.�
i /; (2.10)

I˛. zE/ D inf
z�

°
I˛.z�/ W

X
i

�i .Ei / D 1
±
; P. zE/ D

X
i

P.Ei /: (2.11)

Notice that since I˛.z�C z�0/ � I˛.z�/, when minimizing over z�, we may assume without
loss of generality that �i is concentrated on Ei .
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Definition 2.2. Define a generalized set to be a collection zE D .Ei /i�1 of sets as above,
and set

j zEj D
X
i

jEi j: (2.12)

For Q > 0, we define the energy of the generalized set as

F˛;Q. zE/ D P. zE/CQ
2I˛. zE/:

We say that zE 2 �N is a (volume-constrained) generalized minimizer for F˛;Q if, for any
collection zF 2 �N of sets with j zF j D j zEj, we have

F˛;Q. zE/ � F˛;Q. zF /:

3. Existence and regularity of minimizers

3.1. Relaxation of the volume constraint

For ƒ > 0, we relax the volume constraint by considering

F˛;Q;ƒ. zE/ D F˛;Q. zE/Cƒ
ˇ̌
j zEj � !N

ˇ̌
: (3.1)

Our first result is that for ƒ large enough the relaxed problem coincides with the con-
strained one.

Lemma 3.1. For every ˛ 2 .0;N /, Q > 0 and every ƒ� 1CQ2, we have

inf
zE2�N

¹F˛;Q. zE/ W j zEj D !N º D inf
zE2�N

F˛;Q;ƒ. zE/: (3.2)

Moreover, for such ƒ, if zE is a minimizer of the right-hand side of (3.2), then j zEj D !N .

Proof. Since the left-hand side of (3.2) is larger than the right-hand side, it is enough to
prove the remaining inequality. Let ƒ � 1 CQ2 and assume that there exists zE with
j zEj ¤ !N and

F˛;Q;ƒ. zE/ � inf
zE2�N

¹F˛;Q. zE/ W j zEj D !N º:

Using B1 as competitor we find

P. zE/CQ2I˛. zE/Cƒ
ˇ̌
j zEj � !N

ˇ̌
. 1CQ2: (3.3)

In particular, if t D !1=NN j zEj�1=N , then we can write t D 1C ı with jıj . ƒ�1.1CQ2/

� 1. We now use t zE D .tEi /i�1, which satisfies jt zEj D !N , as competitor and find,
using Taylor expansion, (3.3) and ƒ� 1CQ2, that

ƒjıj . ı
�
.N � 1/P. zE/ � .N � ˛/Q2I˛. zE/

�
: (3.4)

Now if ı � 0, this implies

ƒı . ıP. zE/
(3.3)
. ı.1CQ2/



M. Goldman, M. Novaga, B. Ruffini 10

and thus ƒ . 1 CQ2, contrary to the hypothesis ƒ� 1 CQ2. In the case ı � 0 we
reach the same contradiction since (3.4) yields this time

ƒjıj . jıjQ2I˛. zE/
(3.3)
. jıj.1CQ2/:

3.2. The regularized functional

As mentioned in the introduction, since the capacitary term I˛ is not well defined in L1,
which is the natural setting to minimize the perimeter, we will first show existence of
(generalized) minimizers for a regularized energy. For " > 0 and a positive measure � we
define

I˛;".�/ D I˛.�/C "

Z
RN

�2 D

Z
RN�RN

d�.x/ d�.y/

jx � yjN�˛
C "

Z
RN

�2

with the understanding that I˛;".�/D1 if�…L2.RN /. We then define, for z�D .�i /i�1
and zE D .Ei /i�1, in analogy with (2.10) and (2.11),

I˛;".z�/ D
X
i

I˛;".�
i /; I˛;". zE/ D inf

z�

°
I˛;".z�/ W

X
i

�i .Ei / D 1
±
: (3.5)

Remark 3.2. If E and F are two measurable sets with jE 4 F j D 0 then I˛;".E/ D

I˛;".F /. Indeed, every measure � with I˛;".�/ < 1 is in L2 and thus �.E/ D
�.F /. When considering I˛;" instead of I˛ we can therefore identify sets which agree
Lebesgue a.e.

Lemma 3.3. Let zE D .Ei /i�1 be a generalized set with j zEj 2 .0;1/. Then .recall defi-
nition (2.12)/

"

j zEj
� I˛;". zE/ �

c.N; ˛/

j zEj
N�˛
N

C
"

j zEj
; (3.6)

where
c.N; ˛/ D

Z
B1�B1

1

jx � yjN�˛
dx dy:

Proof. We start with the upper bound. Let m D j zEj and for every i � 1 let B i be a ball
such that jB i j D jEi j. Choosing �i D �E i =m in the definition of I˛;". zE/ and recalling
the Riesz rearrangement inequality, we get

I˛;". zE/ �
1

m2

X
i

Z
E i�E i

dx dy

jx � yjN�˛
C
"

m

�
1

m2

X
i

Z
Bi�Bi

dx dy

jx � yjN�˛
C
"

m

D
c.N; ˛/

m2

X
i

jEi j1C˛=N C
"

m

�
c.N; ˛/

m
N�˛
N

C
"

m
:



Isoperimetric problem with strong capacitary repulsion 11

To obtain the lower bound we simply observe that for every z�D .�i /i�1 with
P
i �

i .Ei /

D 1 we have, by Cauchy–Schwarz,

"1=2 D "1=2
X
i

�i .Ei /�
�X
i

jEi j
�1=2�

"
X
i

Z
E i
.�i /2

�1=2
�m1=2I˛;".z�/

1=2: (3.7)

The desired bound follows by minimizing in z�.

As a consequence of Lemma 3.3, we can prove the existence of an optimal measure
for I˛;". zE/.

Corollary 3.4. For every " > 0 and every generalized set zE D .Ei /i�1 with j zEj <1
and I˛;". zE/ <1, there exists a unique optimal measure z� for I˛;". zE/.

Proof. Uniqueness follows from strict convexity of the energy so we only focus on the
existence part of the statement. We first notice that from the definition (3.5) of I˛;" we
have

I˛;". zE/ D inf
°X
i

q2i I˛;".E
i / W

X
i

qi D 1
±
: (3.8)

Hence, the existence of an optimal z� follows if we can prove that, on the one hand, for
every fixed set E of finite volume, there exists an optimal measure for I˛;".E/, and on
the other hand, there exists an optimal distribution .qi /i�1 of charges for (3.8).

We thus start by considering a fixed set E with jEj C I˛;".E/ < 1 and prove the
existence of an optimal charge �. If �n is a minimizing sequence, arguing as in (3.7) we
find that for every R > 0,

�n.B
c
R/ � "

�1=2
jE \ BcRj

1=2I˛;".�n/
1=2:

Therefore �n is tight and we can extract a sequence converging weakly in L2.RN / to
a measure � with �.E/ D 1. By lower semicontinuity of I˛;" (see [24, (1.4.5)]), � is a
minimizer for I˛;".E/.

We now turn to the existence of an optimal charge distribution .qi /i�1. For this we
first observe that from the first inequality in (3.6),X

i

I˛;".E
i /�1 �

1

"

X
i

jEi j <1

and thus in particular limI!1
P
i�I I˛;".E

i /�1 D 0. Now for every .qi /i�1 and every
I 2 N, by Cauchy–Schwarz,X

i�I

qi �
�X
i�I

q2i I˛;".E
i /
�1=2�X

i�I

I˛;".E
i /�1

�1=2
;

so that tightness of minimizing sequences follows, leading to the existence of an optimal
distribution .qi /i�1.

In order to prove that generalized minimizers are almost-minimizers of the perimeter,
we will need the following lemma which is adapted from [31, Lemma 2] (see also [32,
Lemma 13]).
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Lemma 3.5. For every generalized set zE D .E [ F / � .Ei /i�2 with E and F sets of
positive measure such that jE \ F j D 0 define zF D F � .Ei /i�2. Then

I˛;". zE/ � I˛;". zF / �
I˛;". zF /

2

I˛;".E/
: (3.9)

Proof. We first show that

I˛;". zE/ � min
�2Œ0;1�

Œ�2I˛;".E/C .1 � �/
2I˛;". zF /�: (3.10)

Let z� D .�i /i�1 be optimal for I˛;". zE/. We may assume without loss of generality
that �1.E/ ¤ 0 and �1.F / C

P
i�2 �

i .Ei / ¤ 0 since otherwise in the first case we
would have I˛;". zE/ D I˛;". zF /, and in the second case I˛;". zE/ D I˛;".E/, which both
imply (3.9). We now define

� D
�1jE

�1.E/
; �1 D

�1jF

1 � �1.E/
; �i D

�i

1 � �1.E/
; 8i � 2:

With this definition,� is admissible for I˛;".E/ and z�D .�i /i�1 is admissible for I˛;". zF /

and we have

I˛;".�
1/ � .�1.E//2

�Z
E�E

d�.x/ d�.y/

jx � yjN�˛
C "

Z
E

�2
�

C .1 � �1.E//2
�Z

F�F

d�1.x/ d�1.y/

jx � yjN�˛
C "

Z
F

.�1/2
�

D .�1.E//2I˛;".�/C .1 � �
1.E//2I˛;".�

1/;

so that by definition (3.5) of I˛;".z�/,

I˛;". zE/ � .�
1.E//2I˛;".�/C .1 � �

1.E//2I˛;".z�/

� .�1.E//2I˛;".E/C .1 � �
1.E//2I˛;". zF /:

This proves (3.10). Optimizing in � together with the inequality .1 C t /�1 � 1 � t for
t � 0 yields (3.9).

3.3. Existence of generalized minimizers for the regularized energy

In line with (3.1), we introduce the regularized energy

F˛;Q;ƒ;". zE/ D P. zE/CQ
2I˛;". zE/Cƒ

ˇ̌
j zEj � !N

ˇ̌
:

The aim of this section is to prove the existence of minimizers for this functional. We start
with the simple observation that for F˛;Q;ƒ;", minimizing among classical or generalized
sets gives the same infimum energy.

Lemma 3.6. For every ˛ 2 .0;N /, Q, ƒ, " > 0, we have

inf F˛;Q;ƒ;".E/ D inf F˛;Q;ƒ;". zE/: (3.11)



Isoperimetric problem with strong capacitary repulsion 13

Proof. Since the left-hand side of (3.11) is larger than the right-hand side, it is enough
to prove that for every ı > 0 and every generalized set zE D .Ei /i�1, we can construct a
set E with F˛;Q;ƒ;".E/ � F˛;Q;ƒ;". zE/C ı. For I 2 N and R > 0, let F i D Ei \BR if
i � I and F i D ; otherwise, and set zF D .F i /i�1. We first observe that for each fixed i ,
limR!1 jE

i \ BRj D jE
i j. Combining this with the fact that

P
i jE

i j <1 we see that
we can choose I and R large enough so that

ƒ
ˇ̌̌ IX
iD1

jF i j � !N

ˇ̌̌
� ƒ

ˇ̌
j zEj � !N

ˇ̌
C ı: (3.12)

Moreover, thanks to the co-area formula we may further assume that

IX
iD1

P.F i / � P. zE/C ı: (3.13)

We now turn to the last term in the energy. Let z� D .�i /i�1 be the optimal measure for
I˛;". zE/ given by Corollary 3.4. We then set

�i D
�i jF iPI
iD1 �

i .F i /
for i � I

and �i D 0 otherwise so that z� D .�i /i�1 is admissible for I˛;". zF /. Since
PI
iD1 �

i .F i /

converges to 1 as I !1 and R!1, we can also assume that I and R are chosen such
that in addition to (3.12) and (3.13) we have

Q2I˛;".z�/ D
Q2

.
PI
iD1 �

i .F i //2

� IX
iD1

Z
F i�F i

d�i .x/ d�i .y/

jx � yjN�˛
C "

Z
F i
.�i /2

�
� Q2I˛;". zE/C ı: (3.14)

We finally choose for every i � I a point xi 2 RN such that mini¤j jxi � xj j � R and
define

E D

I[
iD1

.F i C xi / and �.x/ D

IX
iD1

�i .x � xi /:

Since F i � BR by construction, the sets F i C xi are pairwise disjoint and from (3.12)
and (3.13) we have

P.E/Cƒ
ˇ̌
jEj � !N

ˇ̌
D

IX
iD1

P.Ei /Cƒ
ˇ̌̌ IX
iD1

jF i j � !N

ˇ̌̌
� P. zE/Cƒ

ˇ̌
j zEj � !N

ˇ̌
C 2ı:

Finally, we observe that � is admissible for I˛;".E/ with

Q2I˛;".�/ D Q
2I˛;".z�/CQ

2
X
i¤j

Z
F i�F j

d�i .x/ d�j .y/

jx � yjN�˛

� Q2I˛;".z�/C
Q2

mini¤j jxi � xj jN�˛
(3.14)
� Q2I˛;".z�/C 2ı
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provided mini¤j jxi � xj j is large enough. Since I˛;".E/ � I˛;".�/, we find as antici-
pated that

F˛;Q;ƒ;".E/ � F˛;Q;ƒ;". zE/C 4ı:

We can now prove the existence of generalized minimizers for F˛;Q;ƒ;". This will be
proven by a concentration-compactness argument which relies on isoperimetric effects
to avoid the loss of mass, together with the semicontinuity of I˛;" with respect to L1loc
convergence. This type of argument is relatively standard by now (see for instance [3]
which we closely follow or [14,17,23,33]). However, we face here the additional difficulty
that we need to avoid not only loss of volume but also loss of charge in the limit.

Proposition 3.7. For every ˛ 2 .0; 1�, Q > 0, " > 0 and ƒ � 1 C Q2, generalized
minimizers of F˛;Q;ƒ;" exist.

Proof. Let .En/n�1 be a (classical) minimizing sequence for F˛;Q;ƒ;". By Lemma 3.6
it is also a minimizing sequence in the class of generalized sets. Using for instance
the ball B1 as competitor we have supn F˛;Q;ƒ;".En/ . 1 C Q2. In particular, if we
let mn D jEnj, after possibly taking a subsequence we have mn ! m 2 .0;1/. Fix
L�m1=N and consider a partition of RN into cubes .Qi;n/i�1 whereQi;nD Œ0;L�NCzi
with zi;n 2 .LZ/N . We letmi;n D jEn \Qi;nj and assume without loss of generality that
for every n, mi;n is decreasing in i . Moreover, we tacitly consider from now on only
the indices i such that mi;n > 0. We let �n be the optimal measure for I˛;".En/ and set
qi;n D �n.Qi;n/.

We start by proving tightness of .mi;n/i�1 and .qi;n/i�1. For mi;n, we argue as usual
that thanks to the relative isoperimetric inequality (recall that with our choice of L,
jQi;n \Enj � jQi;nj=2)X

i

m
N�1
N

i;n .
X
i

P.En;Qi;n/ D P.En/ . 1CQ2:

Since mi;n � m=i we conclude that for every I 2 N,X
i�I

mi;n �

�
m

I

�1=N X
i�I

m
N�1
N

i;n . .1CQ2/

�
m

I

�1=N
: (3.15)

For qi;n we argue as in (3.7) and obtain, invoking Cauchy–Schwarz twice,X
i�I

qi;n �
X
i�I

m
1=2
i;n

�Z
En\Qi;n

�2n

�1=2
�

�X
i�I

mi;n

�1=2�Z
RN

�2n

�1=2
(3.15)
. "�1=2.1CQ2/

�
m

I

� 1
2N

:

Therefore, up to taking a subsequence we have limn!1mi;n D mi with
P
i mi D m and

limn!1 qi;n D qi with
P
i qi D 1.
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We now construct a generalized set zE which will be our generalized minimizer. By
the perimeter bound, up to a subsequence we have, for every i , En � zi;n ! Ei in L1loc
for some sets Ei . Moreover, �in D �n.� C zi;n/ converges weakly in L2 to some �i . We
can further assume that jzi;n � zj;nj ! aij 2 Œ0;1� for all i; j . We now say that i � j if
aij <1 and denote by Œi � the equivalence class of i . Notice that if i � j then Ei and Ej

are translates of each other. For each equivalence class we denote

mŒi� D
X
j�i

mj and qŒi� D
X
j�i

qj

so that
P
Œi�mŒi� D m and

P
Œi� qŒi� D 1. For every i , using the convergence of En � zi;n

to Ei and of �in to �i , and the definition of the equivalence relation, we have

jEi j D mŒi� and �i .Ei / D qŒi�:

Up to relabeling, we may now assume that each equivalence class Œi � consists of a single
element. If we set zE D .Ei /i�1 and z�D .�i /i�1, we have just shown that z� is admissible
for I˛;". zE/. Let us finally prove that

P. zE/CQ2I˛;".z�/Cƒ
ˇ̌
j zEj �!N

ˇ̌
� lim inf

n!1
P.En/CQ

2I˛;".�n/Cƒ
ˇ̌
jEnj �!N

ˇ̌
:

We consider each term of the energy separately. Since j zEj D m D limn!1 jEnj, the
volume term is not a problem. For the first term, we fix I 2 N and R > 0. If n is large
enough, we can assume that jzi;n � zj;nj �R for i; j � I distinct. By the co-area formula
we can find for every i � I a radius Rn 2 .R; 2R/ such thatX

i�I

HN�1.@BRn.zi;n/ \En/ .
1

R
:

If Ei;Rn D .En � zi;n/ \ BRn , we thus haveX
i�I

P.Ei;Rn/ � P.En/C
C

R
:

From this bound we see that Ei;Rn converges in L1loc to a set Ei;R which itself converges
to Ei as R!1. We thus haveX

i�I

P.Ei / �
X
i�I

lim inf
R!1

P.Ei;R/ �
X
i�I

lim inf
R!1

lim inf
n!1

P.Ei;Rn/ � lim inf
n!1

P.En/:

For the last term, we use similarly the fact that for every fixed I 2 N and R > 0,X
i�I

I˛;".�
i
jBR/ � lim inf

n!1

X
i�I

I˛;".�
i
njBR/ � lim inf

n!1
I˛;"

�X
i�I

�njBR.zi;n/

�
� lim inf

n!1
I˛;".�n/:
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3.4. First almost-minimality property and existence of minimizers for the original
problem

In this section we use Lemma 3.5 to prove a first almost-minimality property for gener-
alized minimizers of F˛;Q;ƒ;". In order to pass to the limit "! 0 it is crucial that the
estimates are uniform in ".

Proposition 3.8. There exists C > 0 depending only on N and ˛ 2 .0; N / with the fol-
lowing property. For every Q > 0, " 2 .0; 1/ and ƒ � 1 C Q2 for which Lemma 3.1
applies, every generalized minimizer zE D .Ei /i�1 of F˛;Q;ƒ;" is an almost minimizer of
the perimeter in the sense that for every i � 1, x 2 RN and r � 1,

P.Ei / � P.F /C C.Q2
C r˛/rN�˛ 8F 4Ei � Br .x/: (3.16)

Proof. Without loss of generality we may assume that i D 1 and x D 0. To simplify
notation a bit we set E D E1. Using zF D F � .Ei /i�2 as competitor and the minimality
of zE we have after simplifications

P.E/ � P.F /CQ2
�
I˛;". zF / � I˛;". zE/

�
CƒjE 4 F j: (3.17)

Since P.E \ F /C P.E [ F / � P.E/C P.F /, it is enough to prove (3.16) under the
additional condition E � F or F � E. If E � F then I˛;". zE/ � I˛;". zF / and thus (3.16)
follows from jE 4 F j . rN .

We are left with the case F � E. Writing E D F [ .E n F / and appealing to (3.9)
from Lemma 3.5, we have

I˛;". zF / � I˛;". zE/ �
I2˛;".

zF /

I˛;".E n F /
: (3.18)

Now on the one hand, since by Lemma 3.1, jEj C
P
i�2 jE

i j D !N , it follows that
jF j C

P
i�2 jE

i j D!N � jE nF j& 1 (recall that r� 1) and thus by (3.6) of Lemma 3.3,

I˛;". zF / . 1:

On the other hand, since E n F � Br we have

I˛;".E n F / � I˛;".Br /C " inf
�.Br /D1

Z
Br

�2 & r�.N�˛/ C "r�N � r�.N�˛/: (3.19)

Putting these two things together, (3.18) yields

I˛;". zF / � I˛;". zE/ . rN�˛:

Plugging this together with jE 4 F j . rN in (3.17) concludes the proof of (3.16).

Remark 3.9. From (3.19) we see that we can improve (3.16) to

P.Ei / � P.F /C C
�
Q2 min.r�˛; "�1/C 1

�
rN 8F 4Ei � Br .x/:

This means that for every ˛ 2 .0; N /, if r � "1=˛ then the classical regularity theory
for perimeter almost-minimizers applies (see [27]). In particular, for ˛ D 2, this gives



Isoperimetric problem with strong capacitary repulsion 17

a very elementary proof of the regularity of minimizers for the functional considered in
[7,30] if the permittivity of the droplet is assumed to coincide with the permittivity of the
vacuum (see however [7, Remark 4.6] where it is observed that this assumption would
also simplify their proof).

At this point we see the difference between the cases ˛ > 1 and ˛ � 1. Indeed, in the
latter case, thanks to (3.16), we may appeal to the regularity theory for almost-minimizers
of the perimeter (since N � ˛ � N � 1). We start with the simpler part which consists of
the density estimates. Since the cases ˛ < 1 and ˛D 1 are treated differently, we introduce
the notation 1˛D1 D 1 if ˛ D 1 and 1˛D1 D1 if ˛ 2 .0; 1/.

Proposition 3.10. For every ˛ 2 .0; 1� andQ > 0 letƒ � 1CQ2 be such that Proposi-
tion 3.8 applies. Then, for every " 2 .0; 1�, and every generalized minimizer zE D .Ei /i�1
of F˛;Q;ƒ;", if max.Q2r1�˛; r/ � 1 and x 2 @MEi .recall that @M is the measure-
theoretic boundary/,

min.jEi \ Br .x/j; jBr .x/ nEi j/ & rN (3.20)

and
P.Ei ; Br .x// � r

N�1: (3.21)

As a consequence, there exists Q1 > 0 such that for Q � NQ � Q11˛D1, up to the choice
of a representative, every generalized minimizer is made up of finitely many Ei , each of
which is connected, is in � and has @Ei D @MEi . Moreover, the number of such compo-
nents as well as their diameter depends only on NQ.

Proof. Estimates (3.20) and (3.21) follow directly from [20, Proposition 3.1]. For ˛ < 1
they can also be obtained (under slightly stronger hypothesis on r) from the more classical
theory; see for instance [27].

The regularity of the minimizers as well as the bound on the number and diameter
of the connected components is classical (see e.g. [22]) once we observe that for every
Q � NQ � Q11˛D1 there is Nr depending only on NQ such that max.Q2 Nr1�˛; Nr/� 1 for
every Q � NQ. The fact that we may assume that each component Ei of zE is a single
connected component follows from I˛;".E [F /� I˛;".E �F / for any disjointE,F .

Before stating the full conclusions of the regularity theory for perimeter almost-min-
imizers, let us conclude the proof of the existence of generalized volume-constrained
minimizers of F˛;Q.

Theorem 3.11. Let Q1 be given by Proposition 3.10. Then for every 0 < Q � NQ �

Q11˛D1 there exist generalized minimizers zE D .Ei /IiD1 2 �N of

min
zE2�N

¹F˛;Q. zE/ W j zEj D !N º:

Moreover, for each i � I , Ei is a perimeter almost-minimizer in the sense of (3.16) and
both I and diam.Ei / are bounded by a constant depending only on NQ.
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Proof. Let ƒ � 1C NQ2 be such that both Lemma 3.1 and Proposition 3.7 apply. By the
latter, for every " 2 .0;1� andQ� NQ, there exists a generalized minimizer zE" of F˛;Q;ƒ;".
Moreover, by Proposition 3.10, zE" D .Ei"/

I
iD1 for some connected sets Ei 2 � , where

both I and the diameters of Ei depend only on NQ. Thanks to the uniform density bounds
(3.20) and (3.21) we can extract a subsequence for which Ei" converges both in L1 and in
the Kuratowski sense to some Ei 2 � . By compactness of perimeter almost-minimizers
(see [20]), Ei satisfies (3.16). We set zE D .Ei /i�I . Using I˛;". zE"/ � I˛. zE"/ and the
fact that I˛ is lower semicontinuous under this convergence (see e.g. [18, Theorem 4.2]),
we obtain

lim inf
"!0

F˛;Q;ƒ;". zE"/ � F˛;Q;ƒ. zE/:

We now prove that

inf
zF 2�N

F˛;Q;ƒ. zF / � lim sup
"!0

inf
zF 2�N

F˛;Q;ƒ;". zF /;

which combined with the previous inequality will show that zE is a generalized minimizer
of F˛;Q;ƒ as

F˛;Q;ƒ. zE/ � inf
zF 2�N

F˛;Q;ƒ. zF /:

Arguing exactly as in Lemma 3.6, we see that it is enough to prove that for every F 2 � ,
there exists a sequence F" such that

lim sup
"!0

F˛;Q;ƒ;".F"/ � F˛;Q;ƒ.F /: (3.22)

By [36] applied to F c , we can find smooth compact sets Fı with F � Fı , P.F ı/ �
P.F /C ı and

ˇ̌
jF j � jF ı j

ˇ̌
� ı. Since I˛.F / � I˛.F

ı/ as F � F ı , we have (actually
there is equality)

lim sup
ı!0

F˛;Q;ƒ.F
ı/ � F˛;Q;ƒ.F /;

and we can thus further assume that F is smooth in the proof of (3.22). For smooth sets,
by [18, Proposition 2.16],2 we can find for every ı > 0 a function fı 2 L1.F / withR
F
fı D 1 and such that

I˛.fı/ � I˛.F /C ı:

Since for every ı > 0, lim"!0 I˛;".fı/ D I˛.fı/, a diagonal argument shows that I˛.F /

D lim"!0 I˛;".F /. Using F" D F we conclude the proof of (3.22).
As zE is a generalized minimizer of F˛;Q;ƒ, Lemma 3.1 implies that j zEj D !N and

thus zE is also a volume-constrained generalized minimizer of F˛;Q.

We end this section by recalling the regularity properties of generalized minimizers
and show in particular that for small charge Q they are actually classical minimizers. We
start with the case ˛ < 1.

2The statement of [18, Proposition 2.16] requires F to be connected but the proof works for
disconnected sets as well.
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Proposition 3.12. For ˛ 2 .0; 1/ and Q > 0 let zE D .Ei /IiD1 be a volume-constrained
generalized minimizer of F˛;Q. Then the sets @�Ei .recall that @� denotes the reduced
boundary/ are C 1;

1
2 .1�˛/ regular. Moreover, if we denote †i D @Ei n @�Ei , then for

every i , †i is empty if N � 7, is at most finite if N D 8, and satisfies H s.†i / D 0 if
s > N � 8 and N � 9.

In addition, forQ� 1, zE DEQ is a classical volume-constrained minimizer of F˛;Q,
†.EQ/ D ; and for every ˇ < 1

2
.1 � ˛/, EQ converges in C 1;ˇ to B1 as Q! 0.

Proof. The conclusion follows from the classical regularity theory for perimeter almost-
minimizers; see [27, 37] and the fact that by the quantitative isoperimetric inequality, up
to translation and relabeling,�

jE1 4 B1j C
X
i�2

jEi j
�2

. P. zE/ � P.B1/ � Q
2I˛.B1/;

which implies in conjunction with (3.20) that for Q small enough, Ei D ; for i � 2 (so
that zE D E1 is a classical minimizer) together with the convergence to B1.

For ˛ D 1 it is well known that in general (3.16) does not even imply C 1 regularity.
In order to state the counterpart of Proposition 3.12 in this case, let us first recall the
definition of Reifenberg flat sets.

Definition 3.13. Let ı; r0 > 0 and x 2 RN . We say that E is .ı; r0/-Reifenberg flat in
Br0.x/ if for everyBr .y/�Br0.x/, there exists a hyperplaneHy;r containing y and such
that

� we have
1

r
d
�
@E \ Br .y/;Hy;r \ Br .y/

�
� ı;

where d denotes the Hausdorff distance;

� one of the connected components of

¹d.�;Hy;r / � 2ırº \ Br .y/

is included in E and the other in Ec .

We say that E is uniformly .ı; r0/-Reifenberg flat if the above conditions hold for every
x 2 @E.

Proposition 3.14. Let ˛ D 1. There exists Q2 > 0 such that for every Q � Q2, every
volume-constrained generalized minimizer of F˛;Q is a classical minimizer. Moreover, for
every ı > 0, there existQı ; rı > 0 such that for everyQ �Qı , every volume-constrained
minimizer EQ of F˛;Q is uniformly .ı; rı/-Reifenberg flat and up to translation,

jEQ 4 B1j
2 . Q2:

Proof. The proof goes exactly as that for Proposition 3.12, replacing the classical regu-
larity theory by [20, Corollary 1.4].



M. Goldman, M. Novaga, B. Ruffini 20

3.5. Second almost-minimality property and regularity of minimizers

The aim of this section is to prove that in the case ˛ D 1, we can pass from the Reifenberg
flatness of volume-constrained minimizers of F˛;Q stated in Proposition 3.14 to almost
C 1;1=2 regularity. This will be obtained by proving a second almost-minimality property
for minimizers together with a higher integrability result for the optimal measure �.

Remark 3.15. Let us point out that using a similar proof for ˛ 2 .0; 1/, it would be
possible to improve the C 1;

1
2 .1�˛/ regularity from Proposition 3.12 to almost C 1;1=2.

However, in this case, the proof of the integrability of � can be greatly simplified by
appealing directly to [35] (see also (4.5) below). Moreover, we expect that any C 1;ˇ

regularity may be improved to higher regularity through the Euler–Lagrange equation
(see [32]).

We start with the quasi-minimality property.

Proposition 3.16. There exists C > 0 depending only on N with the following property.
If Q � 1 and E is a volume-constrained minimizer of F1;Q with �E the corresponding
1=2-harmonic measure, i.e. I1.E/ D I1.�E /, then for every x 2 RN and 0 < r � 1,

P.E/ � P.F /C C

�
Q2

�Z
Br .x/

�
2N
NC1

E

�NC1
N

C rN
�
8E 4 F � Br .x/:

Proof. Without loss of generality we may assume that x D 0 and �E 2 L
2N
NC1 .Br / since

otherwise there is nothing to prove. By Lemma 3.1, there exists a universal constantƒ> 0
(recall that Q � 1) such that E is a minimizer of

F1;Q.E/Cƒ
ˇ̌
jEj � !N

ˇ̌
:

Arguing as in the proof of Proposition 3.8, we see that it is enough to prove that for every
F � E with E n F � Br ,

I1.F / � I1.E/C C

�Z
EnF

�
2N
NC1

E

�NC1
N

: (3.23)

In order to prove (3.23) we follow the general strategy of [7, Proposition 4.5] and use

� D

�
�E C

�E .E n F /

jF j

�
�F

as a competitor for I1.F /. We define

uE .x/ D

Z
E

d�E .y/

jx � yjN�1
and u.x/ D

Z
E

d�.y/

jx � yjN�1
;

the potentials associated to �E and �. We recall from (2.5) that u solves on RN the
equation

.��/1=2u D C 0.N; 1/�;
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and that by (2.7),
1

C 0.N; 1/
Œu�2
H1=2

D

Z
E

ud� D I1.�/:

Let us notice that since uE D I1.E/ on E (recall (2.8)), and since �E .E/ D �.E/ D 1,Z
E

uE d.� � �E / D 0: (3.24)

Since I1.F / � I1.�/ and I1.E/ D I1.�E /, we have

I1.F / � I1.E/ �

Z
E

ud� �

Z
E

uE d�E

D

Z
E

.u � uE / d.� � �E /C

Z
E

ud�E �

Z
E

uE d�E :

Using Fubini we have Z
E

ud�E D

Z
E

uE d�
(3.24)
D

Z
E

uE d�E

and we get

I1.F / � I1.E/ �

Z
E

.u � uE / d.� � �E / D
1

C 0.N; 1/
Œu � uE �

2
H1=2

:

We now estimate Œu� uE �2H1=2 . For this, using the Hölder inequality and Sobolev embed-
ding we write

Œu � uE �
2
H1=2

D

Z
E

.u � uE / d.� � �E /

� ku � uEk
L
2N
N�1
k� � �Ek

L
2N
NC1

. Œu � uE �H1=2k� � �Ek
L
2N
NC1

:

Using the Young inequality leads to

I1.F / � I1.E/ . Œu � uE �
2
H1=2

. k� � �Ek2
L
2N
NC1

:

We are left with estimating k� � �Ek
L
2N
NC1

. By definition of �, we have � � �E D
�E .EnF /
jF j

�F � �E�EnF and thus

k� � �Ek
2

L
2N
NC1

D

�Z
E

ˇ̌̌̌
�E .E n F /

jF j
�F � �E�EnF

ˇ̌̌̌ 2N
NC1

�NC1
N

D

�Z
F

�
�E .E n F /

jF j

� 2N
NC1

C

Z
EnF

�
2N
NC1

E

�NC1
N

.
�E .E n F /

2

jF j
N�1
N

C

�Z
EnF

�
2N
NC1

E

�NC1
N

jF j&1

. �E .E n F /
2
C

�Z
EnF

�
2N
NC1

E

�NC1
N

:
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Finally, by the Hölder inequality,

�E .E n F /
2
�

�Z
EnF

�
2N
NC1

E

�NC1
N

jE n F j
N�1
N .

�Z
EnF

�
2N
NC1

E

�NC1
N

:

This concludes the proof of (3.23).

From Proposition 3.16, we see that in order to prove that E is a perimeter
almost-minimizer in the classical sense, it is enough to show decay estimates for
k�Ek

L
2N
NC1 .Br .x//

for x 2 @E. We start by proving the following Hölder estimate for

the potentials.

Lemma 3.17. For every ı > 0, there exists  2 .0; 1=2/ with  ! 1=2 as ı! 0 such that
if E is a bounded .ı; r0/-Reifenberg flat domain then

j1 � I1.E/
�1uE j .

d.�; @E/

r

0

; (3.25)

where uE .x/ D
R
E

d�E .y/

jx�yjN�1
and �E is such that I1.E/ D I1.�E /.

Proof. By scaling we may assume that r0 D 1. We follow the ideas from the proofs of
[25, 39] and use the Alt–Caffarelli–Friedman monotonicity formula to show (3.25). Let
u D 1 � I1.E/

�1uE and v be the harmonic extension of u to RNC1C . Since u 2 Œ0; 1�,
also v 2 Œ0; 1�. Notice that since u � 1, it is enough to prove (3.25) in ¹d.�; @E/� 1º.
For every x 2 RNC1C and every r > 0, we let BCr .x/ D Br .x/ \RNC1C and @CBr .x/ D
@Br .x/ \RNC1C . We claim that

1

rN�1

Z
B
C
r .x/

jrvj2 . r2
Z
B
C

1
.x/

jrvj2

jx � yjN�1
80 < r � 1 (3.26)

for some exponent  > 0 with  ! 1=2 as ı ! 0 and

sup
RNC1
C

Z
B
C

1
.x/

jrvj2

jx � yjN�1
. 1: (3.27)

Provided (3.26) and (3.27) hold, we can conclude the proof of (3.25) using the Poincaré
inequality, Campanato’s criterion and vD 0 inE � ¹0º. Eventually we show that ! 1=2

as ı ! 0. We devote a step to each of these three claims.

Step 1: Proof of (3.26). We first observe that it is enough to consider x 2 @E � ¹0º.
Indeed, assume the statement is proven in that case. Then for x … @E � ¹0º, using either
odd reflection or even reflection with respect to xNC1 D 0 we may assume that v is
harmonic in Br .x/ for every r � Nr D min.1; d.x; @E � ¹0º//. It is then a classical fact
that

r 7!
1

rNC1

Z
Br .x/

jrvj2
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is increasing (this follows for instance from subharmonicity of jrvj2, which is itself a
consequence of the Bochner formula). Therefore for any 0 �  � 1,

1

rN�1

Z
B
C
r .x/

jrvj2 �

�
r

Nr

�2
1

NrN�1

Z
B
C

Nr
.x/

jrvj2 �

�
r

Nr

�2
1

NrN�1

Z
B
C

Nr
.x/

jrvj2:

If Nr � 1 then (3.26) follows from the case x 2 @E � ¹0º. If instead Nr & 1, then�
r

Nr

�2
1

NrN�1

Z
B
C

Nr
.x/

jrvj2 . r2
Z
B
C

Nr
.x/

jrvj2

jx � yjN�1
� r2

Z
B
C

1
.x/

jrvj2

jx � yjN�1
;

which proves (3.26) also in this case.
Let now x 2 @E � ¹0º. Without loss of generality we may assume that x D 0. For

every r > 0, let3

�.r/ D min
²R

@CBr
jr�vj

2R
@CBr

v2
W v D 0 on E � ¹0º \ @BCr

³
be the first eigenvalue of the Laplacian on the half-sphere with Dirichlet boundary condi-
tions on E. Define then the function

.�/ D

s�
N � 1

2

�2
C � �

N � 1

2

and then
 D min

r�1
.r2�.r//:

We claim that for r 2 .0; 1�, the function

ˆ.r/ D
1

r2

Z
B
C
r

jrvj2

jxjN�1

is increasing. For this we follow almost verbatim the proof of [39, Theorem 2.6] (see also
[39, Lemmas 2.10, 2.11]). In particular, a regularization argument is required to make rig-
orous all the computations below but we refer the reader to [39] for the details. Computing
the logarithmic derivative of ˆ, we have

ˆ0

ˆ
D �2



r
C

�Z
@CBr

jrvj2

jxjN�1

��Z
B
C
r

jrvj2

jxjN�1

��1
;

and it is therefore enough to prove that�Z
@CBr

jrvj2

jxjN�1

��Z
B
C
r

jrvj2

jxjN�1

��1
� 2



r
: (3.28)

3We denote by r� the tangential gradient on the sphere and by @� the normal derivative.
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We first claim thatZ
B
C
r

jrvj2

jxjN�1
�

1

rN�1

Z
@CBr

v@�v C
N � 1

2rN

Z
@CBr

v2: (3.29)

For this we notice that since � D jxj1�N is the Green function of the Laplacian on RNC1,
we have �� � 0 and moreover, since it is radially symmetric, we have @NC1� D 0 if
xNC1 D 0. Using integration by parts we have (using the fact that v@�v D 0 on @BCr \
¹xNC1 D 0º)Z

B
C
r

jrvj2� D

Z
@B
C
r

v�@�v �

Z
B
C
r

1

2
r.v2/ � r�

D

Z
@CBr

�v@�v �

Z
@B
C
r

1

2
v2@�� C

1

2

Z
B
C
r

v2��

�

Z
@CBr

�v@�v �

Z
@CBr

1

2
v2@��

D
1

rN�1

Z
@CBr

v@�v C
N � 1

2rN

Z
@CBr

v2:

This proves (3.29). We thus have�Z
@CBr

jrvj2

jxjN�1

��Z
B
C
r

jrvj2

jxjN�1

��1
D

�
r1�N

Z
@CBr

jrvj2
��Z

B
C
r

jrvj2�

��1
(3.29)
�

�
r1�N

Z
@CBr

jrvj2
��
r1�N

�Z
@CBr

v@�v C
N � 1

2r

Z
@CBr

v2
���1

�

�Z
@CBr

jr�vj
2
C

Z
@CBr

j@�vj
2

�
�

��Z
@CBr

v2
�1=2�Z

@CBr

.@�v/
2

�1=2
C
N � 1

2r

Z
@CBr

v2
��1

D

�R
@CBr

jr�vj
2R

@CBr
v2

C

R
@CBr

j@�vj
2R

@CBr
v2

���R
@CBr

j@�vj
2R

@CBr
v2

�1=2
C
N � 1

2r

��1
� min

t>0

�.r/C t2

t C N�1
2r

:

A direct computation shows that the above minimum is attained for tmin D
1
r
.r2�.r//

and that mint>0
�.r/Ct2

tCN�12r
D 2tmin D

2
r
.r2�.r// so that eventually�Z

@CBr

jrvj2

jxjN�1

��Z
B
C
r

jrvj2

jxjN�1

�
�
2

r
.r2�.r// �

2

r
:
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This concludes the proof of (3.28). By monotonicity of ˆ we have

1

r2CN�1

Z
B
C
r

jrvj2 � ˆ.r/ � ˆ.1/ D

Z
B
C

1

jrvj2

jxjN�1

and the proof of (3.26) with  D  is complete.

Step 2: Proof of (3.27). For R� 1 we haveZ
B
C

1
.x/

jrvj2

jx � yjN�1
�

Z
B
C

R
.x/

jrvj2

jx � yjN�1

(3.29)
.

1

RN�1

Z
@CBR.x/

jvj j@�vj C
1

RN

Z
@CBR.x/

v2

jvj�1

.
1

RN�1

Z
@CBR.x/

j@�vj C 1:

Since v.z/D 1� I1.E/
�1
R
E

d�.y/

jz�yjN�1
and since E is bounded, if R is large enough and

z 2 @CBR.x/ then

jrv.z/j .
I1.E/

�1

jzjN

and thus
1

RN�1

Z
@CBR.x/

j@�vj .
I1.E/

�1

RN�1
:

Letting R!1, we conclude the proof of (3.27).

Step 3: Asymptotic of N and conclusion. We finally show that  ! 1=2 as ı ! 0. Since
.�/ is an increasing function of � and since for every r > 0, �.r/ is monotone under
inclusion (i.e. if we make the dependence in E explicit, then F � E implies �F .r/ �
�E .r/), it is enough to prove that Hı .r/! 1=2 where

Hı D ¹x1 � �ıº:

If ı D 0, then H0.r/ D 1=2 [39, Proposition 2.12]. Since Hı .r/ does not depend on r ,
it is enough to consider r D 1 and drop the dependence on r .

The proof is then concluded by observing that ı 7! �Hı is continuous as ı ! 0.
Indeed, this can be proven by an easy �-convergence argument. If uı is a minimizer
for �Hı , then up to normalization we may assume that

R
@CB1

u2
ı
D 1 so that uı is bounded

in H 1.@CB1/ and its trace on Hı is bounded in H 1=2. Therefore, a subsequence con-
verges weakly inH 1.@CB1/ to a function u0 which vanishes onH0 (by compact embed-
ding of H 1=2 in L2 for instance). Hence u0 is admissible for �H0 and we have

�H0 � lim inf
ı!0

�Hı � lim inf
ı!0

Z
@CB1

jr�uı j
2
�

Z
@CB1

jr�u0j
2
� �H0 :

We now convert estimate (3.25) on the potential into the desired statement on �E .
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Lemma 3.18. For every  2 .0; 1=2/, there exists ı0 > 0 such that for every r0 > 0 and

every .ı; r0/-Reifenberg flat domain E with ı � ı0, �E 2 L
2N
NC1

loc .RN / and for every
x 2 RN and r < r0=2 we have�Z

Br .x/

�
2N
NC1

E

�NC1
N

. rN�1C2 ; (3.30)

where the implicit constant depends on N ,  , r0 and jEj.

Proof. Let  D .ı/ be given by Lemma 3.17. We first derive from (3.25) the following
estimate on �E :

�E . d.�; @E/�.1�/: (3.31)

If uE denotes the associated potential, then

C 0.N; 1/�E .x/
(2.5)
D .��/1=2uE .x/

(2.1)
D C.N; 1=2/

Z
Ec

I1.E/ � uE .y/

jx � yjNC1
dy

(3.25)
.

I1.E/

r

0

Z
Ec

d.y; @E/

jx � yjNC1
dy

.
I1.E/

r

0

Z
Bc
d.x;@E/

.x/

dz

jzjNC1�

.
I1.E/

r

0

d.x; @E/�.1�/ . d.x; @E/�.1�/;

where in the last line we have used the fact that if B is a ball of measure jEj then I1.E/�

I1.B/. This follows for instance from the fractional Pólya–Szegő inequality [15] and the
capacitary definition (2.9) of I1 (see also [2]).

We now prove (3.30). We may assume without loss of generality that x D 0 and
j � 1=2j� 1. ForP >0, we set�P Dmin¹�E ;P º. Clearly�P is an integrable function
and �P ! � a.e. in E. Moreover, since 0 � �P � �, �P satisfies inequality (3.31). We
first claim that there exist C0;C1 > 0 such that for every x 2 @E and every r � r0=2 there
exists a set A.x/ � @E such that

]A.x/ � C1ı
1�N (3.32)

and Z
Br .x/

�
2N
NC1

P � C0r
N� 2N

NC1
.1�/

C

X
y2A.x/

Z
B5ır .y/

�
2N
NC1

P : (3.33)

Again, there is no loss of generality by restricting ourselves to x D 0. Recall that by
Definition 3.13, since E is .ı; r0/-Reifenberg flat, for every r � r0=2 there exists an
hyperplane Hr such that

d.@E \ Br ;Hr \ Br / � ır:
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In particular, ifNr D¹y 2Br W d.y;Hr / > 2ırºwe have d.y;@E/� d.y;Hr / for y 2Nr ,
so that Z

Br

�
2N
NC1

P �

Z
Nr

�
2N
NC1

P C

Z
Br\N

c
r

�
2N
NC1

P

(3.31)
� CrN�1

Z r

2ır

dt

t
2N
NC1

.1�/
C

Z
Br\N

c
r

�
2N
NC1

P

� C0r
N� 2N

NC1
.1�/

C

Z
Br\N

c
r

�
2N
NC1

P :

We now estimate the last term on the right-hand side. By the triangle inequality,
for every x 2 N c

r \ Br , d.x; @E \ Br / � 3ır and thus setting r1 D 5ır we find that
¹Br1.y/ºy2@E\Br is a covering of N c

r \Br . By the Vitali covering lemma we can extract
a finite subset of points A � @E \ Br such that

� ¹Br1=5.y/ºy2A consists of pairwise disjoint balls,

� ¹Br1.y/ºy2A is still a covering of N c
r \ Br .

Since Br1=5.y/ D Bır .y/ � N
c
r \ B.1Cı/r for y 2 A, the first condition gives

rN1 ]A . jN c
r \ B.1Cı/r j � .ır/r

N�1;

which, by definition of r1, yields (3.32). The second condition givesZ
Br\N

c
r

�
2N
NC1

P �

X
y2A

Z
Br1 .y/

�
2N
NC1

P ;

concluding the proof of (3.33).
For k � 0, we set rk D .5ı/kr and define recursively A0 D ¹0º and

Ak D
[

x2Ak�1

A.x/:

From (3.32) we have
]Ak � .C1ı

1�N /k ; (3.34)

and thus applying recursively (3.33) we find, for K � 0,Z
Br

�
2N
NC1

P � C0

KX
kD0

.]Ak/r
N� 2N

NC1
.1�/

k
C

X
y2AKC1

Z
BrKC1 .y/

�
2N
NC1

P :

By definition of �P we haveX
y2AKC1

Z
BrKC1 .y/

�
2N
NC1

P � .]AKC1/jBrKC1 jP
2N
NC1

. .C1ı
1�N /K.5ı/KN rNP

2N
NC1

D .5NC1ı/
KrNP

2N
NC1 :
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Thus, if 5NC1ı < 1 we can let K !1 to obtain, from the definition of rk and (3.34),Z
Br

�
2N
NC1

P � C0

�X
k�0

.C2ı
1� 2N

NC1
.1�//k

�
rN�

2N
NC1

.1�/;

where C2 D C15N�
2N
NC1

.1�/. Finally if j � 1=2j � 1, then 2N
NC1

.1 � / < 1 and thus
provided ı is small enough, the sum converges and we have (notice that all the constants
involved are independent of P )�Z

Br

�
2N
NC1

P

�NC1
N

. rN�1C2 :

Letting P !1 concludes the proof of (3.30).

Remark 3.19. We point out that this estimate is essentially optimal, as can be seen from
the case E D B1; see [24, Chapter II.13] and Section 4 below.

Remark 3.20. A quick inspection of the proof shows that for every q < 2,�E 2L
q
loc.R

N /

ifE is ı-Reifenberg flat with ı small enough. This is again optimal in light of the boundary
behavior of the 1=2-harmonic measure of the ball; see [24, Chapter II.13] and Section 4
below. This higher integrability (with respect to L

2N
NC1 ) would not, however, be sufficient

by itself to obtain the regularity of volume-constrained minimizers of F˛;Q, so that we
need the more precise estimate (3.30).

Combining Proposition 3.14 with Proposition 3.16 and Lemma 3.18 we find that for
small charge Q every volume constrained minimizer of F1;Q is also a perimeter almost-
minimizer for which the classical regularity theory applies (see [27]) so that we have the
counterpart of Proposition 3.12.

Proposition 3.21. Let ˛ D 1. For every  2 .0; 1=2/ there exists Q.;N / > 0 such that
for every Q � Q.; N /, every volume-constrained minimizer EQ of F1;Q is C 1; with
uniformly bounded C 1; norm. As a consequence, for every ˇ <  , up to translation, EQ
converges in C 1;ˇ to B1 as Q! 0.

4. Rigidity of the ball for small charges

In this section we prove Theorem 1.5, i.e. we show that for every ˛ 2 .0; 2/ and small
enough charge Q, the ball is the unique minimizer of F˛;Q under volume constraints in
the class of nearly spherical sets.

Before embarking on the proof let us set some notation and make a few preliminary
remarks. First, recall that fixing an arbitrary  2 .0; 1/, we say thatE is nearly spherical if
jEj D jBj (whereB DB1 is the unit ball),E has barycenter 0 and there exists � W @B!R
with k�kC1; .@B/ � 1 such that

@E D ¹.1C �.x//x W x 2 @Bº:
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With a slight abuse of notation we still denote by � its 0-homogeneous extension out-
side @B , that is, the function RN 3 x 7! �.x=jxj/. We recall from [16] that if E is nearly
spherical, we have ˇ̌̌̌Z

@B

�

ˇ̌̌̌
.
Z
@B

�2: (4.1)

In particular, if k�kW 1;1.@B/ � 1, recalling the notation N� D 1
P.B/

R
@B
� we have, for

s 2 .0; 1/, Z
@B

�2 .
Z
@B

.� � N�/2
(2.4)
. Œ��2H s.@B/: (4.2)

For two Radon measures � and � on RN , we define the positive bilinear operator
(see [24])

I˛.�; �/ D

Z
RN�RN

d�.x/ d�.y/

jx � yjN�˛
:

In particular, we have I˛.�/ D I˛.�; �/. We let �E be the optimal measure of E and
let uE .x/ D

R
E

d�E
jx�yjN�˛

be the associated potential. When there is no risk of confusion
we drop the index E from both. In the specific case of the unit ball B we have, by [24,
Chapter II.13],

�B.x/ D
C˛

.1 � jxj2/˛=2
�

1

d.x; @B/˛=2
:

We sometimes write �x D �.x/. In particular, if E is nearly spherical and � is the corre-
sponding parametrization, we set T .x/ D .1C �x/x for x 2 B , so that E D T .B/. We
then define g D T �1# �E (which is a probability measure on B) so that

I˛.E/ D

Z
B�B

dgx dgy

jT .x/ � T .y/jN�˛
: (4.3)

We can now begin the proofs. We first prove that g has the same behavior as �B close
to @B .

Lemma 4.1. Let ˛ 2 .0; 2/ and let E be a nearly spherical set. Then its optimal measure
satisfies, for x … @B ,

g.x/ .
1

d.x; @B/˛=2
� �B.x/: (4.4)

Proof. The proof resembles the proof of Lemma 3.18, taking advantage of the regularity
of E to obtain a sharp estimate. We first show that � D �E satisfies

�.x/ .
1

d.x; @E/˛=2
: (4.5)

Recall that by (2.5) and (2.8),´
.��/˛=2u.x/ D 0; x 2 Ec ;

u.x/ � I˛.E/ D 0; x 2 E:



M. Goldman, M. Novaga, B. Ruffini 30

Thus, by the boundary regularity theory for the fractional Laplacian developed in [35],

u.x/ � I˛.E/ . d.x; @E/˛=2:

Hence, arguing as in the proof of Lemma 3.18 we compute, for x 2 E,

C 0.N; ˛/�.x/
(2.5)
D .��/˛=2u.x/

(2.1)
D C.N; ˛=2/

Z
Ec

I˛.E/ � u.y/

jx � yjNC˛=2
dy

.
Z
Ec

d.y; @E/˛=2

jx � yjNC˛
dy .

Z
Bc
d.x;@E/

.x/

dz

jzjNC˛�˛=2

. d.x; @E/�˛=2:

Since g.x/ D .1C �x/N�..1C �x/x/ with j�j � 1=4, up to choosing ı small enough
we obtain

g.x/ . �..1C �x/x/ .
1

d..1C �x/˛=2x; @E/
:

Thus (4.4) follows provided

d..1C �x/x; @E/ �
ˇ̌
1 � jxj

ˇ̌
: (4.6)

Let us prove (4.6). Since

d..1C �x/x; @E/ D min
y2@B
j.1C �x/x � .1C �y/yj;

testing with y D x=jxj we obtain the upper bound

d..1C �x/x; @E/ � .1C �x/
ˇ̌
1 � jxj

ˇ̌
. j1 � jxjj:

To get the lower bound we may assume that
ˇ̌
1 � jxj

ˇ̌
� 1. Squaring we get

d..1C �x/
2x; @E/

D min
y2@B
j.1C �x/x � .1C �y/yj

2

D min
y2@B
¹.1C �x/

2
jxj2 � 2.1C �x/.1C �y/x � y C j1C �y j

2
º

D min
y2@B

²
.1C �x/

2
jxj2 � 2.1C �x/.1C �y/jxj C j1C �y j

2

C 2.1C �x/.1C �y/x �

�
x

jxj
� y

�³
D min
y2@B

²
.1C �x/

2

ˇ̌̌̌
jxj �

1C �y

1C �x

ˇ̌̌̌2
C 2.1C �x/.1C �y/.jxj � y � x/

³
& min
y2@B

²ˇ̌̌̌
jxj � 1C

�x � �y

1C �x

ˇ̌̌̌2
C .jxj � y � x/

³
:

Now for every y, either jxj � y � x &
ˇ̌
jxj � 1

ˇ̌2 or jxj � y � x �
ˇ̌
jxj � 1

ˇ̌2. The first
case directly leads to the conclusion of the proof of (4.6). In the second case, writing
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x D r� with � 2 @B , this means that j� � yj2 D 1
2r
.jxj � x � y/�

ˇ̌
jxj � 1

ˇ̌2 and thus
j�x � �y j . j� � yj �

ˇ̌
jxj � 1

ˇ̌
from which we find that for every y 2 @B ,ˇ̌̌̌

jxj � 1C
�x � �y

1C �x

ˇ̌̌̌2
C .jxj � y � x/ &

ˇ̌
jxj � 1

ˇ̌2
;

and the claim follows as well.

Next we state and prove two lemmas giving the Taylor expansion of the term
jT .x/ � T .y/j�.N�˛/ appearing in (4.3).

Lemma 4.2. For x; y 2 B , we have

jT .x/ � T .y/j2 D jx � yj2
�
1C �x C �y C �x�y C  .x; y/

�
; (4.7)

where

 .x; y/ D
1

2
.jxj2 C jyj2/

�
�x � �y

jx � yj

�2
C .jxj C jyj/

�
1 �

1

2
.�x C �y/

�
�x � �y

jx � yj
: (4.8)

Proof. Expanding the squares we get

jT .x/ � T .y/j2 D
ˇ̌
.x � y/C 1

2
..x C y/.�x � �y/C .x � y/.�x C �y//

ˇ̌2
D jx � yj2 C .jxj2 � jyj2/.�x � �y/C jx � yj

2.�x C �y/

C
1
4
jx C yj2j�x � �y j

2
C

1
4
jx � yj2j�x C �y j

2

C
1
2
.jxj2 � jyj2/.�2x � �

2
y /:

Comparing with (4.7) we are left with the proof of

1
4
jx C yj2j�x � �y j

2
C

1
4
jx � yj2j�x C �y j

2

D
1
2
.jxj2 C jyj2/.�x � �y/

2
C jx � yj2�x�y :

For this we write .�x C �y/2 D .�x � �y/2 C 4�x�y to get

1
4
jx C yj2j�x � �y j

2
C

1
4
jx � yj2j�x C �y j

2

D
1
4
j�x � �y j

2.jx C yj2 C jx � yj2/C jx � yj2�x�y

D
1
2
.jxj2 C jyj2/.�x � �y/

2
C jx � yj2�x�y :

As a consequence we get the following Taylor expansion of jT .x/ � T .y/j�.N�˛/.

Lemma 4.3. Set y̨ D N � ˛. If k�kW 1;1.@B/ � 1 then for x; y 2 B ,

jT .x/ � T .y/j�.N�˛/

D jx � yj�.N�˛/
��
1 �
y̨

2
�x

��
1 �
y̨

2
�y

�
�
y̨

2
 .x; y/C �.x; y/

�
; (4.9)
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where
j�.x; y/j . �2x C �

2
y C  .x; y/

2; (4.10)

and where  is the function defined in (4.8).

Proof. Let us first point out that under our hypothesis we have k kL1 � 1. Indeed, this
follows from k�kW 1;1.@B/ � 1 and

jxj C jyj

jx � yj
.

1ˇ̌
x
jxj
�

y
jyj

ˇ̌ C 1: (4.11)

This inequality may be easily seen using for instance polar coordinates. That is, if x D r�
and y D sv then�

jxj C jyj

jx � yj

�2
D

r2 C s2

jr � sj2 C rsj� � vj2

D
jr � sj2

jr � sj2 C rsj� � vj2
C

2rs

jr � sj2 C rsj� � vj2

� 1C
2

j� � vj2
:

We then obtain the result by (4.7) and Taylor expansion.

The next result contains one of the key linearization estimates we need to obtain our
rigidity result.

Lemma 4.4. Let E be a nearly spherical set with k�kW 1;1.@B/ � 1. Then for every
˛ 2 .0; 2/ and " > 0,ˇ̌̌̌

I˛.E/ � I˛

��
1 �
y̨

2
�

�
g

�ˇ̌̌̌
." Œ��2H .2�˛/=2.@B/ C Œ��

2
H1=2C".@B/

; (4.12)

where .1 � y̨
2
�/g is seen as a measure on B .recall that � is extended by 0-homogeneity

on RN / and y̨ D N � ˛.

Proof. We fix " > 0. In view of (4.9) and (4.3), it is enough to prove thatˇ̌̌̌Z
B�B

 .x; y/

jx � yjN�˛
dgx dgy

ˇ̌̌̌
C

ˇ̌̌̌Z
B�B

�.x; y/

jx � yjN�˛
dgx dgy

ˇ̌̌̌
." Œ��2H .2�˛/=2.@B/ C Œ��

2
H1=2C".@B/

:

Recall that from the proof of Lemma 4.3, k�kL1.@B/ � 1 implies k kL1 � 1. More-
over, by the radial symmetry of �B and the 0-homogeneity of � we haveZ

B�B

�2x
jx � yjN�˛

dgx dgy
(4.4)
.
Z
B�B

�2x
d�B.x/ d�B.y/

jx � yjN�˛
D

I˛.B/

HN�1.@B/

Z
@B

�2

(4.2)
. Œ��2

H .2�˛/=2.@B/
: (4.13)
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Hence, by (4.10) we are left with the proof ofˇ̌̌̌Z
B�B

 .x; y/

jx � yjN�˛
dgx dgy

ˇ̌̌̌
." Œ��2H .2�˛/=2.@B/ C Œ��

2
H1=2C".@B/

:

By symmetry in x and y we haveZ
B�B

.�x � �y/
jxj C jyj

jx � yjN�˛
dgx dgy D 0:

Moreover, the Young inequality yields

.jxj C jyj/j�x C �y j
j�x � �y j

jx � yj
. .jxj2 C jyj2/

�
�x � �y

jx � yj

�2
C �2x C �

2
y ;

so that by (4.13) and the definition (4.8) of  , we just need to proveZ
B�B

.jxj2 C jyj2/

�
�x � �y

jx � yj

�2
1

jx � yjN�˛
dgx dgy

." Œ��2H .2�˛/=2.@B/ C Œ��
2
H1=2C".@B/

:

Using (4.11) and (4.4) we haveZ
B�B

.jxj2 C jyj2/

�
�x � �y

jx � yj

�2
1

jx � yjN�˛
dgx dgy

.
Z
B�B

��
�x � �yˇ̌
x
jxj
�

y
jyj

ˇ̌�2 C .�x � �y/2� d�B.x/ d�B.y/
jx � yjN�˛

.
Z
B�B

�
�x � �yˇ̌
x
jxj
�

y
jyj

ˇ̌�2 d�B.x/ d�B.y/
jx � yjN�˛

C

Z
@B

�2;

where we have used the Young inequality and formula (4.13) to estimate the second term
in the last inequality. Thanks to (4.2), we may further reduce the proof of (4.12) toZ

B�B

�
�x � �yˇ̌
x
jxj
�

y
jyj

ˇ̌�2 d�B.x/ d�B.y/
jx � yjN�˛

." Œ��2H .2�˛/=2.@B/ C Œ��
2
H1=2C".@B/

: (4.14)

Recalling that �B.x/ . .1 � jxj/�˛=2 and writing x and y in polar coordinates x D r�
and y D sv, with r; s 2 R and �; v 2 @B , we getZ
B�B

�
�x � �yˇ̌
x
jxj
�

y
jyj

ˇ̌�2 d�B.x/ d�B.y/
jx � yjN�˛

.
Z
@B�@B

�
�.�/��.v/

j��vj

�2�Z 1

0

Z 1

0

rN�1sN�1

j1�r j˛=2j1�sj˛=2
dr ds

.jr�sj2Crsj��vj2/.N�˛/=2

�
� d� dv

D

Z
@B�@B

�
�.�/ � �.v/

j� � vj

�2
F.j� � vj/ d� dv;
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where

F.�/ D

Z 1

0

Z 1

0

rN�1sN�1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C rs�2/.N�˛/=2
:

We claim that for � 2 .0; 2/,

F.�/ ."
1

�N�˛�1
C

1

�N�2C2"
: (4.15)

It is enough to prove this estimate for � � 1. To this end we first estimateZ 1=2

0

Z 1

0

rN�1sN�1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C rs�2/.N�˛/=2

.
Z 1=2

0

rN�1
�Z 1

0

1

j1 � sj˛=2
ds

.jr � sj2 C rs�2/.N�˛/=2

�
dr

.
Z 1=2

0

rN�1
�Z 3=4

0

ds

.jr � sj2 C rs�2/.N�˛/=2

�
dr C

Z 1=2

0

�Z 1

3=4

ds

j1 � sj˛=2

�
dr

.
Z 1=2

0

rN�1
�Z 3=4

0

ds

.jr � sj2 C rs�2/.N�˛/=2

�
dr C 1:

Using the change of variables s D rt we then computeZ 3=4

0

ds

.jr � sj2 C rs�2/.N�˛/=2
D r1�NC˛

Z 3=.4r/

0

dt

.j1 � t j2 C t�2/.N�˛/=2

. r1�NC˛
�
1C

Z 2

1=2

dt

.j1 � t j C �/N�˛
C

Z 3=.4r/

2

dt

tN�˛

�
. r1�NC˛

�
1C

1

�N�˛�1
C rN�˛�1

�
:

We thus conclude thatZ 1=2

0

Z 1

0

rN�1sN�1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C rs�2/.N�˛/=2

. 1C

Z 1=2

0

r˛
�
1C

1

�N�˛�1
C rN�˛�1

�
dr . 1C

1

�N�˛�1
: (4.16)

We now focus on the integral between 1=2 and 1 which we split asZ 1

1=2

Z 1

0

rN�1sN�1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C rs�2/.N�˛/=2

.
Z 1

1=2

Z 1=4

0

1

j1 � r j˛=2
dr ds C

Z 1

1=2

Z 1

1=4

1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C �2/.N�˛/=2

. 1C

Z 1=2

0

Z 1

�1

1

t˛=2jt � wj˛=2
dtdw

.w2 C �2/.N�˛/=2
;

where in the last line we have made the change of variables r D 1� t and s D 1� t Cw.
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We now prove that for every w 2 .�1; 1/,Z 1=2

0

dt

t˛=2jt � wj˛=2
. jwj1�˛ C 1C �˛D1

ˇ̌
log jwj

ˇ̌
: (4.17)

Since the left-hand side of (4.17) increases when we replace w by jwj, it is enough to
prove it for w > 0. We then obtain (4.17) fromZ 1=2

0

dt

t˛=2jt � wj˛=2
�

Z w=2

0

dt

t˛=2w˛=2
C

Z 2w

w
2

dt

w˛=2jt � wj˛=2
C

Z 2

2w

dt

t˛

. w1�˛ C 1C �˛D1jlogwj:

Using (4.17) we then findZ 1=2

0

Z 1

�1

1

t˛=2jt � wj˛=2
dt dw

.w2 C �2/.N�˛/=2
."

1

�N�˛�1
C

1

�N�2C2"
:

This provesZ 1

1=2

Z 1

0

rN�1sN�1

j1 � r j˛=2j1 � sj˛=2
dr ds

.jr � sj2 C rs�2/.N�˛/=2
."

1

�N�˛�1
C

1

�N�2C2"
;

which together with (4.16) concludes the proof of (4.15).
We thus findZ
B�B

�
�x � �yˇ̌
x
jxj
�

y
jyj

ˇ̌�2 d�B.x/ d�B.y/
jx � yjN�˛

."
Z
@B�@B

.�.�/ � �.v//2

j� � vjN�˛C1
d� dv C

Z
@B�@B

.�.�/ � �.v//2

j� � vjNC2"
d� dv

(2.3)
D Œ��2

H .2�˛/=2.@B/
C Œ��2

H1=2C".@B/
;

which is (4.14).

We may now conclude the proof of the stability inequality for nearly spherical sets.

Proposition 4.5. IfE is a nearly spherical set with k�kW 1;1.@B/� 1, then for ˛ 2 .0; 2/
and " > 0,

I˛.B/ � I˛.E/ ." Œ��2H˛=2.@B/ C Œ��
2
H .2�˛/=2.@B/

C Œ��2
H1=2C".@B/

: (4.18)

As a consequence,
I˛.B/ � I˛.E/ . P.E/ � P.B/: (4.19)

Proof. Using the same notation as above and using the equality I˛.g/ D I˛.g � �B/C
2I˛.g � �B ; �B/C I˛.�B/, we have

I˛.B/ � I˛.E/ D I˛.�B/ � I˛.E/

D I˛.�B/ � I˛.g/C I˛.g/ � I˛.E/

D �I˛.g � �B/ � 2I˛.g � �B ; �B/C I˛.g/ � I˛.E/:
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We now notice that by optimality of �B we know that uB is constant in B (recall (2.8))
and thus, since

R
B
�B D

R
B
g D 1,

I˛.g � �B ; �B/ D

Z
B

uB.g � �B/ D uB.0/

Z
B

.g � �B/ D 0:

Using (4.12) we can compute

I˛.B/ � I˛.E/C I˛.g � �B/

� I˛.g/ � I˛

��
1 �
y̨

2
�

�
g

�
C C".Œ��

2
H .2�˛/=2.@B/

C Œ��2
H1=2C".@B/

/

D �
y̨2

4
I˛.�g/C y̨I˛.g; �g/C C".Œ��

2
H .2�˛/=2.@B/

C Œ��2
H1=2C".@B/

/

." I˛.g; �g/C Œ��2H .2�˛/=2.@B/ C Œ��
2
H1=2C".@B/

:

We further decompose the term I˛.g; �g/ as follows:

I˛.g; �g/ D I˛.�B ; �g/C I˛.g � �B ; �g/

D I˛.�B ; ��B/C I˛.�B ; �.g � �B//C I˛.g � �B ; �g/:

We now observe that since �B is radially symmetric and since � is 0-homogeneous,

I˛.�B ; ��B/ D C

Z
@B

�
(4.1)
.
Z
@B

�2:

By (4.2), we therefore have

I˛.B/ � I˛.E/C I˛.g � �B/ ." I˛.�B ; �.g � �B//C I˛.g � �B ; �g/
C Œ��2

H .2�˛/=2.@B/
C Œ��2

H1=2C".@B/
: (4.20)

We first estimate I˛.g � �B ; �g/. We notice that

I˛.�g/ �

�Z
B�B

�2x dgx dgy

jx � yjN�˛

�1=2�Z
B�B

�2y dgx dgy

jx � yjN�˛

�1=2
(4.13)
.

Z
@B

�2
(4.2)
. Œ��2

H˛=2.@B/
:

Thus, the Cauchy–Schwarz inequality for I˛ (recall that it is a positive bilinear operator)
gives

I˛.g � �B ; �g/ � I˛.g � �B/
1=2I˛.�g/

1=2 . I˛.g � �B/
1=2Œ��H˛=2.@B/: (4.21)

We now turn to I˛.�B ; �.g � �B//. For this we use the fact that uB is constant on B to
write

I˛.�B ; �.g � �B// D uB.0/

Z
B

�.g � �B/:
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Let � be a smooth, positive cut-off function with � D 1 on B and � D 0 on Bc2 . We then
set ˆ D �� so thatZ

B

�.g � �B/ D

Z
RN

ˆ.g � �B/

� Œˆ�H˛=2.RN /Œg � �B �H�˛=2.RN /
(2.6)
. Œˆ�H˛=2.RN /I˛.g � �B/

1=2:

We finally show that

Œˆ�2
H˛=2.RN /

. Œ��2
H˛=2.@B/

C

Z
@B

�2: (4.22)

For all x; y,

.ˆx �ˆy/
2
D .�x�x � �y�y/

2 . .�x � �y/
2�2x C �

2
y.�x � �y/

2

. .�x � �y/
2
C �2y .x � y/

2;

so that

Œˆ�2
H˛=2.RN /

(2.2)
.
Z
B2�B2

.ˆx �ˆy/
2

jx � yjNC˛
.
Z
B2�B2

.�x � �y/
2

jx � yjNC˛
C

Z
B2�B2

�2y

jx � yjNC˛�2

.
Z
B2�B2

.�x � �y/
2

jx � yjNC˛
C

Z
@B

�2:

Using polar coordinates we now writeZ
B2�B2

.�x � �y/
2

jx � yjNC˛

D

Z
@B�@B

.�.�/� �.v//2
�Z 2

0

Z 2

0

rN�1sN�1
dr ds

..r � s/2 C rsj� � vj2/.NC˛/=2

�
d� dv:

Arguing as for (4.15) we haveZ 2

0

Z 2

0

rN�1sN�1
dr ds

..r � s/2 C rsj� � vj2/.NC˛/=2
.

1

j� � vjN�1C˛
;

which concludes the proof of (4.22). Recalling (4.2) we find

I˛.�B ; �.g � �B// ." I˛.g � �B/1=2Œ��H˛=2.@B/ C Œ��2H1=2C".@B/: (4.23)

Plugging (4.21) and (4.23) into (4.20) we get

I˛.B/ � I˛.E/C I˛.g � �B/

." I˛.g � �B/1=2Œ��H˛=2.@B/ C Œ��2H .2�˛/=2.@B/ C Œ��
2
H1=2C".@B/

:

Using the Young inequality we conclude the proof of (4.18).
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Since E is nearly spherical we have4 (see [16])Z
@B

jr�j2 . P.E/ � P.B/;

so that (4.19) follows using (2.4).

We can now conclude the proof of Theorem 1.5.

Proof of Theorem 1.5. LetE be a nearly spherical set with k�kW 1;1.@B/� 1. If F˛;Q.E/

� F˛;Q.B/, then rearranging terms we find

P.E/ � P.B/ � Q2.I˛.B/ � I˛.E//
(4.19)
. Q2.P.E/ � P.B//:

This implies that either P.E/ D P.B/ and thus E D B by the isoperimetric inequality
or 1 . Q2, which proves the claim.

5. Non-existence in dimension 2

We show here a non-existence result in dimension 2: inN D 2minimizers in � (and hence
classical minimizers) cannot exist for large Q.

Theorem 5.1. Let N D 2 and ˛ 2 .0; 1�. Then for Q� 1 there are no minimizers of

min ¹F˛;Q.E/ W jEj D !N ; E 2 �º: (5.1)

Proof. Let us point out that although the case ˛ D 1 is already covered by [31] (with
an explicit threshold between existence and non-existence) we will still include it in the
proof. We follow the ideas of [22, Theorem 3.3] in the streamlined version of [13]. For
� 2 @B1 and t 2 R, we let

HC�;t D ¹x � � � tº; H��;t D ¹x � � < tº; H�;t D ¹x � � D tº:

We then define, for any measure � and set E,

�˙�;t D �jH˙�;t
and E˙�;t D E \H

˙
�;t :

Assume that E is a minimizer of (5.1). Comparing the energy of E with the one of two
infinitely far apart copies of E˙�;t with measures �˙�;t , we have

F˛;Q.E/ � P.E
C
�;t /C P.E

�
�;t /CQ

2I˛.�
C
�;t /CQ

2I˛.�
�
�;t /:

Using P.E/D P.EC�;t /C P.E
�
�;t /� 2H

1.E \H�;t / and I˛.E/D I˛.�C�;t /C I˛.�
�
�;t /

C 2I˛.�
C
�;t ; �

�
�;t /, this simplifies to

Q2I˛.�
C
�;t ; �

�
�;t / � H1.E \H�;t /:

4This is the only place where we use the assumption that the barycenter of E is 0.
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We now integrate this inequality in t and � to get

jEj &
Z
@B1

Z
R

H1.E \H�;t / d�

� Q2

Z
@B1

Z
R

I˛.�
C
�;t ; �

�
�;t / d�

D Q2

Z
@B1

Z
R

Z
H
C
�;t�H

�
�;t

d�.x/ d�.y/

jx � yj2�˛
d�

& Q2

Z
R2�R2

d�.x/ d�.y/

jx � yj1�˛
;

where we have used the fact that for every .x; y/,Z
@B1

Z
R
�
H
C
�;t�H

�
�;t
.x; y/ dt d� � jx � yj:

Since jEj D !N , this yields the estimate

1 &
Q2

d1�˛

where d D diam.E/. If ˛ D 1 this already gives the conclusion so that we are left with
the case ˛ < 1. Since for N D 2, P.E/ & d , we get the lower bound

F˛;Q.E/ & Q
2
1�˛ :

For a generalized set zEr made up of n copies of the ball of radius r D n�1=2, we have

F˛;Q. zEr / . nr C
Q2

nr2�˛
D r�1 CQ2r˛:

Optimizing in r by choosing r D Q�2=.1C˛/, we find, by minimality of E,

Q
2
1�˛ . F˛;Q.E/ � F˛;Q. zEr / . Q

2
1C˛ ;

which is absurd if Q� 1.

Remark 5.2. While we believe that the same result holds forN � 3, it is well known that
this kind of argument gives useful information only when ˛ >N � 2, which is compatible
with ˛ � 1 only if N D 2.
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