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Abstract: Breast cancer (BC) has yielded approximately 2.26 million new cases and has caused nearly
685,000 deaths worldwide in the last two years, making it the most common diagnosed cancer type in
the world. BC is an intricate ecosystem formed by both the tumor microenvironment and malignant
cells, and its heterogeneity impacts the response to treatment. Biomedical research has entered the
era of massive omics data thanks to the high-throughput sequencing revolution, quick progress and
widespread adoption. These technologies—liquid biopsy, transcriptomics, epigenomics, proteomics,
metabolomics, pharmaco-omics and artificial intelligence imaging—could help researchers and clini-
cians to better understand the formation and evolution of BC. This review focuses on the findings of
recent multi-omics-based research that has been applied to BC research, with an introduction to every
omics technique and their applications for the different BC phenotypes, biomarkers, target therapies,
diagnosis, treatment and prognosis, to provide a comprehensive overview of the possibilities of
BC research.
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1. Introduction

The most common malignant tumor in the world and the leading cause of mortality
for women is breast cancer (BC), which accounts for 6.6% of all cancer deaths worldwide [1].
With an expected 2.3 million new cases worldwide, female BC has surpassed lung cancer
as the most diagnosed malignancy, according to GLOBOCAN 2020 [1].

Currently, early detection and accurate diagnosis are the keys to effective BC manage-
ment [2]. BC is frequently found via core needle biopsy or fine-needle aspiration biopsy,
and, in uncertain cases, tissue biopsy is performed to confirm specific pathological char-
acteristics [3]. Nevertheless, metastases or resistance to chemotherapy can develop in up
to 30% of women who are initially diagnosed with cancer at the early stages. The conven-
tional course of treatment for locally advanced BC is either surgery or mastectomy, with or
without radiation. Although immunotherapy is one of the most promising cancer therapy
choices, only a small subset of responding individuals have shown long-term therapeutic
benefits [4].

Numerous studies have demonstrated the importance of defining BC’s molecular
subtypes, well known for its heterogeneity in molecular properties and cellular makeup,
in the diagnosis, treatment and prognosis of the disease [5–7], as well as in different
therapeutic responses [8]. Shorter overall survival and disease-free survival are related
to tumor heterogeneity, with the expression of hormone receptors, such as the human
epidermal receptor 2 (HER2+), progesterone receptors (PR+) and estrogen receptors (ER+),
determining the molecular subtypes of BC (Figure 1) [9,10].
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Figure 1. BC subgroups are based on molecular and histological characteristics. Luminal BC is an 
ER-positive, PR-positive, HER2-negative tumor type with low levels of the proliferation marker 
Ki67. The tumor has a good prognosis and a modest rate of growth. The tumor luminal BC has high 
levels of Ki67, which accelerates its growth. It is ER-positive, PR-positive and HER2-negative or 
-positive. This suggests a less favorable prognosis than forms indicated in luminal A. 
HER2-enriched or positive carcinoma has a poor prognosis, is more aggressive than luminal BC 
and is ER-negative, PR-negative and HER2-positive. Drugs that specifically target the HER2 pro-
tein can successfully treat it. One of the more aggressive subtypes of BC is triple-negative or basal 
BC, which lacks the expression of the ER, PR and HER2 proteins.  

2. Methods 
A comprehensive literature review was conducted using the PubMed 

(https://pubmed.ncbi.nlm.nih.gov/ (accessed on 8 August 2023)) and Medline 
(https://www.nlm.nih.gov/ (accessed on 8 August 2023)) databases to identify studies 
discussing omics research for BC evolution and progression. Titles and abstracts of 
studies published in English between 2010 and 2023 were reviewed and relevant articles 
obtained in full versions. Herein, we explore different techniques and their applications 
to investigate the different BC phenotypes, biomarkers, target therapies, diagnosis, 
treatment and prognosis.  

3. Omics Approaches to Uncover BC Alterations 
Cancer etiology depends on complex interplays at the genomic, transcriptional, 

proteomic and metabolic levels [11]. An in-depth investigation of the tumor at the omics 
level is required, for a thorough characterization of the cancer biology, plasticity and 
heterogeneity. Integrative multi-omics analysis has significantly improved our under-
standing of the complex nature of tumor biology, including tumor evolution, tumor het-
erogeneity, the tumor microenvironment, immune evasion and drug resistance [12]. The 
potential benefit of the omics technologies in cancer research is vast, since they offer an 
unmatched opportunity to define cancer biology at many pathological and molecular 
levels [13]. Indeed, combining multi-omics data is a crucial first step to uncover the un-
derlying workings of oncogenesis. Numerous omics approaches, such as genomics, 
epigenomics, transcriptomics, proteomics and metabolomics, are available to analyze 
various yet complementing biological layers with high-throughput technological ad-
vances (Figure 2) [14].  

Figure 1. BC subgroups are based on molecular and histological characteristics. Luminal BC is an
ER-positive, PR-positive, HER2-negative tumor type with low levels of the proliferation marker
Ki67. The tumor has a good prognosis and a modest rate of growth. The tumor luminal BC has high
levels of Ki67, which accelerates its growth. It is ER-positive, PR-positive and HER2-negative or
-positive. This suggests a less favorable prognosis than forms indicated in luminal A. HER2-enriched
or positive carcinoma has a poor prognosis, is more aggressive than luminal BC and is ER-negative,
PR-negative and HER2-positive. Drugs that specifically target the HER2 protein can successfully
treat it. One of the more aggressive subtypes of BC is triple-negative or basal BC, which lacks the
expression of the ER, PR and HER2 proteins.

2. Methods

A comprehensive literature review was conducted using the PubMed (https://pubmed.
ncbi.nlm.nih.gov/ (accessed on 8 August 2023)) and Medline (https://www.nlm.nih.gov/
(accessed on 8 August 2023)) databases to identify studies discussing omics research for BC
evolution and progression. Titles and abstracts of studies published in English between
2010 and 2023 were reviewed and relevant articles obtained in full versions. Herein, we ex-
plore different techniques and their applications to investigate the different BC phenotypes,
biomarkers, target therapies, diagnosis, treatment and prognosis.

3. Omics Approaches to Uncover BC Alterations

Cancer etiology depends on complex interplays at the genomic, transcriptional, pro-
teomic and metabolic levels [11]. An in-depth investigation of the tumor at the omics level is
required, for a thorough characterization of the cancer biology, plasticity and heterogeneity.
Integrative multi-omics analysis has significantly improved our understanding of the com-
plex nature of tumor biology, including tumor evolution, tumor heterogeneity, the tumor
microenvironment, immune evasion and drug resistance [12]. The potential benefit of the
omics technologies in cancer research is vast, since they offer an unmatched opportunity to
define cancer biology at many pathological and molecular levels [13]. Indeed, combining
multi-omics data is a crucial first step to uncover the underlying workings of oncogenesis.
Numerous omics approaches, such as genomics, epigenomics, transcriptomics, proteomics
and metabolomics, are available to analyze various yet complementing biological layers
with high-throughput technological advances (Figure 2) [14].

https://pubmed.ncbi.nlm.nih.gov/
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Figure 2. Overview of the multi-omics technologies that we describe in the following sections. 
These technologies could be invasive or non-invasive for patients and the analysis could start from 
surgical specimens or imaging of the tumor.  

Here, we summarize the omics applied in BC research and the emerging results. 

3.1. Liquid Biopsies, Transcriptomics and Epigenomics 
3.1.1. Liquid Biopsy  

A liquid biopsy (LB) is a simple and non-invasive method that allows medical pro-
fessionals to learn a large amount of information about a tumor from a small blood sam-
ple. Liquid biopsies involve collecting tumor-derived entities from the body fluids of 
cancer patients, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), 
tumor extracellular vesicles, etc., and analyzing the genomic and proteomic information 
that they carry. The analysis of these components allows us to monitor cancer progres-
sion in real time. LB is already a well-established technique in metastatic BC treatment, 
since clinicians use it to characterize the disease, for decision making and the improve-
ment of patient outcomes. 

We report herein several examples of how liquid biopsies are applied to BC studies. 
• Early detection and patient stratification 

LB can help to detect BC at an early stage by searching for circulating biomarkers or 
indicators in a laboratory test. 

In cases of early-stage BC (EBC), where CTC-positive patients are rare, a thorough 
analysis of tumor-related analytes in the LB may also be beneficial to determine the dis-
ease status [15,16]. The transition from latent to aggressive minimal residual disease 
(MRD) can be determined by the further molecular characterization of CTCs, with a fo-
cus on the most used blood devices that can select and identify CTC enrichment [17,18]. 

Setayesh et al. used a third-generation high-definition single-cell assay (HDSCA3.0) 
for LB (LBx) from late-stage BC, EBC and peripheral blood samples from normal donors 
to simultaneously investigate epithelial, mesenchymal, endothelial and hematopoietic 
cells and large extracellular vesicles [19]. According to their research, when compared to 
early-stage patients and normal donors, late-stage patients had a larger concentration of 
CTCs. Furthermore, they found that early-stage groups had more tumor-associated large 
extracellular vesicles than late-stage and normal donor groups, proposing the robust 
identification of uncommon circulating events in peripheral blood draws [19].  

Cohen et al. combined the detection of somatic mutations found in ctDNA with the 
analysis of protein biomarkers in plasma to accurately localize the primary site of the 

Figure 2. Overview of the multi-omics technologies that we describe in the following sections. These
technologies could be invasive or non-invasive for patients and the analysis could start from surgical
specimens or imaging of the tumor.

Here, we summarize the omics applied in BC research and the emerging results.

3.1. Liquid Biopsies, Transcriptomics and Epigenomics
3.1.1. Liquid Biopsy

A liquid biopsy (LB) is a simple and non-invasive method that allows medical profes-
sionals to learn a large amount of information about a tumor from a small blood sample.
Liquid biopsies involve collecting tumor-derived entities from the body fluids of cancer
patients, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), tumor
extracellular vesicles, etc., and analyzing the genomic and proteomic information that
they carry. The analysis of these components allows us to monitor cancer progression in
real time. LB is already a well-established technique in metastatic BC treatment, since
clinicians use it to characterize the disease, for decision making and the improvement of
patient outcomes.

We report herein several examples of how liquid biopsies are applied to BC studies.

• Early detection and patient stratification

LB can help to detect BC at an early stage by searching for circulating biomarkers or
indicators in a laboratory test.

In cases of early-stage BC (EBC), where CTC-positive patients are rare, a thorough
analysis of tumor-related analytes in the LB may also be beneficial to determine the disease
status [15,16]. The transition from latent to aggressive minimal residual disease (MRD) can
be determined by the further molecular characterization of CTCs, with a focus on the most
used blood devices that can select and identify CTC enrichment [17,18].

Setayesh et al. used a third-generation high-definition single-cell assay (HDSCA3.0)
for LB (LBx) from late-stage BC, EBC and peripheral blood samples from normal donors
to simultaneously investigate epithelial, mesenchymal, endothelial and hematopoietic
cells and large extracellular vesicles [19]. According to their research, when compared
to early-stage patients and normal donors, late-stage patients had a larger concentration
of CTCs. Furthermore, they found that early-stage groups had more tumor-associated



Int. J. Mol. Sci. 2023, 24, 12690 4 of 26

large extracellular vesicles than late-stage and normal donor groups, proposing the robust
identification of uncommon circulating events in peripheral blood draws [19].

Cohen et al. combined the detection of somatic mutations found in ctDNA with the
analysis of protein biomarkers in plasma to accurately localize the primary site of the cancer;
however, this test has low sensitivity [20]. ctDNA testing in high-risk individuals enables
tumor subtype prediction and early detection and offers transcriptional information [21].
Moreover, tumor cells of different origins have been shown to harbor specific methylation
profiles, enabling the analysis of ctDNA to reveal the BC position [22].

The loss of heterozygosity at four polymorphic markers in cfDNA (D13S159, D13S280,
D13S282 at region 13q31-33, and D10S1765 at PTEN region 10q23.31) analyzed by PCR-
based fluorescence microsatellite analyses also correlated significantly with lymph node
status [23].

• LB in Prognosis

To enhance patient outcomes, LB can assist in prognosis definition. For instance, LB
can help to predict BC recurrence. Indeed, it was shown that patients with five or more
CTCs per 7.5 mL of blood at baseline had shorter median progression-free survival (PFS)
and overall survival (OS) compared to those with fewer than five CTCs [24]. Similar results
were observed in other studies, showing that patients with five or more CTCs had shorter
OS and recurred earlier [16,25].

Numerous studies have investigated how well BC cfDNA concentrations can pre-
dict outcomes. For example, it was observed that cfDNA levels rose in patients with
malignant lesions and correlated with the tumor size and clinical stage of lymph node
metastasis [26–28].

In daily diagnostic routines, assays to identify PIK3CA mutations in patients with
HER2-negative, PIK3CA-mutated, advanced or metastatic BC and patient-specific multi-
plexed cancer alteration analysis methods for targeted digital sequencing (TARDIS) for the
identification of patients at risk of recurrence are well-known applications of LB [29,30].

• Monitoring

Real-time cancer progression monitoring is possible using LB to search for CTCs.
Previous research has established a relationship between the CTC burden in late-stage BC
and progression-free survival; however, therapy delivery has proven to have an impact on
CTC abundance [25,31]. The serial monitoring of ctDNA levels after treatment has been
used to assess and monitor treatment responses, showing a correlation with tumor size
changes and survival outcomes [32,33].

• Personalized treatment

Treatment for BC patients can be tailored with the aid of LB. For patients with
metastatic BC, LB can assist clinicians in making treatment choices. Multiple studies
have focused on the usefulness of LB for BC identification in the context of metastatic
BC (MBC), with the goal of improving clinical decision making and enhancing patient
outcomes [34,35]. Dynamic changes in CTC levels during treatment have been associated
with clinical outcomes, with patients who show a decrease in CTC count experiencing
better OS and PFS [36].

LB has been used also for the mutation monitoring of specific genes. In particular,
mutations in the ESR1 gene, which encodes for estrogen receptor a (ER-a), were found
in BC patients who received endocrine therapy. Metastatic BC has higher rates of ESR1
mutation compared to primary BC, and the mutations may be acquired under the pressure
of endocrine therapy [37]. The prevalence of ESR1 variants is higher in patients treated with
aromatase inhibitor therapy (AI therapy) for metastatic disease compared to the adjuvant
setting [38]. Tay and Tan observed that the profiling of ctDNA for these mutations was more
accurate than sequencing the primary tumor and could predict resistance to AI-guided
therapy [39]. The serial monitoring of ctDNA for ESR1 mutations can guide therapy and
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improve progression-free survival, since, by analyzing ctDNA, variants in ESR1 can be
detected before clinical progression, allowing for early therapeutic intervention.

Despite the initial optimism and expectations following the discovery of CTCs and
ctDNA from liquid biopsies in cancer patients, recent data show that although these
markers offer a high grade of cancer specificity, these indicators are uncommon in body
fluids; for instance, ctDNA accounts for less than 1% of the total circular free DNA (cfDNA)
detected in body fluids [40,41]. Moreover, in a meta-analysis of 69 studies with a total of
5736 patients, Lee et al. reported that the ctDNA mutation rates of TP53, PIK3CA and ESR1
were roughly 38%, 27% and 32%, respectively, concluding that these rates were too low for
application in BC screening [41].

3.1.2. Transcriptomics

Transcriptomics analysis consists of sequencing all the coding and noncoding RNAs
transcribed in a tissue/cell in physiological and pathological conditions.

Single-cell DNA/RNA sequencing (scDNA/RNA-seq) is a powerful tool that can
provide insights into the cellular and molecular landscape of BC at a single-cell resolution,
through the separation of single cells, examination of their genomes or transcriptomes
and creation of unique sequencing libraries. In recent years, transcriptomics has provided
insights into the molecular mechanisms underlying BC development and progression and
the investigation of biomarkers and potential therapeutic targets [42]. Below, we discuss
several examples.

• Identification of differentially expressed genes (DEGs)

The broad utilization of RNA sequencing (RNA-seq) technologies has dramatically
expanded our knowledge of BC, allowing the identification of DEGs and key signature
genes during tumor progression [43,44].

Employing RNA-seq, genes that are expressed at extremely high and low levels can be
identified [45,46]. For example, dysregulated genes such as TP53, GAPDH, cyclin D1, HRAS,
CDK1, CDC6 and PCNA, and the activation of ERBB2, FOXM1, ESR1 and IGFBP2 networks,
have been reported in BC tissue compared to control tissue [47]. Moreover, scRNA-seq
studies on TNBC identified indicative combinations of the expression of ER, PR, GATA3,
E-cadherin and multiple cytokeratins for HER2+ BC, or high levels of Ki-67, p53, EGFR
and the hypoxia marker CAIX [48].

sc-seq gives also an overview of the different subpopulations in BC, as has been
reported by Tokura et al. with the profiling of ductal carcinoma in situ (DCIS) and invasive
ductal carcinoma (IDC). The authors identified clusters of gene expression profiles for
cell-type-specific markers, segregating the cells into groups such as luminal epithelial
cells, proliferating luminal epithelial cells, basal cells, proliferating basal cells, T cells,
proliferating immune cells, B cells, plasma cells, macrophages, monocytes, erythrocytes
and stromal cells [49]. The differential expression of the extracellular matrix receptor (ECM
receptor) was also reported in invasive BC [50].

• Identification of biomarkers and therapeutic targets

Transcriptomics analysis allows us to identify novel molecules that could serve
as biomarkers for BC. One example is polyadenylation (APA)—a post-transcriptional
change in the 3′UTR that influences tumor cell proliferation by altering the length of the
3′UTR—which can be used as a predictive biomarker of early BC [51,52]. The majority of
BC patients have a shortened 3′UTR, which is closely associated with cell proliferation,
according to Kim et al. [53]. Another example is the ETV6 gene, which was found
selectively activated in five molecular cellular subtypes as opposed to normal epithelial
cells in a study of the sc-seq of 585 malignant cells [54]. Its overexpression is linked to a
worse prognosis in TNBC patients, and this raises the possibility that it could serve as a
target for chemotherapy.

Changes at the single-cell level in expression profiles could be used as potential ther-
apeutic targets, as with the ones identified in BC stem cells (BCSCs) [55,56]. Alterations
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in these cells were found to be associated with an increased risk of relapse, so the au-
thors suggested 74 BCSC marker genes as novel targets and prognostic indicators for BC
treatment. Another related technology, spatially annotated single-cell sequencing, could
provide insights into the spatial organization of cells within breast tumors and help to
identify potential therapeutic targets thanks the use of live-cell imaging at a single-cell
resolution [57].

• Characterization of intratumor heterogeneity

sc-seq unmasks the heterogeneity of BC cells, including the identification of rare
cell populations, the characterization of cell subtypes and the identification of driver
mutations [58,59]. Previous sc analyses led to the characterization of the cellular architecture
of BC tissue, defining its cellular composition and tissue organization. Another study used
single-nucleus RNA sequencing (snRNA-seq) and microarray-based ST to map subclusters
of malignant cells and stromal cell types in distinct BC tissue regions [60].

Wang at al. applied a novel method, genome-driven transcriptome (DGTEC), to
the TCGA-BC cohort and identified different BC subtypes. This multi-omics approach
led the authors to identify a hybrid BC subtype that they called the Mix_Sub subtype,
characterized by a poor prognosis—in particular, with low levels of immune cell infiltration
and a dysfunctional T-cell response [61].

BC is characterized by alterations in the ECM that can drive subclonal communication,
immunological crosstalk and metabolic crosstalk [62–65]. To disentangle these complex
interactions, spatial transcriptomics (ST) has been applied with the aim of visualizing RNA
molecule profiles in specific tissue regions [66,67]. The use of ST technology is critical in the
study of solid tumors, which develop in a complex environment where communications
between tumor cells, immune cells, fibroblasts and the vasculature can affect disease
progression [68,69]. Recently, ST in BC led to the identification of different signatures, such
as extensive regions of fibrosis or T-cell enrichment in a dense ring of lymphoid cells with
strongly expressed macrophage signatures, or a type I interferon response overlapping
with regions of T-cell and macrophage subset colocalization [66,70].

scRNA-seq has been applied to investigate various BC subpopulations but also BC
adipose cell subpopulations, identifying de-differentiation from adipocytes into multiple
cell types, including myofibroblast- and macrophage-like cells [71,72]. To understand the
complexity of the tumor immune microenvironment (TIME), specific studies have been
conducted on tissue-resident memory T and B cells [73,74], allowing a better understand-
ing of the general characteristics of immune cells in BC, revealing the vast diversity in
the immune cells of both the adaptive and innate immune systems [75,76] and tumor-
associated fibroblasts (CAFs) [77], or to depict the comprehensive tumor environment
by sequencing all the cells isolated from breast tumors [78]. The use of this technique
also confirmed the expression of typical marker genes, such as ESR1, PGR and ERBB2 for
luminal cells, MKI67 for proliferating cells and PTPRC and CD53 for immune and myeloid
cells [49]. This can aid in the development of personalized treatment strategies for breast
cancer patients.

• Tools for early diagnosis and pathway analysis

Several tests have been developed during the past ten years based on transcriptome
signatures for early BC diagnosis. The Breast Cancer Index evaluated the expression of
the genomic grade index genes BUB1B, NEK2, CENPA, RRM2 and RACGAP1, as well as
the ratio of the HOXB13 and IL17BR genes [79]. The 70-gene MammaPrint test employs
microarray technology to quantify the expression of genes involved in cell-cycle imbalance
(15 genes), angiogenesis (12 genes), proliferation and cancer development (11 genes), spread
and invasion (8 genes), growth factor signal transduction (6 genes) and susceptibility to
apoptosis (2 genes) [80]. Similar tools are the Oncotype DX, which measures genes for
proliferation (5), invasion (2), estrogen (4), HER2 (2), GSTM1, BAG1 and CD68, as well as
the Prosigna test and genomic grade index [81].
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The application of transcriptomics technologies indicates the future development of
novel biomarkers and therapeutic interventions targeting common signaling pathways.

• Understanding of treatment response and resistance

In BC patients, transcriptomics analysis can identify gene expression alterations linked
to the response or resistance to a treatment. By examining the molecular profiles of patients
that underwent neoadjuvant chemotherapy, a recent study identified DEGs that may be
utilized as biomarkers for the chemotherapy response and OS [82]. In this study, Barron-
Gallardo et al. performed RNA-seq analysis in BC and identified a total of 1985 DEGs [82].
Among these genes, in neoadjuvant chemotherapy resistance patients, the underexpression
of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15 and HLA-A and the overexpression
of TUBB and TCP1 correlated with lower OS [82].

Kim et al. discovered drug-resistant cancer cells in a scDNA/RNA-seq analysis of
eight BC patients, revealing their adaptation to neo-adjuvant chemotherapy [83].

A particular interest has been shown in metastatic TNBC cells, where B2M, CD52,
PTMA and GZMK are among the most significant DEGs, and functional enrichment showed
their potential sensitivity for immunotherapy since the immune-related items were highly
enriched in metastatic TNBC cells [84]. Moreover, β2-microglobulin, encoded by B2M, is
an essential component of MHC class I, and its loss was an indicator of a poor prognosis,
including lymph node metastasis, recurrence and therapy resistance [85,86].

Full transcriptome profiling not only identifies DEGs but also all the RNA profile
and tumor cell spectrum. Sinicropi et al. established and improved the RNA-seq library
chemistry for formalin-fixed paraffin-embedded (FFPE) tissues, as well as bioinformat-
ics and biostatistical approaches. In a cohort of 136 individuals, the study found more
than 2000 RNAs strongly related to BC recurrence, by using the RefSeq RNA network
enriched in RNAs with the Reactome database (https://reactome.org/ (accessed on 8 Au-
gust 2023)) [87]. Interestingly, Baldominos et al. recently used single-cell RNA sequencing
with a remarkable spatial resolution, unveiling clusters of quiescent cells (QCCs), already
known for their resistance to immunotherapy [88]. They profiled infiltrating cells inside
and outside the QCC niche, finding genes associated with hypoxia-induced pathways, and
discovered worn-out T cells, tumor-protective fibroblasts and defective dendritic cells in
BC [88].

Overall, transcriptomics plays a crucial role in advancing our understanding of BC
biology, identifying potential biomarkers and therapeutic targets and guiding personalized
treatment approaches.

3.1.3. Epigenomics

Epigenetic modifications, which are extrinsic to the genomic sequence itself, are her-
itable, reversible alterations in histones or DNA that regulate gene activities. Epigenetic
dysregulations are widely linked to human diseases, including cancer. Tumor develop-
ment and progression are significantly influenced by epigenetic changes and the study of
epigenomics has been extensively applied to BC research.

• Identification of gene-specific epigenetic alterations

The DNA methylation status of genes related to breast carcinogenesis has been inten-
sively investigated, and a total of 4283 differently methylated genes and 1899 differentially
expressed genes were discovered in an examination of 802 BCs. In other studies, extensive
hypermethylation was identified in the TWIST, RASSF1A, CCND2 and HIN1 genes in
breast carcinoma samples [89,90]. New targets are being uncovered, including the hy-
permethylation of the WNT1 promoter in patients with metastatic tumors and RASGRF1,
CPXM1, HOXA10 and DACH1 in TBNC [91,92]. CDH13 and GSTP1 hypermethylation
are also more common in triple-negative and lymph-node-positive BC patients, respec-
tively [93].

Gene methylation affects the expression of particular genes; for example, in HER2+
breast tumors, epigenetic changes such as the hypermethylation-mediated silencing of

https://reactome.org/
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negative regulators of the WNT pathway have been discovered [94]. Moreover, the most
common cause of BRCA1 silencing in sporadic BC is promoter hypermethylation, particu-
larly in the triple-negative subtype [95].

• Identification of potential biomarkers and therapeutic targets

Today, there is a growing demand for biomarkers and potential therapeutic targets,
and the field of epigenetics is one that is both emerging quickly and has the potential to be
helpful in this regard.

The hypermethylation and hypomethylation of genes are now considered indicators of
cancer status, e.g., the hypermethylation of ALDH1A2, ALDH1L1, HSPB6, MME, MRGPRF,
PENK, SPTBN1, WDR86 and CAV2 and PITX1 hypomethylation are now considered
potential biomarkers of EBC [96]. Another study indicated that the methylation status
of RASSF1A, CCND2, HIN1 and APC is a possible BC biomarker, with hypermethylation
associated with hormone-receptor-positive phenotypes [97,98]. Today’s tools allow for
the discovery of potential gene/miRNA prognostic markers in BC by analyzing freely
available transcriptome datasets, such as BreastMark (http://glados.ucd.ie/BreastMark/).
Numerous biomarkers have been discovered using this, such as the miRNA hsa-miR-210,
which has been connected to a poor prognosis in BC patients [99].

Epigenomic investigation could indeed discover crucial molecular markers associated
with BC diagnosis and prognosis. The gene SPAG6 was recently discovered to have
higher promoter methylation in serum samples from women with DCIS and early invasive
BC compared to controls with benign illness. SPAG6 methylation was introduced as a
promising blood-borne epigenetic biomarker for minimally invasive BC detection, together
with other genes, namely PER1, ITIH5 and NKX2-6 [100]. Equally, H3K4 acetylation is
one of the most critical epigenetic modifications, and its dysregulation has been linked
to BC progression, estrogen responsiveness and the epithelial–mesenchymal transition
oncogenic pathway [74]. Furthermore, it is a potential predictor of cancer-related pathway
deregulation and a therapeutic target for breast cancer management [101].

• Target therapies, treatment response and resistance

Epigenetic studies are therapeutically useful since epigenetic aberrations, unlike ge-
netic abnormalities, are reversible and epigenetic therapy can return them to normal levels.

Cellular senescence, EMT, Hippo signaling, the p53 pathway, AMPK signaling and
AMP-activated protein kinase (AMPK) signaling are only a few of the pathways that can be
affected by these epigenetic dysregulation mechanisms, ultimately leading to mutations and
cancer [102]. Epidrugs are small-molecule inhibitors that work to control abnormal epige-
netic modifications by reducing enzymatic activity and targeting specific enzymes [103,104].
Interestingly, over the past few years, several drugs that target epigenetics changes have
been developed, such as the DNA methyltransferase NSD3 inhibitors [102], targeted small-
molecule inhibitors [105], histone-modifying enzymes and mRNA regulators (such as
miRNA mimics and antagomiRs) [106].

BC patients may have alterations linked to therapy responses or resistance, accord-
ing to an epigenomic study. A differential methylation spectrum was associated with
a good response to neoadjuvant chemotherapy, as in the case of hypermethylation of
the gene CDKL2 in TNBC patients or ESR1 methylation as a good predictor of survival
only in patients receiving tamoxifen treatment; it can predict a patient’s receptor status
and hormone therapy response, according to Widschwendter et al., and ARHI methyla-
tion can predict survival in patients not receiving tamoxifen [107,108]. Moreover, low
risks of metastasis and mortality are linked to the presence of a breast CpGI methylator
phenotype, which is defined by hypermethylation in many genes. Furthermore, CST6
hypermethylation in cfDNA has been related to prognosis and survival in individuals
with operable BC [109].

In general, epigenomics is essential in improving our comprehension of BC biology,
locating possible therapeutic targets and directing individualized therapy regimens.

http://glados.ucd.ie/BreastMark/
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3.2. Proteomics

Functional characteristics and post-translational modifications cannot be completely
represented by gene expression only [110]. Therefore, proteomics can integrate genomic
and transcriptome data [111]. A single pre-mRNA transcript can be spliced into different
protein isoforms and modified in various ways after translation to produce multiple distinct
proteins from a single gene. These modifications are known as post-translational modi-
fications, or PTMs [112]. Immunohistochemistry, reverse-phase protein arrays, Western
blotting and ELISA are a few examples of focused proteomics techniques. Mass spectrom-
etry (MS) imaging, targeted proteomics and next-generation proteomics are examples of
MS-based targeted proteomics methods with a wide array of different proteins and PTMs
that can be assessed at the same time.

• Characterization of heterogeneity

The advances in the field of proteomics have made possible the analysis of protein
abundance, protein–protein interactions, protein function or modification and the het-
erogeneity of BC [113]. Collectively, 97 BC biosignatures have been reported so far from
proteomics studies, including pathways related to ER, p53, CK8/18, Ki-67, PR, cyclin D1,
HER-2, CK5/6, cyclin E, BCL2, cyclin E and E-cadherin [81].

The features of the TNBC gene expression profile and proteome were investigated
in depth, focusing on the precise mechanism for metastatic growth, adhesion and an-
giogenesis [114,115]. From these studies, it emerged that phosphorylation is the most
prevalent post-translational protein modification, and the specific protein phosphorylation
events have a direct impact on the development of TNBC tumors and other BCs; therefore,
phosphoproteomics-based MS has been the method of choice in studying protein phospho-
rylation [112,116]. As an example, Asleh et al. found, in 88 TNBC cases, four proteomic
clusters displaying features of basal-immune hot, basal-immune cold, mesenchymal and
luminal phenotypes, with different survival outcomes [117]. In this study, not only TNBC
but also other subtypes of BC were investigated; meanwhile, another study revealed that
75 Her2-enriched cases could be separated into groups differing in terms of the extracellular
matrix, lipid metabolism and immune response features [117].

• Identification of biomarkers and drug targets

With the ability to evaluate quantitatively different proteins, targeted proteomics
offers novel methods to verify putative biomarker diagnostic, prognostic or predictive
performance in a sizable cohort of clinical samples. MS analysis identified different peptide
biomarkers, including fragments of C3, C3adesArg, factor XIIIa, ITIH4, FPA, apoA-IV,
fibrinogen, bradykinin and transthyretin, that could be used to define a proteomic landscape
for the early diagnosis of BC [118].

Proteomics approaches can also offer more precise diagnoses for known actionable
targets, identify new tumor susceptibilities for translation into treatments for aggressive
tumors and implicate new mechanisms whereby BC resists treatment. A recent study
highlighted that a “proteogenomics” approach for 122 primary breast cancers, when com-
pared to standard BC diagnoses, provided a more detailed analysis of the ERBB2 amplicon,
defined better tumor subsets that could benefit from immune checkpoint therapy and
allowed a more accurate assessment of the Rb status for the prediction of CDK4/6 inhibitor
responsiveness [119].

The use of proteomics has also helped to identify proteins with potential roles in tumor
suppression or promotion, such as Maspin and HSP-27, respectively, identified as new
therapeutic targets for BC treatment [81].

• Assessment of diagnostic and treatment efficacy

In BC studies, proteomics analysis has been used to identify different breast cancer
subtypes and specific protein and expression cases, assess the efficacy of cancer therapies
at a cellular and tissular level and even associate distinct proteomic patterns with patient
prognosis in BC.
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Various proteins have been identified as potential biosignatures connected to the
development of BC. By using LC-LTQ/FT-ICRMS (mass spectrometry), a reversed-phase
nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/Fourier
transform ion cyclotron resonance mass spectrometer, Semaan et al. identified several
phosphoproteins linked to the development of BC, such as specific membrane proteins,
cytoplasm or macromolecular complex proteins—including for early diagnosis—retinoic
acid receptor alpha and CD14 [112,120]. Another example is the study conducted by
Minic and colleagues, which performed phosphoproteomics on three cell line models
for BC, MCF10A (normal epithelial cells from mammary gland, non-malignant), MCF7
(estrogen and progesterone-receptor-positive, metastatic) and MDA-MB-231 (TN-negative,
highly metastatic). It was found that the ACLY, SIRT1 and SIRT6 enzymes were highly
phosphorylated, and hence activated, in BC cells compared to non-malignant cells [121].

Another application of phosphoproteomics is the prediction of the BC response to
treatment, as for Paclitaxel, the most used chemotherapy medication. Recently, Mouron
et al. conducted a phosphoproteomic screening of 130 HER2-negative female BC cases in
treatment with Paclitaxel and found that patients with higher levels of CDK4 and filamin-A
phosphorylation had a 90% likelihood of obtaining a pathologic complete response (pCR)
to Paclitaxel [122]. Proteins such as TRIM28, HSP90alpha, hnRNP A1, CLTC and myosin-
9 were found specifically dephosphorylated in BC cells when treated with Lapatinib,
resulting in the slowed development of TNBC [120]. A study based on MS proteomics in a
cohort of 113 FFPE samples found that two proteins of the proline biosynthesis pathway,
PYCR1 and ALDH18A1, were significantly associated with resistance to treatment, based
on pattern dominance. Moreover, the knockdown of PYCR1 reduced the invasion and
migration capabilities of BC cell lines and increased the drug sensitivity of orthotopically
injected ER-positive tumors in vivo, thus emphasizing the role of PYCR1 in resistance to
chemotherapy [123].

Lastly, the use of the isobaric tags for relative and absolute quantification (iTRAQ)
labeling-based proteomic approach led to a different expression signature for the three
proteins desmoplakin (DP), thrombospondin-1 (TPS1) and tryptophanyl-tRNA synthetase
(TrpRS), which were found for relapsed and non-relapsed TBNC tumors. Their overexpres-
sion significantly impaired disease-free survival and increased the risk of TNBC patients’
recurrence [124].

Overall, proteomics can provide valuable insights into the biology of breast cancer
and help to develop more effective diagnostic and treatment strategies.

3.3. Metabolomics

Genomic alterations could also cause changes in metabolic profiles, and these changes
eventually could facilitate cancer development [14]. Without ignoring the information
offered by genetics, biomarkers can be discovered by examining drug metabolism, includ-
ing immunometabolism and its connection with the microbiota. Cancer can be considered
a metabolic disease brought about by genetic or non-genetic signaling and metabolic
abnormalities, with hypoxia, inflammation and changes in metabolism being drivers of
carcinogenesis [125]. In fact, since metabolite formation is sensitive to both internal and
external stimuli, the metabolome offers the potential to serve as a biological phenotypic
probe that can shed light on what occurs in cells [126]. According to recent studies, tumor
cells can alter the intracellular metabolism to meet the needs of unchecked prolifera-
tion, and the early detection and monitoring of cancer can be performed by detecting
aberrant metabolic phenotypes [127]. Metabolomics analysis has been used in BC as an
approach to discovering potential pharmacological susceptibility to therapies, such as
the antitumor activities of sulforaphane (SFN) in BC patients [77], or to target metabolic
limitations [128–130].

• Tumor typing and classification

Metabolomics analysis can be used to classify breast cancer based on tumor biology,
helping to identify different subtypes and molecular characteristics.
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For the classification of BC subtypes, Fun et al. screened 64 differential metabolites
between BC and healthy individuals and developed a panel of eight distinct metabo-
lites, including carnitine, lysophosphatidylcholine, proline, alanine, lysophosphatidyl-
choline, glycochenodeoxycholic acid, valine and 2-octenedioic acid, to classify BC sub-
types [131]. The phospholipids of membranes, such as phosphatidylcholines (PC), phos-
phatidylethanolamines (PEs) and phosphatidylinositols (PIs), as well as sphingomyelins
(SM) and ceramides (Cer), were the most increased lipids in tumors, as expected [132].
Triacylglycerols (TGs) were largely unaffected in cancer compared to normal breast tissue,
although some were downregulated.

On a collection of 50 tumors, Giskeødegård and colleagues demonstrated that high-
resolution magic angle spinning (HR-MAS)–nuclear magnetic resonance (NMR) spec-
troscopy may be utilized to assess ER and progesterone receptor status, as well as lymph
node status, with classifications from 68% to 88% for these three condition markers [133].
Another study found that ER-positive patients had higher alanine, aspartate and glutamate
metabolism, decreased glycerolipid catabolism and enhanced purine metabolism when
measured using liquid chromatography–mass spectrometry and gas chromatography–mass
spectrometry [131].

• Biomarker and therapeutic target discovery

Metabolomics analysis can identify metabolites that serve as potential biomarkers for
BC, used for early detection, diagnosis, the monitoring of treatment responses and the as-
sessment of disease progression. According to the type of breast cancer (i.e., HER2+ or ER+),
several amino acid transporters, such as SLC1A5, SLC6A14 and SLC7A5, were shown to
have different expressions in BC tissue compared to controls [134,135]. Metabolomics analy-
sis found a significant correlation between GPAM expression, patient survival, clinicopatho-
logical features, metabolomic and lipidomic profiles and increased levels of phospholipids,
particularly phosphatidylcholines [136].

Metabolomics analysis can help to identify metabolic pathways and specific metabo-
lites that are dysregulated in breast cancer, leading to the identification of potential therapeu-
tic targets for drug development and personalized treatment strategies. Brokemöller et al.
identified 467 predominant metabolites in BC tissue, using GC-MS-based metabolomics [136].
In total, 57 metabolites showed a significant correlation with high and low glycerol-3-
phosphate acyltransferase (GPAM) expression groups, a factor with a key role in lipid
biosynthesis and tumor progression. Moreover, N-acetyl-aspartyl-glutamate, an essential
tumor-promoting metabolite and a possible target for treatment for high-risk basal-like
immune-suppressed (BLIS) subtype BLIS tumors, and S1P, a recognized tumor-promoting
intermediate of the ceramide pathway, are two additional potential targets discovered
through metabolomics studies in BC [137]. Studies on TNBC also revealed fatty-acid syn-
thase (FASN) as an attractive target for novel tumor-specific therapeutic strategies. Research
on its inhibition showed antitumoral effects in both sensitive and chemoresistant cells,
which supports the indirect involvement of FASN in TNBC [138]. Moreover, fatty acids
(FAs) are downregulated in TNBC relative to other BC subtypes, but, intriguingly, two key
enzymes involved in de novo fatty acid synthesis, FASN and acetyl-CoA carboxylase 1
(ACACA), were both found to be upregulated at the protein level in tumors with high
quantities of phospholipids containing de-novo-generated fatty acids. Normal cells did
not exhibit increased de novo lipid production, making tumor cells an attractive target for
novel tumor-specific therapeutic strategies [139,140].

• Insights into metabolic reprogramming

Metabolomics can provide insights into the metabolic reprogramming that occurs in BC
cells. It can reveal alterations in metabolic pathways, such as glycolysis, lipid metabolism
and amino acid metabolism, which are associated with tumor growth and progression.

The altered energy usage of cancer cells in comparison to normal cells as a result of
their elevated rates of proliferation is a defining feature of cancer [141]. Lactate levels are
elevated, while glucose levels are lowered in breast cancer cells during glycolysis [142–144].
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Previously, it was shown that cancer cells only obtained their energy from the metabolism
of glucose, and a higher level of lactate was linked to worse 5-year survival rates [145,146].
These results show that the metabolites of carbohydrate metabolism play an important role
in the development and spread of BC.

These findings were supported by a second study, which also indicated that BC
patients had higher amounts of glycerol, glutamine, glucose-1-phosphate, benzoic acid,
palmitic acid, urea, pyrophosphate, serotonin and docosahexaenoic acid than controls.
Reduced amounts of 2,3-bisphosphoglyceric acid, fructose, lactamide, N-acetylornithine,
lactic acid, maleic acid, cysteine-glycine, glycerol-alpha-phosphate, aspartic acid, pyruvic
acid and lactulose were also seen in the BC group [147]. The same observations were
supported by the study of Subramani et al., which evaluated also the urea cycle, glutathione
metabolism, ammonia recycling, glycine and serine metabolism, phosphatidylethanolamine
biosynthesis and arginine and proline metabolism [148].

Yamashita and colleagues performed a metabolomics analysis in 74 BC vs. normal
tissues and found differences in the glycolytic pathway and the levels of lactic acid. The
authors subclassified BC tissues into hormone receptor-positive and TN cases, and they
detected specifically in TNBC the higher expression of ELOVL1 and ELOVL6—involved in
the elongation of long-chain fatty acids—and accordingly alterations in the levels of these
fatty acids [149].

• Disease monitoring in LB

The metabolomics analysis of biofluids, such as blood, saliva or urine, can provide a
non-invasive approach for the monitoring of breast cancer progression and treatment re-
sponses. It can detect changes in metabolite profiles that reflect the presence or progression
of the disease [150].

For the first time, an ultra-performance liquid chromatography (UPLC)-MS-based
technique has been proposed, together with multivariate data analysis, for global saliva
metabolomics analysis and BC diagnosis. With hydrophilic interaction chromatography
(HILIC) and reversed-phase liquid chromatography (RPLC) separations, 18 possibly useful
biomarkers, including glycerol phospholipid compounds, fatty amide, sphingolipid and
choline, have been demonstrated to have high accuracy in predicting BC [151]. While
acylcarnitine C2 was favorably correlated with disease risk, the amounts of arginine,
asparagine and PCs were negatively connected with breast cancer risk in pre-diagnostic
plasma samples of 127 metabolites [152].

Serum samples from patients were used in a metabolomics study using NMR spec-
troscopy to examine the connection between patients’ metabolic characteristics and chemother-
apy sensitivity. Several significantly altered metabolic pathways—glycine, serine, thre-
onine, alanine, aspartate and glutamate metabolism and valine, leucine and isoleucine
biosynthesis—were identified as potential predictive models to identify three different
subtypes of TNBC patients, i.e., those with a pathological complete response (pCR), patho-
logical stable disease (pSD) and pathological partial response (pPR) [153].

This technique has also been used to analyze and compare the serum metabolomes
of women with BC before and after 1 year of chemotherapy treatment, revealing signifi-
cant changes linked to lysine degradation, branched-chain amino acid synthesis, linoleic
acid metabolism, tyrosine metabolism and unsaturated fatty acid biosynthesis as the top
five altered metabolic pathways [154].

Overall, metabolomics plays a crucial role in breast cancer research by providing insights
into the metabolic alterations associated with the disease, identifying potential biomarkers
and therapeutic targets and aiding in devising personalized treatment approaches.

3.4. Pharmaco-Omics: Pharmacogenomics and Pharmacomicrobiomics

Pharmacogenomics studies how genetic variations affect both pharmacological activity
(pharmacodynamics) and pharmacokinetics in individuals, i.e., how a person’s genetic
makeup affects his/her reaction to medication [155].
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Synthetic lethal pairs or medication combinations to target BC can be identified using
genetic mutations, changed transcriptional markers and metabolic alterations [156]. It is
reasonable to suppose that some of these alterations will be persistent and accessible for
a quantitative evaluation for diagnostic and prognostic purposes, given cancer metabolic
reprogramming [157]. Different pathway analysis tools have been developed to compare
the effects of gene variants or changes in expression profiles linked to chemotherapy
benefits. Herein, we report several examples of how pharmaco-omics has been applied in
the BC research field.

• Identification of genetic variants and personalized treatment approaches

Pharmacogenomics analysis can identify genetic variants that affect drug metabolism
and responses in BC patients and can guide personalized treatment approaches for BC
patients by identifying drugs that are likely to be effective and safe for a particular patient.

A polymorphism in ABCB1 was indicated as a susceptibility biomarker for Paclitaxel-
induced toxicity, but data are still conflicting [158]. Instead, concordant findings point
to variants in CYP2C8 as biomarkers for Taxane-induced neuropathy (TIN) generated by
Paclitaxel treatment, or as a biomarker for hematological toxicity brought about by any
combination of cytotoxic drugs [158,159].

Mutations located in a hotspot region in the ESR1 ligand-binding domain include
Y537S, Y537N, Y537C and D538G, and these represent more than 80% of the ESR1 variants
associated with acquired resistance to endocrine therapy [160]. These mutations are re-
garded as the causes of the main resistance mechanism, and they are rare in primary tumors
but are reported in more than 20% of cases of recurrence and metastatic cancer in patients
treated with endocrine therapy [161]. Since the frequency of the mutations in ESR1 is higher
in metastatic BC than in primary tumors, the assessment of this gene’s variants in plasma
cfDNA might help in selecting treatment strategies, e.g., the administration of Fulvestrant
in patients with a mutation in ESR1 was found to improve tumor-free survival [162].

Pharmacogenomics analysis can also help to identify drug targets for BC treatment
by revealing the molecular mechanisms underlying tumor development and progression.
Indeed, the use of variants in CBR3 as potential biomarkers for anthracycline-induced toxi-
city, including cardiac and hematological toxicity, is one of the results of pharmacogenomic
BC research [163].

Pharmacomicrobiomics can contribute to the development of personalized medical
approaches for breast cancer treatment. The innovative discipline of pharmacomicrobiomics
studies the interactions between genetic profiles, drug response variability and toxicity,
microbiome variation and drug pharmacodynamics to improve therapeutic efficacy, avoid
adverse effects and assess the functional content of commensal bacteria. By considering an
individual’s gut microbiota composition and its impact on drug metabolism and treatment
responses, tailored treatment plans can be designed to optimize outcomes for patients. The
ability to differentiate microbiome profiles when comparing either normal breast tissue
vs. BC tissue or the differences in tissues derived from distinct BC subtypes is one of the
innovative aspects of microbial analysis in BC [164].

• Influence on drug metabolism and modulation of treatment response or disease recurrence

The gut microbiota can influence the metabolism of drugs, potentially affecting their
efficacy and toxicity. Analyzing the microbiota profile alongside other clinical factors can
provide valuable information for patient management in terms of treatment and prognosis.
Understanding these interactions can help to optimize drug dosing and treatment strategies
for BC patients. The gut microbiota has been shown to modulate the efficacy and adverse
effects of cancer treatments, including chemotherapy, hormone therapy, targeted therapy,
immunotherapy and radiotherapy [165].

Programs such as QIIME 2 (https://qiime2.org/ (accessed on 8 August 2023)) provide
a framework for microbiome multi-omics or the concurrent exploration of the microor-
ganisms present in an individual [166]. There is also a link between the breast microbiota
and breast carcinogenesis, as well as a relationship between the therapeutic response and

https://qiime2.org/
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drug resistance, which researchers have gradually revealed to exist in both normal breast
and BC tissue [167,168]. The responsiveness and toxicity of several cancer treatments may
be significantly impacted by the microbiome because it affects host immunity. The innate
immune system is taught to recognize microorganisms via pattern recognition receptors
(PRRs), which bind to pathogen-associated molecular patterns in bacteria. As a result,
certain microbial mechanisms recognized by PRRs in the breast can cause an inflamma-
tory response that inhibits tumor growth and aids in the recruitment of cells that can kill
tumors [169].

By studying the interactions between the gut microbiota and different treatments,
researchers can gain insights into factors that may influence treatment responses in BC
patients. For instance, severe, dose-limiting diarrhea is a common side effect of irinotecan-
induced mucositis in up to 30% of BC patients [170]. As a result, microbiome profiling
may be used to identify individuals who are at risk of developing mucositis because of
irinotecan, and microbiota alterations may result in novel therapeutic options.

Pharmacogenomic analysis can identify existing drugs that are effective for BC treat-
ment by revealing their potential therapeutic targets.

Recently, Oncotype DX [85], a validated and well-known multigene signature test
that predicts the risk of recurrence in ER+ lymph-node-negative BC patients who received
adjuvant Tamoxifen, and MammaPrint, a validated molecular test that relies on microarrays
to evaluate the relative expression of 70 genes primarily involved in cancer regulatory
pathways, were developed [171,172]. Overall, pharmacogenomics plays a crucial role
in breast cancer research by providing insights into the genetic factors that affect drug
metabolism and responses, guiding personalized treatment approaches and identifying
potential therapeutic targets for drug development.

3.5. Artificial Intelligence (AI) Imaging

AI imaging is a rapidly developing field in breast cancer research and diagnosis.
AI-assisted imaging diagnosis provides a more accurate and highly efficient diagnostic
model for BC. A new area of medical imaging, radiomics, is based on the extraction
and quantification of high-throughput feature data from medical images that cannot be
identified by conventional imaging techniques. Radiomics is a non-invasive technique
that can be repeated over the follow-up period to infer tumor features [173–175]. Although
the investigation of genetic expression remains the gold standard, AI imaging creates
a link between medical imaging and individualized diagnosis and treatment and has
the potential to replace invasive biopsies [176]. Herein, we describe several examples of
this technology.

• Improved diagnostic and prognosis accuracy

Radiomics allows us to thoroughly examine tumor heterogeneity, rather than only
a tiny portion of the tumor, which is usually the case for genomic and transcriptome
profiling [177–179]. This idea has been applied to the study of TNBC, considering that
the molecular heterogeneity of TNBC subtypes would result in a distinct pattern in
MRI images, which can be quantitatively assessed using a radiomics approach, allowing
us to diagnose TNBC with high precision [180]. A radiomics approach was used in
a retrospective study of 331 cancer cases, where concavity, correlation, roundness and
gray mean showed a statistically significant difference. TNBC samples showed smaller
concavity, larger roundness and a major gray mean compared to HER2-enhanced and
luminal samples [181]. The most statistically significant differences between the molecular
subtype “luminal A” and TN tumors were detected using AI imaging [182]. Xiong et al.
examined 620 patients with invasive BC, and, in these patients, the radiomics signature
effectively predicted disease-free survival (DFS) and outperformed the clinicopathological
nomogram [183].

• Identification of biomarkers
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AI algorithms can help to identify subtle changes in breast tissue that may be indica-
tive of cancer, improving the diagnostic accuracy and reducing the need for unnecessary
biopsies. AI algorithms can also help to identify imaging biomarkers that are associated
with BC, such as mammographic breast density. Radiogenomics is a novel emerging omics
technique that aims to correlate the phenotype (radio) of lesion imaging with the genotype
(genomics), based on the idea that the phenotype is the expression of the genotype [184].
This approach was used to study BC by Woodard et al., who examined the relationships
across semantic features—i.e., the Breast Imaging Reporting and Data System (BI-RADS)
from mammography and MR imaging—and the clinically accessible genomic assay On-
cotypeDX’s recurrence risk scores. The authors suggested that the BI-RADS features of
mammographic breast density, calcification morphology, mass margins at mammography
and MR imaging and non-mass enhancement in MR imaging may be used as imaging
biomarkers for the risk of BC recurrence [184].

Another study showed that the MR imaging of breast tumors predicted the underlying
expression of genes as detected via RNA-seq; in fact, the researchers found that tumors were
smaller and more spherical when immune signaling pathways (T-cell receptor signaling) as
well as extracellular signaling pathways (cell adhesion molecules and cytokine–cytokine
interactions) were activated [185]. Intratumor heterogeneity in the image enhancement
texture was stronger in tumors with higher JAK/STAT and VEGF pathway expression
levels. This study of BC highlights the possibility of distinguishing tumors that are more
immunologically active [185].

• Improving accuracy of imaging exams

AI algorithms can improve the accuracy of imaging exams by reducing the number of
false positives and false negatives, improving the detection of breast cancer [186].

New imaging and analytical techniques must be developed to identify and display
the in vivo activity of metabolic pathways. One of the primary instruments used in clinical
practice for screening, diagnosis and treatment efficacy assessment is imaging detection,
which can show changes in tumor size and texture both before and after therapy. Ultrasound
is more adaptable, portable and affordable than a mammogram, but it also depends on the
operator’s skill [187]. Magnetic resonance imaging (MRI) is the most expensive method
and has low specificity, but it has greater sensitivity than other methods in detecting
BC [188,189].

AI algorithms can be used to automate BC screening, reducing the workload of
imaging physicians and improving the efficiency of the screening process.

The main challenges in BC screening and imaging diagnosis also include complicated
and mutable picture characteristics, varied image quality and inconsistent interpretation
by various radiologists and medical institutions. Moreover, the considerable number of im-
ages that must be analyzed is challenging for radiologists in terms of time and energy and
requires the improvement of computer-aided detection methods and platforms. The devel-
opment of image-based artificial intelligence (AI)-assisted tumor diagnosis is promising in
terms of enhancing the effectiveness and precision of imaging diagnosis. Computer-aided
diagnosis (CAD) offers effective automated lesion segmentation, image identification and
diagnosis, possibly decreasing radiologists’ labor and increasing the diagnostic precision.
The clinical utility of CAD in BC has considerably increased due to advanced image-based
artificial intelligence (AI) techniques [190]. AI is able to autonomously recognize, seg-
ment and diagnose tumor lesions by building algorithm models from raw image data,
demonstrating great application prospects.

Based on the improvements in both screening and diagnostic imaging outcomes,
digital breast tomosynthesis (DBT) is emerging as the standard of care for breast imaging.
DBT image capture gives higher tomographic detail and improves the section separation
or vertical (z-axis) resolution thanks to its wider angular range of X-ray tube motion with
access to 1-mm-thick slides [191]. It is noteworthy that DBT detection of invasive carcinoma
is associated with a favorable prognosis compared to tubular, papillary and mucinous
carcinomas and luminal A molecular subtypes; moreover, DBT has been associated with
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decreased recall rates compared to digital mammography (DM) [192]. As a result, a
decrease in false-positive call back rates of 6 to 67% has been reported with DBT compared
to 2D mammography [192–196]. However, an important limitation is the susceptibility to a
variety of artefacts, such as 3D reconstruction and slinky or halo artefacts, which increases
recall rates and false-positive rates [197].

Overall, AI imaging is a promising tool that can provide valuable insights into breast
cancer biology, aid in the development of more effective diagnostic and treatment strategies
and improve patient outcomes.

4. Conclusions

Innovative omics technologies are continuously in development, thanks to biotech-
nological advances, allowing researchers to examine multiple data from different sources,
e.g., the genome, epigenome, transcriptome, proteome and metabolome, to name a few.
Numerous omics technologies, such as bulk and single-cell omics approaches, have made
it possible to characterize various molecular layers at previously inaccessible scales and
resolutions, offering researchers a comprehensive understanding of the tumor behavior and
leading to the possibility of molecularly classifying cancers and enabling a personalized
medicine approach.

The application of multi-omics might help to decipher the molecular complexity of BC.
Moreover, it can help to classify the different tumor types and BC subtypes and to address
survival outcome prediction and BC heterogeneity.

The systematic examination of multiple molecular data at different biological layers is
made possible by multi-omics analysis, but it also presents problems in terms of how to
obtain useful knowledge from the rapidly growing volume of data. It will be fundamental
to develop integrated systems for the management and interpretation of the large amount
of multi-omics data, reflecting the various biological fingerprints of the development of
BC, particularly of TNBC. In oncology, artificial intelligence has shown the capacity to
analyze complementary multi-modal data sets. By using machine learning (ML) approaches
on omics profiles, several gene signatures have been identified, but their clinical value
is frequently hampered by the restricted interpretability and unstable performance. It
is, however, foreseen that this integrated approach will be pivotal in BC management
and treatment.

In conclusion, omics technologies, including genomics, proteomics and metabolomics,
are valuable tools for breast cancer research. These approaches provide insights into the
molecular landscape of breast cancer, allowing for the identification of biomarkers and
therapeutic targets (summarized in Table 1) that are pivotal in developing personalized
treatment strategies.

Table 1. Summary of principal alterations and biomarkers found by each omics technique.

Omics Genetic Alterations Biomarkers

Liquid biopsy
Four polymorphic markers in cfDNA (D13S159,

D13S280, D13S282 at region 13q31-33, and
D10S1765 at PTEN region 10q23.31) [23].

Transcriptomics

TP53, GAPDH, cyclin D1, HRAS, CDK1,
CDC6 and PCNA dysregulated [47].

Activation of ERBB2, FOXM1, ESR1 and
IGFBP2 mechanistic networks [47].

TNBC: expression of ER, PR, GATA3,
E-cadherin and multiple cytokeratins [48].

HER2+: high levels of Ki-67, p53, EGFR and
the hypoxia marker CAIX [48].

Polyadenylation (APA) influences tumor cell
proliferation [52].

ETV6 gene associated with worse prognosis in
TNBC [54].
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Table 1. Cont.

Omics Genetic Alterations Biomarkers

Epigenomics

A total of 4283 differently methylated genes
and 1899 differentially expressed genes [89].
Hypermethylation was identified in TWIST,

RASSF1A, CCND2 and HIN1 genes [90].
Hypermethylation of the WNT1 promoter in

patients with metastatic tumors [91].
RASGRF1, CPXM1, HOXA10 and DACH1 in

TBNC [92].
CDH13 and GSTP1 hypermethylation [93].

Hypermethylation of ALDH1A2, ALDH1L1,
HSPB6, MME, MRGPRF, PENK, SPTBN1,

WDR86 and CAV2 and PITX1
hypomethylation [96].

RASSF1A, CCND2, HIN1 and APC [97,98].
miRNA hsa-miR-210 [99].

SPAG6, PER1, ITIH5 and NKX2-6 [100].

Proteomics
ER, p53, CK8/18, Ki-67, PR, cyclin D1,

HER-2, CK5/6, cyclin E, BCL2, cyclin E and
E-cadherin [81].

Fragments of C3, C3adesArg, factor XIIIa,
ITIH4, FPA, apoA-IV, fibrinogen, bradykinin

and transthyretin [118].
Maspin and HSP-27 [81].

Metabolomics

Carnitine, lysophosphatidylcholine, proline,
alanine, lysophosphatidylcholine,

glycochenodeoxycholic acid, valine and
2-octenedioic acid [131].

Phosphatidylcholines (PC),
phosphatidylethanolamines (PEs) and

phosphatidylinositols (PIs); sphingomyelins
(SM), ceramides (Cer) and triacylglycerols

(TGs) [132].

SLC1A5, SLC6A14 and SLC7A5 [134,135].
GPAM [136].

N-acetyl-aspartyl-glutamate, SIP1 [137].
FASN in TNBC [138].

Fatty acids (FAs) in TNBC [139].
Acetyl-CoA carboxylase 1 (ACACA) [140].

Pharmaco-omics

Polymorphism in ABCB1 [158].
Variants in CYP2C8 [159].

Hotspot region in ESR1 ligand-binding
domain, including Y537S, Y537N, Y537C and

D538G [160].
Mutations in ESR1 [162].

Variants in CBR3 [163].

Artificial imaging

Immune signaling pathways (T-cell receptor
signaling) and extracellular signaling

pathways (cell adhesion molecules and
cytokine–cytokine interactions) activated [185].

Higher JAK/STAT and VEGF pathway
expression level.

The integrative analysis of multi-omics data will further enhance our understanding
of the disease and its underlying mechanisms. Multi-omics will provide a more holistic
and comprehensive vision of the breast cancer microenvironment, leading to new insights
into the biology of the disease and potential new targets for therapy.
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