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A B S T R A C T 

Background and objectives:  Epigenetic estimators based on DNA methylation levels have emerged 

as promising biomarkers of human aging. These estimators exhibit natural variations across human 

groups, but data about indigenous populations remain underrepresented in research. This study aims 
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to investigate differences in epigenetic estimators between two distinct human populations, both residing in the Gran Chaco region of 

Argentina, the Native-American Wichí, and admixed Criollos who are descendants of intermarriages between Native Americans and the 

first European colonizers, using a population genetic approach.

Methodology:  We analyzed 24 Wichí (mean age: 39.2 ± 12.9 yo) and 24 Criollos (mean age: 41.1 ± 14.0 yo) for DNA methylation levels 

using the Infinium MethylationEPIC (Illumina) to calculate 16 epigenetic estimators. Additionally, we examined genome-wide genetic 

variation using the HumanOmniExpress BeadChip (Illumina) to gain insights into the genetic history of these populations.

Results:  Our results indicate that Native-American Wichí are epigenetically older compared to Criollos according to five epigenetic esti-

mators. Analyses within the Criollos population reveal that global ancestry does not influence the differences observed, while local (chro-

mosomal) ancestry shows positive associations between specific SNPs located in genomic regions over-represented by Native-American 

ancestry and measures of epigenetic age acceleration (AgeAccelHannum). Furthermore, we demonstrate that differences in population 

ecologies also contribute to observed epigenetic differences.

Conclusions and implications:  Overall, our study suggests that while the genomic history may partially account for the observed epigen-

etic differences, non-genetic factors, such as lifestyle and ecological factors, play a substantial role in the variability of epigenetic estima-

tors, thereby contributing to variations in human epigenetic aging.

Lay summary In the Gran Chaco region of Argentina, Native-American Wichí cohabit with Criollos, an admixed population deriving from 

intermarriages between Native Americans and the first European colonizers. We analyzed epigenetic estimators to assess biological aging 

at the individual level and we demonstrated that Wichí exhibit a greater epigenetic age compared to Criollos. A potential role of different 

genetic histories and a major role in lifestyle and ecological habitats is suggested.

Keywords: human aging; epigenetic clocks; genomic history; South America; DNA methylation

INTRODUCTION

Global demographic changes are reshaping age structures 
across human populations, with aging being a significant risk 
factor for many chronic diseases. Measuring the rate of aging 
is thus crucial for extending health span, particularly in diverse 
human populations, and there is an urgent need to identify fac-
tors that increase individual risk of age-related diseases and 
mortality.

The rate of biological aging showed natural variations among 
human groups, but to date, a comprehensive description of 
the aging process in different human populations, especially in 
indigenous ones, remains limited.

Various measures of biological age aim to capture the process 
of aging, with epigenetic clocks emerging as the most promising 
tools capable of distinguishing chronological age from biolog-
ical age. Epigenetic clocks are based on combinations of DNA 
methylation (DNAm) levels of CpG sites across the genome, and 
a substantial body of literature provides compelling evidence 
about the capability of these biomarkers to capture aspects of 
biological aging. In general, individuals whose biological age 
estimates exceed their chronological age are at an increased risk 
of multiple adverse health outcomes.

In this study, we investigate the relationship between the 
variability of epigenetic estimators and the population genetic 
structure, by analyzing two distinct communities residing 
within the village of Mision Nueva Pompeya, in the Gran Chaco 
region of Argentina (Fig. 1). Within this restricted geographical 
area, two human populations of different ancestry—the Wichí 
and the Criollos—cohabit and maintain very different genetic 
and linguistic profiles, being deeply different also in terms of 

cultural and social structures, as revealed by ethnographic 
fieldwork.

The Wichí are indigenous Native-American people speaking 
a language that belongs to the Matako-Maka family. Recent 
analyses of genetic and genomic data [1–3] have suggested 
a prolonged isolation of this indigenous group that, after 
the initial peopling of the area, was not involved in gene flow 
events from both the neighboring Andes on the West and the 
Amazonian regions on the North. Further genetic evaluations 
also suggested that the Wichí population belongs to the same 
basal non-Andean lineage of all Amazonians and that they likely 
descend from one of the first splits within this branch [1]. The 
Criollos population is instead characterized by a high degree 
of admixture. This admixture can be attributed to historical 
intermarriages among various Chaquean groups and the first 
European male colonizers [3].

In this geographical area, Chagas disease is endemic, with 
no differences in susceptibility to Trypanosoma cruzi (T. cruzi) 
infection observed between the two groups under consider-
ation [4]. Data indicate that serological prevalence in these 
areas is more than tenfold higher compared to the average of 
the country and that disparities were related to habitat rather 
than to ethnicity [4].

To estimate the discrepancy between chronological and bio-
logical ages in these populations we used epigenetic age accel-
eration measures belonging to the first and second generation 
of epigenetic clocks. The first-generation clocks, including the 
widely used Hannum [5] and Horvath clocks [6], are trained on 
chronological age and applicable to blood as well as 51 human 
tissues and cell types. The second-generation clocks (GrimAge 
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and PhenoAge) extend their scope to incorporate information 
about morbidity and mortality risk [7, 8]. A comprehensive 
description of epigenetic clocks can be found in recent reviews 
[9, 10]. Additionally, we employed other biomarkers derived 
from DNAm levels at CpG sites across the genome to infer an 
individual’s health status. These biomarkers encompass telo-
mere length [11] and plasmatic components contributing to the 
GrimAge clock [7], offering valuable insights into an individual’s 
biological aging. For the purposes of this paper, we refer to all 
these biomarkers collectively as ‘epigenetic estimators’.

These estimators have been applied broadly to study centenar-
ians [12], socioeconomic inequalities, education [13], nutritional 
status and lifetime stress [14] and conditions including Down’s 
syndrome [15], Alzheimer’s diseases and cognitive decline [16]. 
Furthermore, some studies have suggested variations in epi-
genetic age estimations across different human populations 
and ethnic groups [17–19]. These differences have been largely 
attributed to social and environmental health disparities, but 
in many contexts, these two factors covary with genetic ances-
try. Thus, studies that include rigorous analyses of population 
genomic history and genetic ancestry in different populations 
are needed. An exemplary study by Gopalan et al. [20] addressed 

the extent to which epigenetic estimators perform consistently 
across populations with different ancestries, employing accu-
rate methods to reconstruct admixture events. In particular, the 
study showed that population genetic variation can to some 
extent influence epigenetic age-prediction algorithms, as a con-
sequence of population-specific patterns at meQTLs (i.e. SNPs 
associated with DNAm levels at specific CpG sites).

Nevertheless, current research efforts in this area have mainly 
focused on groups of European ancestry, thus highlighting the 
urgent need to broaden these investigations to encompass also 
non-European populations and indigenous groups.

Considering this context, the aims of this study are as follows: 
(i) to investigate variations in biological aging based on epigen-
etic estimators between Wichí and Criollos, while also consid-
ering data on infection transmitted by the parasite T. cruzi; (ii) 
to ascertain whether these differences may be attributed to dif-
ferent genetic backgrounds. In this respect, to reduce potential 
biases we specifically focused on the Criollos, addressing the 
role of global and local ancestry in determining the observed dif-
ferences; (iii) to investigate the relative importance of genomic 
history and of established demographic and environmental fac-
tors, aiming to elucidate the underlying drivers of the observed 
inter-population differences.

METHODOLOGY

Study design

The rationale guiding this study is summarized in Fig. 2 and is 
based on three major approaches:

1. ‘Analysis of inter-population differences’ (Fig. 2): Initially, 
we investigated potential differences in biological aging 
between the Criollos and Wichí populations considering 16 
epigenetic estimators, as outlined in Table 1.

2. ‘Intra-population genomic history’ (Fig. 2): Then, we 
assessed whether the observed differences could be 
attributed to micro-evolutionary processes. The analyses 
conducted were designed to align with existing knowledge 
about the demographic history of the Criollos population. 
Specifically, we focused on Criollos as it is possible to inves-
tigate the extent to which varying ancestries might contrib-
ute to inter-population differences in epigenetic estimators 
within a more homogeneous environmental, ecological 
and social context. Given that all Criollos come from urban 
areas, while the majority of Wichì (20/24) reside in rural 
areas, this approach helped reduce potential confounding 
effects linked to the place of living and related environmen-
tal factors. The analyses were conducted first via global 
ancestry estimation and then by performing chromosome 

Figure 1. Approximate area of the Gran Chaco region with highlighted Misión 

Nueva Pompeya where the Wichí and Criollos samples were collected
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local ancestry inference. A correlation analysis was per-
formed to assess the potential role of genetic components 
derived from the global ancestry estimation in influencing 
the epigenetic estimators. Chromosome local ancestry esti-
mation returned SNPs located within candidate genomic 
regions enriched for certain ancestry (Native American vs. 
European). These SNPs were then tested for association 
with epigenetic estimators (highlighted in green in Fig. 2).  
Due to the small sample size, the association was first 
assessed by querying the results from previously published 
GWAS. Subsequently, the identified signals were validated 
in our dataset.

3. Lastly, we quantified the extent of genomic history’s impact 
on inter-population differences in epigenetic estimators. To 
accomplish this, we compared the relative importance of 
some factors identified through the previous analyses with 
that of demographic and environmental factors, including 

sex, T. cruzi infection and place of living (box ‘Genomic 
History or Other Factors?’ in Fig. 2).

Sample description and data generation

We considered 24 individuals for the Wichí group and 24 for 
the Criollos group. The mean age for the Wichí group was 
39.2 ± 12.9 years and for the Criollos group 41.1 ± 14.0 years. 
For each group, we selected 12 males and 12 females. Fifty per-
cent (12/24, 6 males and 6 females) of Wichí and 50% (12/24, 
6 males and 6 females) of Criollos were infected by T. cruzi. We 
purposely selected the same ratio of infected samples to mini-
mize bias when comparing Wichì and Criollos and when compar-
ing infected individuals to non-infected ones. All the considered 
Criollos individuals and 4 out of 24 Wichí individuals originated 
from urban area of Misiòn Nueva Pompeya, whereas 20 out 
of 24 Wichí individuals were from rural area of Misiòn Nueva 

Figure 2. Outline of the analyses performed in the present study
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Pompeya, mostly residing within the forests. T. cruzi infection 
was measured through serological tests conducted in 2008 and 
2010. Whole blood samples were obtained from venous blood. 

Subsequently, genomic DNA was extracted from 0.2 ml of whole 
blood using the QIAamp DNA Blood Midi Kit® (QIAGEN). DNA 
quantification was performed with a fluorometric dsDNA assay 

Table 1. List of all epigenetic estimators considered in this study.

Epigenetic estimator Description Group

AgeAccelerationResidual DNAm age estimate based on methylation of 353 CpG sites [6]adjusted for 
chronological age

i

EEAA DNAm age estimate based on the weighted average of the epigenetic age measure from 
[5]and three estimated measures of blood cells for cell types that are known to change 
with age (naïve cytotoxic T cells; exhausted cytotoxic T cells; and plasma B cells) [17]

i

IEAA DNAm age based on methylation of 353 CpG sites [6] regressed on chronological age 
and cell count information (naïve CD8 + T cells, exhausted CD8 + T cells, plasmablasts, 
CD4 + T cells, natural killer cells, monocytes, granulocytes)

i

AgeAccelHannum DNAm age estimate based on methylation of 71 CpG sites [5] adjusted for 
chronological age

i

DNAmAgeSkinBloodClockAdjAge DNAm age estimate based on methylation of 391 CpG sites for human fibroblasts, 
keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin, blood and saliva 
samples [6] adjusted for chronological age

i

AgeAccelPheno DNAm age estimate based on methylation of 513 CpG sites [8] adjusted for 
chronological age

ii

AgeAccelGrim DNAm age estimate based on methylation of 1030 CpG sites built on eight DNAm 
based measures (DNAmADM, DNAmB2M, DNAmCystatinC, DNAmGDF15, 
DNAmLeptin, DNAmPACKYRS, DNAmPAI1, DNAmTIMP1), chronological age and sex 
[7]

ii

DNAmTLAdjAge DNAm-based estimate of telomere length [11] adjusted for chronological age iii
DNAmB2MAdjAge DNAm-based prediction of plasma levels of beta-2 microglobulin, a component 

of major histocompatibility complex class 1 (MHC I) molecular [11], adjusted for 
chronological age

iv

DNAmADMAdjAge DNAm-based prediction of plasma levels of adrenomedullin, a vasodilator peptide 
hormone [7], adjusted for chronological age

iv

DNAmCystatinCAdjAge DNAm-based prediction of plasma levels of cystatin C or (cystatin 3), formerly called 
gamma trace, post-gamma-globulin, or neuroendocrine basic polypeptide [7], adjusted 
for chronological age

iv

DNAmGDF15AdjAge DNAm-based prediction of plasma levels of GDF-15, growth differentiation factor 15 
[7], adjusted for chronological age

iv

DNAmLeptinAdjAge DNAm-based prediction of plasma levels of leptin, a hormone predominantly present 
in adipose cells [7], adjusted for chronological age

iv

DNAmPACKYRSAdjAge DNAm-based prediction of a number of pack of cigarettes during year [7], adjusted for 
chronological age

iv

DNAmPAI1AdjAge DNAm-based prediction of plasma levels of plasminogen activator inhibitor antigen 
type 1 (PAI-1), the major inhibitor of tissue-type plasminogen activator and urokinase 
plasminogen activator [7], adjusted for chronological age

iv

DNAmTIMP1AdjAge DNAm-based prediction of plasma levels of TIMP-1 or TIMP metallopeptidase inhibitor 
1—a tissue inhibitor of metallo-proteinases [7], adjusted for chronological age

iv

Group i: first-generation epigenetic clocks; Group ii: second-generation epigenetic clocks; Group iii: DNAm-based estimate of telomere length adjusted for 

chronological age; Group iv: DNAm surrogates of components that contribute to GrimAge clock all adjusted for chronological age.
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(Quant-iT™ PicoGreen® dsDNA kit, INVITROGEN), and then 
DNA samples were normalized to a concentration of 22 ng/µl in 
45 µl for subsequent bisulfite treatment (EZ DNA Methylation 
Kits, ZYMO RESEARCH). These samples were analyzed using 
an epigenome-wide array, the Infinium MethylationEPIC Kit, fol-
lowing the manufacturer’s recommendations. DNA methylation 
(DNAm) pre-processing analysis was carried out in R 3.3.3 using 
the minfi and wateRmelon libraries. The pfilter function from 
wateRmelon was applied to filter samples and probes based on 
bead count and detection P values. No samples were filtered out 
using a significance level of 0.05. Beta values were normalized 
using the Dasen function of the wateRmelon package.

A total of 300 ng of DNA from the same samples were also 
used to genotype ~720 K SNPs distributed throughout the whole 
genome using the HumanOmniExpress BeadChip (Illumina, San 
Diego, CA). The resulting genome-wide data comprised 713,014 
SNPs for the Wichi and 713,599 SNPs for the Criollos, respec-
tively. A series of quality control steps (QCs) were applied sepa-
rately to each dataset using the PLINK software version 1.9 [21]. 
Initially, we verified the reported sex assignments by comparing 
them with those imputed from the X-chromosome inbreeding 
coefficient, using the --check-sex/--impute-sex functions of the 
PLINK software. Then, for each population dataset, we retained 
only autosomal chromosomes and we excluded individuals with 
a genotyping success rate below 95% (--mind 0.05), variants with 
missing call rates exceeding 5% (--geno 0.05) and SNPs show-
ing significant deviations (P value < 7.00e−08 after Bonferroni 
correction) from Hardy–Weinberg equilibrium (--hwe option). In 
addition, we calculated the proportion of alleles shared identi-
cal-by-descent (--genome function) and excluded one sample for 
each pair of individuals exhibiting a kinship coefficient (PiHat) 
higher than 0.25. After QCs and merging procedures, a common 
dataset for 22 Wichí and 23 Criollos encompassing a shared set 
of 644,020 autosomal SNPs was retained for further analysis.

The study n° 63/2006/U/TESS was approved on 9 May 2006 
by the ethical committees of both the University of Bologna 
(Azienda Ospedaliero-Universitaria di Bologna—Policlinico 
Sant’Orsola-Malpighi) and the University Hospital of Maternity 
and Neonatology, Universidad Nacional de Córdoba, Argentina. 
Additionally. the Ministry of Health of the province of Chaco pro-
vided further authorization to conduct the survey. Participants 
who voluntarily took part in the study were informed by 
native-speaking translators and signed a consent form, which 
was available in both Spanish and Wichí languages.

Epigenetic estimators and analysis of inter-population 
differences

To compute epigenetic estimators for the two populations 
under investigation, we used the online DNAm age calculator 

(http://dnamage.genetics.ucla.edu) developed by Horvath [6]. 
We used this calculator to compute 16 measures of epigenetic 
age adjusted for chronological age (detailed in Table 1) and 
denoted in the software output with either the AgeAccel prefix 
or the AdjAge suffix. These measures are indicative of first-gen-
eration epigenetic clocks (Group i in Table 1), second-gener-
ation epigenetic clocks (Group ii in Table 1), DNAm-based 
estimate of telomere length adjusted for age (Group iii in 
Table 1), which is a well-established biomarker of age [11], and 
DNAm surrogates of plasma protein components that con-
tribute to the GrimAge clock [7] (Group iv in Table 1). DNAm 
surrogates showed a moderately high correlation (r > 0.35) 
between measured blood levels of the protein and the respec-
tive DNA methylation markers [7], but a linear combination of 
seven DNAm-based surrogate markers of plasma proteins—
namely adrenomedullin (ADM), beta-2-microglobulin (B2M), 
cystatin C (Cystatin C), growth differentiation factor 15 (GDF-
15), leptin (Leptin), plasminogen activator inhibitor-1 (PAI-1), 
and tissue inhibitor metalloproteinases 1 (TIMP-1)—contrib-
ute to the GrimAge clock [7], a clock which has been associated 
with all-cause mortality [22]. A description of the epigenetic 
estimators used in this study is available in Table 1. Following 
the assessment of the normality distribution assumption for 
the epigenetic estimators using a Shapiro–Wilk test, we con-
ducted t-tests and Wilcoxon tests on the measures of interest 
contained in the output file to explore possible differences 
between the two populations. Correction for multiple testing 
was performed using the Benjamini–Hochberg method (FDR 
q-value < 0.1) [23].

Finally, a correlation matrix among the 16 epigenetic estimators 
was generated using the Spearman coefficient (Supplementary 
Fig. S1). Two epigenetic estimators were considered indepen-
dent when the Spearman’s correlation coefficient was not signifi-
cantly different from zero (P value < 0.01).

Inbreeding analysis and association with epigenetic estima-
tors in Wichí

Previous studies [1] have suggested that the Wichí population 
has long inhabited the Gran-Chaco region and has maintained 
genetic isolation from both neighboring Andean populations on 
the West and Amazonian groups on the North. At this perspec-
tive, it is reasonable to hypothesize that the genomic history of 
Wichí may have been characterized by kinship and inbreeding. 
To assess kinship between all pairs of Wichí individuals and 
to estimate individual inbreeding coefficients, we employed 
the REAP software [24]. We ran the REAP software using the 
allele frequency file and the individual ancestry proportion file 
obtained from ADMIXTURE output for the Wichí population. 
In particular, the estimation of these coefficients was based on 
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four continental ancestry components (namely Asian, African, 
European and Native-American ancestry).

After having checked the normality distribution assumption 
for the epigenetic estimators in the Wichí population using a 
Shapiro–Wilk test, we conducted Pearson and Kendall tests 
to explore the association between inbreeding and epigenetic 
estimators. Additionally, for the purpose of comparing kinship 
coefficients (computed for pairs of individuals) with epigene-
tic estimators (computed for each individual), we introduced a 
‘delta’ measure, defined as the difference between the values of 
the epigenetic estimators of two individuals. If kinship affects 
the epigenetic signals, the more two individuals are related, the 
lower ‘delta’ is expected.

Analyses in Criollos

Global ancestry analysis and association with epigenetic esti-
mators in Criollos
The common dataset consisting of 644 020 autosomal SNPs 
shared between Wichí and Criollos was merged with publicly 
available genome-wide data for populations of African, East 
Asian, European and Native-American ancestry. These refer-
ence datasets were sourced from the Human Genome Diversity 
Project, the 1000 Genomes Project, and literature-based data 
on Native-American groups from Central and South America 
(Supplementary Table S1). The same QCs described in Section 2 
were performed on these reference datasets, by further removing 
ambiguous A/T and C/G polymorphisms to avoid strand-flipping 
issues during the merging procedure with our ‘local’ set. After the 
merging process, we obtained an ‘extended’ dataset comprising 
a total of 1349 individuals from 36 population groups, genotyped 
for a set of 349 099 common SNPs. This ‘extended’ dataset was 
pruned for genotype-based analyses by removing SNPs in high 
linkage disequilibrium (r2 > 0.2) within a sliding window of 50 
SNPs, advancing by 5 SNPs at the time (--indep-pairwise 50 5 0.2 
command in PLINK). After pruning a total of 132 838 SNPs were 
retained.

To infer the genetic ancestry composition of the analyzed pop-
ulations, we applied the unsupervised clustering algorithm of 
the software ADMIXTURE [25] to the pruned extended dataset, 
by testing hypothetical ancestral populations (K) ranging from 2 
through 12. We performed 10 independent runs for each value 
of K with different random seeds, and then we retained the runs 
with the highest log-likelihood values to generate the final admix-
ture plot. We used the cross-validation (CV) errors associated 
with the given replicates of K to identify the number of K that 
provided the best fit to the data.

The global ancestry components inferred with ADMIXTURE 
for Wichí and Criollos at both the continental level of K = 4 and 
the best value of K = 8 (according to CV errors), were correlated 

with the epigenetic estimators by using the cor.test function avail-
able in the software R [26]. Before performing the correlation 
analysis, we assessed the normality or significant deviation from 
normality in the distribution of both genetic and epigenetic vari-
ables by using the Shapiro–Wilk normality test (implemented in 
the R software function shapiro.test).

Local ancestry inference and association with epigenetic esti-
mators in Criollos
The local ancestry composition of our target admixed population 
(i.e. Criollos) was estimated using the RFMix (v.1.5.4) software 
[27]. We assembled the reference panel of putative source pop-
ulations by initially selecting 83 individuals from the extended 
dataset who displayed Native-American ancestry exceeding 0.99 
at the considered K = 4 continental level of admixture. The indi-
viduals selected for the Native-American reference panel spe-
cifically encompassed 8 Ashaninka, 6 Cashibo, 6 Huambisa, 11 
Shipibo, 21 Yanesha, 4 Bolivia_Aymara, 14 Titicaca_Aymara, 9 
Titicaca_Quechua and 4 Titicaca_Uros. Then, to reduce potential 
biases in the inference procedure arising from different reference 
panel sizes, we randomly selected an identical number of 83 indi-
viduals from the European (CEU—Utah residents with European 
ancestry from the CEPH collection; GBR—British from England 
and Scotland; IBS—Iberian populations in Spain; TSI—Tuscan 
in Italy), African (ESN—Esan in Nigeria; GWD—Gambian in 
Western Division; LWK—Luhya in Webuye, Kenya; MSL—Mende 
in Sierra Leone; YRI—Yoruba in Ibadan, Nigeria) and East Asian 
(CDX—Chinese Dai in Xishuangbanna, China; CHB—Han 
Chinese in Beijing, China; CHS—Han Chinese South, China; 
JPT—Japanese in Tokyo, Japan; KHV—Kinh in Ho Chi Minh City, 
Vietnam) populations of the 1000 Genomes Project [28], to be 
used as proxies for the corresponding reference ancestries. The 
unpruned dataset of 645 288 SNPs resulting from the merg-
ing process was phased with SHAPEIT (v2.r790) [29] using the 
1000 Genomes Phase 3 reference panel and genetic maps. The 
phased dataset was then transformed into the necessary RFMix 
input files, following the pipeline reported by Martin et al. [30]. 
We ran RFMix in ‘PopPhased’ mode, using a minimum window 
size of 0.2 cM (-w 0.2 flag), performing one expectation–mini-
mization iteration (-em 1 flag) with a node size of 5 (–n 5 flag), 
by further maintaining the reference panel after the initial infer-
ence step (i.e. using the --use-reference-panels-in-EM flag) and 
saving the forward-backward posterior probabilities (using the 
--forward-backward flag). Finally, we applied a posterior probabil-
ity threshold of > 0.9 to assign a given allele at a SNP for each 
individual haplotype to a specific ancestry, otherwise, it remained 
with an unknown/undefined ancestry assignment.

The results of the local ancestry inference analysis were used to 
identify genomic regions that displayed significant contributions 
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from one of the ancestral source populations, compared to what 
would be expected based on the genome-wide average ancestry 
proportion of the entire population [31]. Considering the gener-
ally low proportions of African (<5%) and Asian (<1%) ancestry 
detected in the Criollos population based on both global and 
local ancestry estimates, for this analysis we concentrate exclu-
sively on the main Native-American and European components 
of admixture. Additionally, we excluded from the calculations two 
Criollos individuals who showed extreme proportions of these 
ancestries. Ancestry-specific Z-scores were calculated for each 
SNP as the number of standard deviations above or below the 
genome-wide ancestry average, using the formula: Zanc = (fanc 
− μanc)/σanc. Corresponding P values were computed using Z 
distribution [31]. Ancestry-specific regions were finally defined 
as windows of consecutive SNPs showing significant Z-score 
results (specifically |Z| > 3).

SNPs located within the genomic regions identified by the 
local ancestry analysis were then merged with a reference list 
of SNPs obtained from a previous GWAS [32], with the aim to 
identify signals of association with epigenetic estimators (‘dis-
covery phase’). This reference list encompasses genome-wide 
associations with epigenetic estimators for 137 significant 
SNPs, resulting from a trans-ethnic meta-analysis on 34 710 
individuals of European ancestry and 6195 African Americans. 
Only SNPs retrieved from the GWAS were considered for vali-
dation in our cohort of Criollos (‘replication phase’). The sig-
nificance in the replication phase was assessed using nominal 
P-values < 0.01.

We described the genomic regions identified in both the dis-
covery and replication phases, and we extracted the P values of 
all SNPs located within these identified regions from the supple-
mentary lists provided by McCartney et al. [32]. These lists report 
the statistics referred to the genome-wide association with epi-
genetic estimators for approximately 6 million SNPs.

Relative importance of predictors in influencing the variance 
of epigenetic estimators

For each significant epigenetic estimator identified in the 
inter-population differences analysis (Fig. 3), we then estimated 
three linear regression models to assess the influence of genomic 
history, along with that of known demographic or environmental 
factors, on the observed inter-population differences. The first 
model considered Wichí and Criollos together, the second con-
sidered only Wichí, and the third considered only Criollos.

In the model considering both Wichí and Criollos together, we 
incorporated the following predictors: ‘Pop’, set to 1 for Wichí 
individuals and 0 for Criollos; ‘Female’, set to 1 for females and 0 
for males; and ‘T.cruzi’, set to 1 for individuals infected by T. cruzi 
and 0 for those who are not.

In the model considering only Wichí, the following predictors 
were included: ‘Inbreed’, denoting the inbreeding coefficient as 
estimated by REAP software; ‘Paraje’ (place of living), set to 1 
for individuals living in urban areas and 0 for individuals living 
in rural areas (the division into urban and rural areas was per-
formed according to the Fig. 1A of [4] as the individuals come 
from Güemes, Polenom, Atento, Pozo del Toba and Pozo del Sapo, 
Rosa Supaz, and Araujo); ‘Female’; and ‘T.cruzi’.

In the model considering only Criollos, the following predic-
tors were included: ‘EUR’ (European ancestry proportion); ‘AMR’ 
(Native-American ancestry proportion); ‘Female’ and ‘T.cruzi’. 
The ancestry proportions were those obtained from ADMIXTURE 
results at K = 4 (i.e. considering the main continental level of 
admixture). However, given the generally low contributions from 
the Asian and African components to the population, we decided 
not to include these two ancestry proportions in the model to 
reduce potential multicollinearity issues.

To assess the impact of these factors on the variance of epi-
genetic estimators, we computed the relative importance of 
the predictors employing the Lindemann, Merenda and Gold 
(LMG) statistic [33] and using the relaimpo package of the R 
software [34]. In each of the three models, the predictor with 
the highest LMG value was recognized as the most import-
ant factor influencing the variance of an epigenetic estimator. 
Furthermore, we assessed the percentage of the total variance 
of each epigenetic estimator explained by the most important 
predictor as the product of the LMG value and the R-squared 
value of each model.

RESULTS

Differences in epigenetic estimators between Wichí and 
Criollos

Epigenetic estimators were calculated for both Wichí and Criollos 
populations considering DNA methylation profiles obtained 
from the Illumina Infinium EPIC platform and applying a pre-
viously established method [6]. Initially, we validated the accu-
racy of the DNAm age estimates in predicting the chronological 
age within our study populations. We consistently found that the 
correlation between DNA methylation-age estimates (Horvath, 
Hannum, Pheno, GrimAge and Skin Blood clock) and chrono-
logical age exceeded 0.9 for Criollos. Instead, lower correlations 
were observed for Wichì (ranging between 0.7 and 0.8) except for 
AgeAccelGrim estimator, which exhibited a correlation value of 
0.97 (see Supplementary File 1 for additional details).

For our subsequent analyses, we considered a total of 16 epi-
genetic estimators: 5 first-generation epigenetic clocks (Group 
i), 2 second-generation epigenetic clocks (Group ii), 1 DNAm-
based estimate of telomere length corrected for age (Group iii) 
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and 8 DNAm surrogates of plasma protein components that 
contribute to the GrimAge clock, all adjusted for age (Group iv). 
A detailed description of these groups can be found in Table 1.

We conducted t-tests and Wilcoxon tests to investigate 
differences in epigenetic estimators between the two popu-
lations, and the resulting P-values were corrected using the 
Benjamini–Hochberg method. As reported in Fig. 3, we found 

that Wichí exhibit significantly higher levels than Criollos in two 
first-generation epigenetic clocks (EEAA, AgeAccelHannum), 
two second-generation epigenetic clocks (AgeAccelPheno and 
AgeAccelGrim), and significantly lower levels in the estimated 
telomere length represented by DNAmTLAdjAge (nominal P val-
ues < 0.01). Overall, these results suggest that Wichí are epige-
netically older than Criollos.

Figure 3. Boxplots for the epigenetic estimators that showed significant differences between the two analyzed populations
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Furthermore, Wichí individuals showed significantly higher 
levels in three DNAm surrogates of plasmatic components, 
specifically DNAmB2MAdjAge, DNAmCystatinCAdjAge and 
DNAmTIMP1AdjAge (nominal P values < 0.01).

All the mentioned epigenetic estimators remained statistically 
significant after multiple test correction (FDR < 0.1). Notably, 
the discrepancy between epigenetic age and chronological age, 
measured using the median of the four epigenetic clocks (EEAA, 
AgeAccelHannum, AgeAccelPheno, AgeAccelGrim), consistently 
showed positive values in Wichí (1.26, 0.87, 1.19, 0.42, respec-
tively) and negative values in Criollos (−2.55, −1.67, −2.62, −1.16, 
respectively).

The correlation matrix among the 16 measures (Supplementary 
Fig. S1) identified four distinct groups (as reported in Fig. 3) of 
epigenetic estimators independent of each other, though those 
within the same group were correlated. The first group comprises 
AgeAccelPheno, EEAA, AgeAccelHannum and DNAmTLAdjAge; the 
second group includes AgeAccelGrim and DNAmTIMP1AdjAge; 
the third and fourth groups consist of DNAmCystatinCAdjAge 
and DNAmB2MAdjAge, respectively. Consequently, these results 
indicate that four independent signals detected population 
differences.

All the before-mentioned results collectively suggest that Wichí, 
representing the Native American group, exhibit signs of being 
epigenetically older than admixed Criollos. Accordingly, also pre-
dicted epigenetic age was higher than the observed chronological 
age in Wichí, while the opposite trend was observed for Criollos. 
We did not include the place of living as a covariate in our anal-
ysis because, in our study design, the place of living (urban vs. 
rural) covaries with population groups (Criollos vs. Wichì).

Furthermore, none of the analyzed epigenetic estimators were 
significantly influenced by T. cruzi infection after correcting for 
multiple testing. Only DNAmCystatinCAdjAge displayed marginal 
differentiation in Criollos, with a nominal P value < 0.05 (see 
Supplementary File 2).

Given the long-term isolation characteristic of the Wichí pop-
ulation [1], we also explored the role of kinship and inbreeding 
in influencing significant epigenetic signals. However, when we 
assessed the correlation of inbreeding and kinship coefficients 
with the eight epigenetic estimators, no significant results 
(FDR < 0.01) were observed.

Epigenetic estimators and ancestry proportions in Criollos

Since historical data suggested that Criollos constitute an 
admixed population, we explored whether the eight epigenetic 
estimators that differentiated Criollos from Wichí might be influ-
enced by different genetic ancestry components.

To investigate this, we initially inferred global ancestry pro-
portions using ADMIXTURE, by testing 2 through 12 genetic 

components. The best predictive accuracy, based on cross-vali-
dation (CV) errors, was achieved when considering eight ances-
tral groups (K = 8). Comprehensive details on all the admixture 
analyses are reported in Supplementary File 3. Briefly, the major 
continental ancestries were distinguished at K = 4, delineating 
the main Native-American, European, African and Asian genetic 
components. At the best predictive value of K = 8, the admixture 
analysis confirmed the results from previous studies [1], by iden-
tifying highly specific Native American genetic ancestry fractions.

We then assessed the correlation between ancestry com-
ponents and all the 16 epigenetic estimators analyzed, in the 
admixed Criollos group. Our investigation did not reveal any 
associations between the genetic components (both at K = 4 and 
K = 8) and the eight epigenetic estimators that were found to 
differentiate Criollos from Wichí. This result suggests that global 
ancestry is not a primary driver of the observed epigenetic dif-
ferences between the two populations. For detailed information 
regarding the associations in all the 16 considered epigenetic 
estimators, refer to Supplementary File 3.

Chromosome local ancestry inference was then performed 
to explore if genomic regions enriched for particular ancestries 
(Native American vs. European) could be responsible for the 
observed differences. We inferred chromosome local ancestry 
estimates for each individual of the Criollos admixed population 
with RFmix using four putative source groups, informative of the 
main Native-American, European, African and Asian continen-
tal genetic components (Supplementary Fig. S2). The obtained 
chromosome local ancestry patterns were subsequently used to 
identify genomic regions exhibiting significant deviations (i.e. 
over- or under-representation) in local ancestry-specific assign-
ment compared to the average ancestry proportion of the entire 
population (see ‘Methodology’ section for details). In particular, 
single locus ancestry-specific Z-scores were calculated for the 
Native American and European components, given the consid-
erably low proportions of African and Asian ancestries overall 
observed in Criollos.

Our analysis identified significant signals for 14 genomic 
regions (Supplementary Table S2), among which the 2 most sig-
nificant ones were chr8:108647423-111991956 (Z-Max = 3.88, P 
value = 1.05e−04) and chr10:48318619-53411242 (Z-Max = 3.93, 
P value = 8.35e−05). Interestingly, both of these regions revealed 
a significant over-representation of Native-American ancestry 
(Fig. 4 and Supplementary Table S2). Furthermore, partially over-
lapping sub-regions within these same chromosomal segments 
also displayed an under-representation of European ancestry 
(Supplementary Table S2).

We then scanned published GWAS studies on epigenetic 
estimators [32] to identify significant SNPs located within the 
genomic regions pinpointed by the local ancestry analysis. To 
reduce the risk of false-positive associations, we decided to first 
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examine available published data (Discovery Phase), given the 
relatively small sample size of our cohort. Remarkably, we identi-
fied one SNP, named rs4838595_C, mapping in the ARHGAP22 
gene and located within the detected chr10:48318619-53411242 
region, which exhibited a significant association with the 
AgeAccelHannum epigenetic clock in a trans-ancestry meta-anal-
ysis (P value = 7.26e−11) [32]. Specifically, McCartney et al. [32] 
found that the Native American ancestral C allele produces a 
0.29-year increase in the gap between biological and chronolog-
ical age (Table 2), thus suggesting a potential deleterious effect 
of this allele on epigenetic aging.

Subsequently, we performed an association analysis between 
all the SNPs located within this genomic region and the 
AgeAccelHannum epigenetic clock by considering our cohort, 
which comprises the 24 Criollos (Replication Phase). We 
found that the Native-American ancestral alleles of three SNPs 
(rs4838608_A, rs4838609_T, rs7896115_A), which are situated 
in close proximity to the previously identified rs4838595 and 
belong to the same linkage disequilibrium area, significantly 
associate with AgeAccelHannum epigenetic clock (nominal 
P-value = 1.70e−03). Detailed data regarding the genomic region 
surrounding the rs4838595 SNP, as retrieved from McCartney et. 
al.[32], are reported in Table 2.

Modeling predictors of the epigenetic estimators

Since the previous analyses showed that only one measure of 
age acceleration (AgeAccelHannum) might be in some way influ-
enced by the population’s genomic history, our subsequent 

analyses aimed to assess the impact of known demographic and 
environmental factors on the variability of the eight epigenetic 
estimators that were found to differentiate Wichì and Criollos 
(Fig. 2). To achieve this, we employed the following approach (i) 
for each epigenetic estimator, we constructed three linear regres-
sion models: one for Wichí and Criollos together, one only for 
Wichí, and one only for Criollos alone; (ii) we then calculated 
the normalized LMG statistic to establish the relative importance 
of the predictor variables; and (iii) we assessed the percentage 
of the total variance of each epigenetic estimator that could be 
explained by the most important predictors (Fig. 5).

The regression analysis involving Wichí and Criollos revealed 
that the variable ‘Pop’ emerged as the most important predic-
tor explaining the variability of AgeAccelPheno, AgeAccelGrim, 
DNAmTLAdjAge, DNAmB2MAdjAge, DNAmCystatinCAdjAge and 
DNAmTIIMP1AdjAge (Fig. 5A), thus indicating the significance 
of population as a major driver of the differences observed within 
the communities living in the Gran Chaco of Argentina.

In the regression analysis focusing solely on Wichí, the 
inbreeding coefficient (‘Inbreed’) emerged as the most import-
ant predictor for DNAmB2MAdjAge (Fig. 5B). Additionally, the 
variable ‘Paraje’, which indicates the place of living, appeared the 
most important variable in explaining the epigenetic variability 
observed in AgeAccelPheno and DNAmCystatinCAdjAge, thus 
suggesting that environmental factors linked to the place of liv-
ing may contribute to the observed differences.

In the regression analysis dedicated exclusively to Criollos 
(Fig. 5C), the ‘T.cruzi’ emerged as the most important predic-
tor for DNAmCystatinCAdjAge and DNAmTIMP1AdjAge. This 

Figure 4. Manhattan plot showing regions with significant over-representation of Native-American ancestry across the genome. Ancestry-specific Z-scores were 

calculated for each SNP as the number of standard deviations above or below the genome-wide ancestry average, and corresponding P-values were computed 

using the Z distribution. The P-value threshold corresponding to the considered statistical level of significance for |Z| > 3 is highlighted with the blue line
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Table 2. List of SNPs located within the chr10:48318619-53411242 window enriched for Native American ancestry 
that showed significant association with the Hannum epigenetic clock (AgeAccelHannum) in the GWAS study by 
McCartney et al. [32].

SNP chr pos

Criollos 
Native-
American 
enriched allele

A1 A2 Freq A1 Effect A1 SE P N

rs2853838 10 48431110 G T G 0.26 −0.01 0.04 3.89e−03 36 401

rs2853840 10 48442146 C T C 0.36 −0.05 0.03 8.38e−03 32 961

rs12249222 10 49406469 C C T 0.69 −0.13 0.03 3.41e−03 36 402

rs1864345 10 49420008 T T C 0.72 −0.16 0.04 3.83e−04 35 829

rs7068878 10 49420462 A A C 0.73 −0.16 0.03 1.52e−04 33 536

rs2698761 10 49591718 C C T 0.45 0.07 0.03 5.09e−03 36 751

** rs4838595 10 49675247 C C T 0.86 0.29 0.03 7.26e−11 37 244

rs10857580 10 49686384 C C A 0.86 0.25 0.03 4.10e−08 33 886

rs1077960 10 49698113 T T G 0.87 0.24 0.03 2.04e−06 36 735

** rs4838608 10 49707942 A A G 0.85 0.13 0.03 8.00e−04 36 402

** rs4838609 10 49713830 T T G 0.85 0.12 0.03 1.83e−03 36 398

** rs7896115 10 49730982 A G A 0.10 −0.13 0.03 7.05e−03 34 381

rs11101371 10 49735098 A A G 0.80 0.08 0.04 3.95e−03 34 453

rs10776612 10 49735563 C C T 0.53 0.01 0.03 5.15e−03 37 322

rs2289808 10 49790972 T C T 0.73 0.12 0.04 6.43e−03 34 451

rs1445164 10 49800427 G G A 0.90 0.19 0.05 5.81e−04 34 136

rs883017 10 50217438 C T C 0.45 0.07 0.02 8.44e−03 34 450

rs9804403 10 50262144 T T C 0.66 −0.08 0.02 2.81e−03 37 216

rs12255055 10 50318484 G G A 0.57 −0.10 0.03 6.23e−03 36 746

rs7086360 10 50615806 G G A 0.57 0.11 0.03 1.39e−03 36 750

rs2983362 10 52325713 C T C 0.16 −0.08 0.04 3.64e−03 34 380

rs10996325 10 53009688 G G A 0.92 −0.10 0.06 8.98e−03 37 142

rs10823041 10 53223446 G G A 0.62 −0.10 0.03 6.90e−03 34 455

rs10508942 10 53240022 G G A 0.55 0.09 0.03 8.82e−03 36 400

rs7077665 10 53365208 G G A 0.75 −0.05 0.05 8.36e−03 33 796

Only SNPs with a P value < 0.01 are reported, along with the corresponding summary statistics of the trans-ancestry meta-analysis. The Native-American 

enriched allele observed in the Criollos population is also specified. Different color lines are used to indicate SNPs located within the same LD area. The 

SNPs specifically discussed in the text are indicated with **.
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seems to suggest that infections may modulate changes in 
DNAmCystatinCAdjAge and DNAmTIIMP1AdjAge. On the other 
hand, DNAmB2MAdjAge and AgeAccelGrim were found to be 
more influenced by the genomic structure of the population.

As expected, all models consistently highlighted a major influ-
ence of sex on the variability of several epigenetic estimators.

Finally, in Fig. 5, we have also reported the percentage of the 
total variance for each epigenetic estimator that is explained 
by the most important predictor (indicated with an asterisk). 
Despite identifying some factors as best predictors, the overall 
findings indicated that these factors only explain a relatively small 

percentage of the total variability (less than 10%) in the consid-
ered epigenetic estimators. This result, therefore, suggests the 
potential presence of other unobserved factors that may play a 
significant role in explaining the observed epigenetic variability.

DISCUSSION

In this paper, we have proposed an integrated approach that com-
bines a detailed analysis of biological aging measured through 
DNAm levels (epigenetic clocks and related measures), with the 
analysis of the evolutionary history of two human groups from 

Figure 5. The relative importance of predictors, computed through the LMG statistic, in influencing the variance of the eight epigenetic estimators that differ-

entiate Wichí and Criollos. The most important predictor is indicated with an asterisk (*). The percentage of the total variability of each epigenetic estimator 

explained by the most important predictor is reported. The percentage of the total variability (R-squared) explained by the models is reported at the top of each 

heatmap. (A) LMG values of predictors considered in the model that was estimated for Wichí and Criollos together. (B) LMG values of predictors considered in 

the model that was estimated only for Wichí. (C) LMG values of predictors considered in the model that were estimated only for Criollos
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the Gran Chaco region of Argentina, which are characterized by 
different genomic histories: the Wichí, a Native-American pop-
ulation and the Criollos, an admixed population living in the 
same geographical area. By calculating 16 epigenetic estima-
tors in both Wichì and Criollos, we described for the first time 
differences between the two populations. Specifically, we found 
that Native American Wichí appears to be epigenetically older 
than admixed Criollos according to four epigenetic clocks (EEAA, 
AgeAccelHannum, AgeAccelPheno, AgeAccelGrim) and estimated 
telomere length (DNAmTLAdjAge). Additionally, we identified 
significant differences in three DNAm surrogates of plasmatic 
components (DNAmB2MAdjAge, DNAmCystatinCAdjAge and 
DNAmTIMP1AdjAge).

These differences we describe can be interpreted on the basis 
of two possible assumptions:

(1) the association between epigenetic clocks and final out-
comes (such as biological aging, all-cause mortality, mor-
bidity, etc.) varies across different human populations;

(2) the association between epigenetic clocks and the final out-
comes is consistent across all human groups.

In the first scenario, interpreting the biological significance of 
the differences in epigenetic clocks observed between Wichì and 
Criollos becomes complicated, as we do not know whether epi-
genetic clocks are indeed measuring aging or other biological 
aspects (e.g. cell differentiation). Additionally, the lack of data 
about the association with final outcomes opens multiple inter-
pretations because what may appear as a health detriment in 
one population could potentially be a health enhancer in another 
(inflammation is an example).

In the second scenario, population-level data may help elu-
cidate some of the observed differences. Some hypotheses are 
presented below.

Regarding healthcare access, both Wichí and Criollos have 
access to hospitals and healthcare facilities. However, both pop-
ulations may also follow, to some extent, traditional treatments 
involving the use of local plants. Therefore, the absence of accu-
rate data on healthcare practices makes it challenging to draw 
specific interpretations on this basis.

Nutritional status may play a significant role [35]. While dif-
ferences in body mass index between Wichí and Criollos are not 
easy to define due to the often partial data availability, a recent 
study [36] showed that a substantial percentage—approxi-
mately 64,8%—of Wichì adults living in the village of Misión 
Nueva Pompeya are overweight (34%) or obese (30,8%). 
Anthropometric analyses also highlighted that Wichí of Misión 
Nueva Pompeya exhibit short stature combined with central 
obesity, and previous data in this area showed that these char-
acteristics occur especially among young individuals who expe-
rienced forms of early malnutrition. These findings likely reflect 

the fact that Wichì communities are undergoing a nutritional 
transition characterized by shifts in lifestyle and dietary habits 
towards processed foods [36]. Moreover, this nutritional transi-
tion aligns with changes in their subsistence patterns, transition-
ing from a hunter-gatherer to a more sedentary lifestyle. These 
factors could potentially contribute to some of the observed 
differences, such as those detected for the AgeAccelPheno clock. 
The AgeAccelPheno clock is known to be influenced by environ-
mental factors such as physical exercise and dietary habits [8]. 
Furthermore, twin and pedigree-based studies have estimated its 
heritability at approximately 33% [37], which is lower compared 
to other epigenetic clocks.

Another crucial factor that could contribute to the observed 
differences is the contrasting living environments between Wichi 
and Criollos. The majority of Wichí individuals considered in this 
study indeed reside in rural areas, while all of the considered 
Criollos are from urban areas.

During the time of biological sample collection, access to 
drinking water was unavailable to both Wichì and Criollos. Only 
in very recent years, urban areas have seen improvements in this 
regard, with the construction of an aqueduct ensuring access 
to potable water, while rural areas continue to lack this access. 
Moreover, in Misión Nueva Pompeya, Criollos typically reside in 
houses equipped with sanitation facilities, whereas both Wichí 
and Criollos living in rural areas do not have access to sanitation.

In the entire Gran Chaco area, the presence of vectors is much 
higher in rural villages where houses are typically constructed 
with adobe and straw roofs thus facilitating vector colonization, 
compared to urban houses which are built with brick instead of 
adobe [4]. It is also worth noting that many Wichí adults were 
probably born in rural houses and only moved to the urban area 
following the establishment of the Wichí community in Misión 
Nueva Pompeya during the 1980s (see Ref. [4] for more details). 
These factors may contribute to some of the differences we 
are observing, particularly in measures like EEAA. The extrin-
sic epigenetic age acceleration (EEAA) indeed correlates with 
AgeAccelHannum, as indicated in Ref. [38], thus capturing a sim-
ilar aspect of aging. It is constructed using Hannum’s clock and 
incorporates changes in cell composition by applying a weighted 
average of age-associated cell counts. Thus, EEAA is particularly 
influenced by age-related alterations in blood cell composition, 
which can be interpreted as an indicator of immune system 
aging. Our results—showing significantly higher EEAA values 
in native Wichí—are consistent with recent data from Horvath 
and colleagues, who reported a higher extrinsic aging rate in 
the Tsimané, an indigenous population from Bolivia [17]. The 
authors suggested that this result may be attributed to increased 
rates of inflammation resulting from recurrent bacterial, viral 
and parasitic infections [4]. This is noteworthy because numer-
ous studies have emphasized the substantial impact of different 
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ecological settings on epigenetic clocks and on DNA methylation 
data. For example, a previous study conducted in a small-scale 
farming society in the Congo Basin showed that epigenetic age 
acceleration is influenced by early life experiences. In particular, 
the authors demonstrated that a high burden of infectious dis-
eases led to an increased energy demand, which in turn affects 
epigenetic age acceleration [39]. Furthermore, Fagny et al. [40] 
showed that in Central Africa, foragers and agriculturalists resid-
ing in rainforests experience greater epigenetic age acceleration 
compared to populations residing in urban settings [40].

Differences between Wichí and Criollos have also been 
observed in DNAmTLadjAge, a predictor of telomere length, 
with Native-American Wichí showing lower values than admixed 
Criollos. A negative value of DNAmTLadjAge indicates that the 
estimated telomere length is shorter than expected based on 
age, while a positive value indicates the opposite. Telomere 
shortening has been described in populations experiencing 
extreme stress conditions, such as Indian indigenous people like 
the Sahariya [41]. However, DNAmTLAdjAge not only reflects the 
replicative history of cells but is also associated with age-related 
phenotypes [11].

The analysis of micro-evolutionary dynamics in Criollos sug-
gested that the genomic history of these populations may have, 
at least in part, influenced certain epigenetic estimators, likely 
contributing to the observed variation. Overall, the admixture 
analysis performed on Criollos revealed that their genomes con-
sist of an almost 55 mixture of Native-American and European 
ancestry fractions, which is consistent with historical evidence 
of continental admixture in this population group. Here, we 
demonstrated that global ancestry, calculated at both K = 4 
(continental level) and K = 8 (best CV level), did not associate 
with any of the eight epigenetic estimators that differentiate the 
two populations. On the other hand, chromosome local ances-
try inference identified a region on chromosome 10, in which 
Criollos show an excess of Native-American ancestry tracts, par-
tially overlapped by tracts with decreased European ancestry in 
the same region. Furthermore, this region includes SNPs signifi-
cantly associated with AgeAccelHannum in both published GWAS 
[32] and our dataset. Importantly, the alleles enriched in Native-
American ancestry in the Criollos resulted to be associated with 
an increase in AgeAccelHannum. Overall, our data align with the 
general observation reported in a recent study on the APOE gene 
[42], where the authors demonstrated that the APOEe4 risk allele 
is dependent on local ancestry. In particular, they showed that 
the ancestral background of a genomic region in which variants 
are located is crucial in conferring a diverse risk of Alzheimer’s 
disease, while the risk does not change when considering global 
ancestry [42]. The authors indeed reconstructed local ancestry 
patterns in individuals from African American and Puerto Rican 

populations, revealing that APOEe4 alleles located in an African 
background conferred a lower risk than those with a European 
ancestral background, irrespective of the population.

Finally, to explore the different roles of genomic history and 
environmental factors (such as place of living and T. cruzi 
infection) in influencing the observed variability of epigen-
etic estimators, we employed the LGM model to measure 
the relative importance of predictors. The model highlighted 
that the variability of two out of eight epigenetic estimators 
(AgeAccelGrim and DNAmB2MAdjAge) is mostly influenced by 
genetic factors related to population ancestry, while the variabil-
ity of three out of eight epigenetic estimators (AgeAccelPheno, 
DNAmCystatinCAdjAge, DNAmTIMP1AdjAge) is more affected 
by environmental factors, such as the place of living and the 
infection by T. cruzi. In this study, we selected Wichì and Criollos 
individuals with the same percentage of positive serology for T. 
cruzi (as outlined in ‘Methodology’ section), but their place of 
living differed, with Criollos individuals originating from urban 
area and the majority of Wichí (20 out of 24) instead com-
ing from rural areas. As discussed above, the place of living 
is undoubtedly one of the main factors to consider in driving 
some of the differences observed. Interestingly, the infection by 
T. cruzi was found to impact DNAmCystatinCAdjAge in Criollos 
(but not in Wichí), with infected individuals displaying higher val-
ues compared to not-infected ones. It is important to highlight 
that DNAmCystatinCAdjAge, along with the other DNAm surro-
gate biomarkers, showed only a moderate correlation with pro-
tein blood levels in a previous study [7], thus warranting further 
investigations for a more comprehensive interpretation of this 
observation.

Overall, the relatively small percentage of variance gener-
ally explained by some of the observed predictors, however, 
reveals that additional unobserved variables, both genetic and 
non-genetic, may exert a significant influence on the variabil-
ity of considered epigenetic estimators. This further highlights 
the importance of conducting additional studies on these 
populations.

LIMITATIONS

Below are listed the main limitations of the present study:

• The present study considered a small sample size and more 
data are needed to validate our findings. However, when 
possible, we followed an extremely cautious approach in 
setting the study design by first screening previous GWAS 
data performed on larger cohorts and then conducting a 
replication analysis based on our dataset.

• The dataset we analyzed lacks biomedical information on 
the examined individuals and does not include an accurate 
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characterization of some non-genetic factors that could poten-
tially influence the observed differences. However, we collected 
population-based information from anthropological fieldwork 
to explore possible explanations for the differences observed.

• The epigenetic estimators used were created on multiple 
datasets, which, however, primarily included individuals of 
European ancestry. Despite their validation in many other 
populations of different ancestries, it cannot be completely 
ruled out that the predictions in indigenous populations 
may be affected by the composition of the selected training 
datasets. This further emphasizes the necessity of additional 
studies involving populations of non-European ancestry and 
the importance of incorporating the theme of human natu-
ral variation into the debate on epigenetic clocks, and more 
generally in the broader field of human aging.

CONCLUSIONS

The present study describes the first-time the differences in epi-
genetic estimators between two human populations (Wichí and 
Criollos) with different ancestry and evolutionary genetic histo-
ries living in the same area of Gran Chaco in Argentina, by using 
an innovative integrated approach. Our findings demonstrate that 
Native-American Wichí exhibit a significant increase in epigenetic 
age compared to admixed Criollos. Furthermore, we show that the 
study of microevolutionary processes can yield important insights 
into the impact of past population dynamics on epigenetic esti-
mators. The observed epigenetic differences between Wichí and 
Criollos cannot be attributed to a general association with the global 
ancestry. Instead, we suggested that microevolutionary forces may 
influence the genomic background of these populations, and this, 
in turn, may confer to individual chromosomal regions a different 
impact in terms of association with epigenetic clocks. Importantly, 
similar phenomena have been previously described in other studies 
examining other age-related traits [42]. However, we also demon-
strate that microevolutionary processes alone cannot fully account 
for the observed differences in epigenetic age estimates between 
these two populations. In conclusion, our results highlight the cru-
cial role of non-genetic factors, such as ecological conditions, nutri-
tion, infectious diseases and socio-economic structures, in shaping 
the observed epigenetic variation.

SUPPLEMENTARY DATA

Supplementary data is available at EMPH online.
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