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Abstract. Pose estimation from a monocular camera is a critical technology for in-orbit servicing 
missions. However, collecting large image datasets in space for training neural networks is 
impractical, resulting in the use of synthetic images. Unfortunately, these often fail to accurately 
replicate real image features, leading to a significant domain gap. This work explores the use of 
generative adversarial networks as a solution for bridging this gap from the data level by making 
synthetic images more closely resemble real ones. A generative model is trained on a small subset 
of unpaired synthetic and real pictures from the SPEED+ dataset. The entire synthetic dataset is 
then augmented using the generator, and employed to train a regression model, based on the 
MetaFormer architecture, which locates a set of landmarks. By comparing the model's pose 
estimation accuracy on real images with and without generator preprocessing, it is observed that 
the augmentation effectively reduces the median pose estimation error by a factor 1.4 to 5. This 
compelling result validates the efficacy of these tools and justifies further research in their 
utilization. 
Introduction 
Accurately navigating an active probe around a target spacecraft is crucial for many space 
missions, such as satellite servicing and debris removal. In this context, the ability to operate 
autonomously is essential to ensure that the servicer can make timely maneuvers and respond 
quickly to changing conditions, especially to avoid collisions. Therefore, the chaser shall be able 
to measure and control its state relative to the client throughout the rendezvous. 

In this scenario, monocular cameras have emerged as an appealing sensor solution because of 
their low power consumption and small form factor. To estimate the relative chaser-to-target pose 
(i.e. position and attitude), a set of 2D landmarks extracted from the image is matched with the 3D 
model of the spacecraft using Perspective-n-Point solvers [1], as illustrated in Fig.  1. Image 
processing (IP) is a critical aspect of this software routine and recently many authors proposed to 
leverage neural networks (NNs) for feature extraction. Unfortunately, these models require large-
scale datasets for training which are highly impractical to collect and label in orbit with accurate 
pose information. To overcome this challenge, researchers have turned to synthetic datasets 
generated through 3D computer graphics software [2,3,4]. On one side, these allow for rapid 
generation of thousands of images but, on the other side, they struggle to accurately reproduce the 
visual characteristics and large diversity of spaceborne pictures. This discrepancy between 
synthetic and real-world images is known as domain gap, and is a major obstacle to the adoption 
of NNs for vision-based navigation. Indeed, NNs tend to develop over-reliance on synthetic 
features, leading to inaccurate predictions when applied to real-world scenarios.  
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Fig.  1 - Schematization of the pose estimation process. 

While domain gap is actively researched within the computer vision community (see [5] for a 
throughout survey), few works addressed this issue in the framework of satellite pose estimation. 
According to the results of the ESA sponsored "Satellite Pose Estimation Competition 2021" [6], 
the use of adversarial training proved to be an effective technique. Although training the NN to 
also deceive a discriminator can help to learn domain invariant features, this method demands a 
large number of real pictures. Obtaining such images, however, can be costly and require 
specialized robotic facilities. 

Generative adversarial networks (GANs) represent a possible approach to address this 
challenge by narrowing domain gap at the data level. Indeed, they could be employed to enhance 
synthetic datasets, making them more closely resemble real-world images. 

GAN models typically comprise two neural networks, a generator and a discriminator, that are 
trained together to learn a mapping from a source domain to a target domain. The purpose is to 
transfer the visual characteristic of real pictures to synthetic images which should become 
indistinguishable from the real ones. GANs provide a versatile and cost-effective way to address 
the scarcity of spaceborne images as the same generator could in principle be applied to any 
synthetic dataset regardless of the depicted target. 

This work demonstrates how the regression error on real images can be greatly reduced by 
simply preprocessing synthetic images through a trained GAN.  
Methods 
The SPEED+ dataset [7] is adopted for this study. This includes synthetic grayscale images (47966 
for training and 11994 for validation) and real pictures of a spacecraft mockup captured in a 
laboratory environment at a  maximum distance of 10 m from the camera. Fig.  2 displays synthetic 
and real samples, which feature two different illumination conditions, namely lightbox (6740) and 
sunlamp (2791). Throughout the workflow, input images are resized from the original 1200x1920 
px resolution to 320x512 px to reduce the computational time while preserving the original aspect 
ratio. This project employs a state-of-the-art image-to-image (I2I) translation algorithm based on 
the contrastive learning method proposed in [8], which does not require paired samples from the 
source and target domains during training. The generator network is built using a Residual 
Network [9] with 9 residual blocks. The I2I model is trained on randomly selected subsets of 1000 
synthetic and real images for 200 epochs, with a batch size of 1. The learning rate is linearly 
decreased from 2e-4 to 0 starting from epoch 100. Training is repeated separately for sunlamp and 
lightbox domains. Later, all synthetic images from the SPEED+ train partition are processed 
through the generator obtaining two sets of synthetic-enhanced pictures.  
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Fig.  2 - Images from the SPEED+ dataset [7] depicting the satellite in similar poses: 
synthetic (left), lightbox (center), sunlamp (right). 

During translation, for each synthetic image a random sample from the 1000 real pictures is 
selected to provide a context for the I2I translation. 

A collection of original and enhanced images is illustrated in Figure 3, showcasing the ability 
of the generator to capture the appearance of the target domain while preserving most of the content 
of the original image. 

 

Fig.  3 - Synthetic vs GAN-enhanced images. 

To assess the effectiveness of the learned mapping, a pose estimation pipeline according to the 
scheme illustrated in Fig. 1 has been set up. In this framework a NN is trained to predict the location 
of 11 landmarks on the enhanced-synthetic datasets and tested on actual sunlamp and lightbox 
images. To this end a ConvFormerS18 model [10] is employed as the backbone of a 2-layer 
regression head, comprising a depthwise separable convolution, with ReLu activation, followed 
by a fully connected layer. The ConvFormer belongs to the family of MetaFormer models [11], 
inspired by Transformers [12], which showcased improved robustness to domain gap over 
convolutional neural networks [13]. The architecture leverages depthwise separable convolutions 
as token mixers, which are well-suited for embedded processors. The network is trained using 
mean absolute error loss for 40 epochs with a batch size of 48 images. The fitting is carried out on 
Google Colab's Tensor Processing Units with Adam optimizer and cosine decay learning rate, 
starting from 7.5e-5. The backbone is initialized with Imagenet weights [14] and common data 
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augmentations are applied, these include random image rotation, brightness and contrast 
adjustments, blurring and gaussian noise.  

At inference time, the regressed landmarks are fed into an EPnP solver [15] together with the 
3D satellite model and camera parameters. 
Results and Discussion 
The pose regression error is then evaluated through the following metrics: 

     𝒆𝒆𝒕𝒕 = |𝒕𝒕𝑩𝑩𝑩𝑩 − 𝒕𝒕�𝑩𝑩𝑩𝑩|𝟐𝟐 (1) 

     𝒆𝒆�𝒕𝒕 =
𝒆𝒆𝒕𝒕

|𝒕𝒕𝑩𝑩𝑩𝑩|𝟐𝟐
 (2) 

    𝒆𝒆𝒒𝒒 = 𝟐𝟐𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(|𝒒𝒒𝑻𝑻𝒒𝒒�|) (3) 

     𝑬𝑬 = 𝒆𝒆�𝒕𝒕 + 𝒆𝒆𝒒𝒒 (4) 

Where 𝒕𝒕𝐵𝐵𝐵𝐵, 𝒒𝒒 and 𝒕𝒕�𝐵𝐵𝐵𝐵, 𝒒𝒒� represent respectively the ground truth and estimated position vectors 
and attitude quaternions aligning the chaser-mounted camera frame (C) and the target body frame 
(B). Table 1 compares the performance of the NN trained on synthetic enhanced images with that 
of the model trained without GAN preprocessing. The symbol 〈 〉 denotes the median operator. 
A solution is defined to be of high quality (HQ) if both the normalized position and rotation errors 
fall below specific thresholds. For the rotation error, the threshold is 5° when the satellite is within 
5 meters, and 10° when it is farther away. Meanwhile, the limit for normalized position error is 
fixed at 0.1. Notably, GAN preprocessing allowed to decrease the median pose error of a factor 5 
and 1.4 on sunlamp and lightbox respectively. The enhancement is further evidenced by the 
increase in the percentage of HQ solutions. 

Table 1 - Pose estimation errors obtained by training the NN with and without GAN 
preprocessing. 

GAN 
preprocessing 

Lightbox Sunlamp 
〈𝑒𝑒𝑡𝑡〉[𝑚𝑚] 〈𝑒𝑒𝑞𝑞〉[𝑑𝑑𝑑𝑑𝑑𝑑] 〈𝐸𝐸〉 HQ 〈𝑒𝑒𝑡𝑡〉[𝑚𝑚] 〈𝑒𝑒𝑞𝑞〉[𝑑𝑑𝑑𝑑𝑑𝑑] 〈𝐸𝐸〉 HQ 

With 0.369 11.2 0.288 38.4% 0.131 5.08 0.116 67.6% 
Without 0.488 15.8 0.403 30.6% 0.580 25.5 0.597 15.8% 

Conclusions and Future Work 
Overall, the results of this preliminary study demonstrate that GAN preprocessing is effective in 
reducing the domain gap at the data level, with the added benefit of requiring only a small fraction 
of the dataset size for training. However, further investigations are needed to explain the 
discrepancy in the advantages achieved on the two domains, as illustrated in Table 1. Additionally, 
the reliability of the MetaFormer architecture for the IP step has also been demonstrated by its 
ability to achieve competitive pose estimation errors despite having only around 24 million 
parameters. 

As a next step, the potential of fusing lightbox and sunlamp characteristics in a single generator 
will be investigated to produce even more realistic images that capture the visual features of both 
domains. The ability of the GAN to translate images depicting different targets from those featured 
in the training data, without compromising their content, will also be explored. Furthermore, the 
benefits of combining GAN preprocessing with other domain generalization methods, such as the 
extensive augmentations and multi-task learning solutions proposed in the literature [16], will be 
assessed. 
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