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A B S T R A C T   

Background: Infant crying is the first attempt babies use to communicate during their initial months of life. A 
misunderstanding of the cry message can compromise infant care and future neurodevelopmental process. 
Methods: An exploratory study collecting multimodal data (i.e., crying, electroencephalography (EEG), near- 
infrared spectroscopy (NIRS), facial expressions, and body movements) from 38 healthy full-term newborns 
was conducted. Cry types were defined based on different conditions (i.e., hunger, sleepiness, fussiness, need to 
burp, and distress). Statistical analysis, Machine Learning (ML), and Deep Learning (DL) techniques were used to 
identify relevant features for cry type classification and to evaluate a robust DL algorithm named Acoustic 
MultiStage Interpreter (AMSI). 
Results: Significant differences were found across cry types based on acoustics, EEG, NIRS, facial expressions, and 
body movements. Acoustics and body language were identified as the most relevant ML features to support the 
cause of crying. The DL AMSI algorithm achieved an accuracy rate of 92%. 
Conclusions: This study set a precedent for cry analysis research by highlighting the complexity of newborn cry 
expression and strengthening the potential use of infant cry analysis as an objective, reliable, accessible, and non- 
invasive tool for cry interpretation, improving the infant-parent relationship and ensuring family well-being.   

1. Introduction 

Infant crying is the first proper attempt humans use to communicate 
during their initial months of life [1–3]. As a result, parents tend to 
interpret an infant’s crying as a signal of alertness or need. However, 
new caregivers often feel confused about what crying means, and they 
may be unable to soothe the baby [4] which can result in a variety of 
mixed feelings [5]. Considering infants cry on average between 1.5 and 
3h per day [4], the impact of infant crying on parents can vary between 
experiences of anxiety, depression, helplessness, anger, and frustration 

in response to infant crying, negatively affecting bonding and infant’s 
parental perception [1,6]. Parents may even experience violent thoughts 
toward their newborn and later feelings of guilt and shame [4]. 
Considering parental response is crucial for the new dyadic relationship, 
deviations and/or misunderstanding of the cry message can compromise 
infant care and their future neurodevelopmental process [1]. Hence, it is 
important to find a meaning in the early cries to ensure the infants’ 
well-being and health status. 

Research [4] on sound spectrographic features of cry has been con
ducted since the 1960s. Further analysis [4] investigated how cry 
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duration and intensity may vary across contexts. Both time and fre
quency domain approaches led to the conclusion that cry sounds convey 
a level of distress or urgency of the newborn’s need that offers some 
clues as to the specific cause of crying [4]. Moreover, coupled with 
contextual information, the sounds of crying may be highly informative, 
facilitating an accurate (even though complex) interpretation for the 
caregiver or healthcare professional [4]. 

In recent decades, the field of automated analysis of infant cry has 
advanced significantly, attracting the attention of an increasing number 
of researchers, clinicians, and computer scientists [7–9]. Moreover, the 
advent of Deep Learning (DL) techniques has facilitated the develop
ment of more reliable and precise Artificial Intelligence algorithms for 
analyzing infant cries [10–17]. 

While significant advances have been achieved in infant cry 
research, the interpretation of infant cries still remains partially unan
swered and subjective. There is an ongoing debate in the field regarding 
the detection and classification of different cry types. While some studies 
have shown promising results, others remain inconclusive [12–16]. 
Therefore, it is evident that future research should focus on multimodal 
data collection to understand infant cries by concurrently assessing 
diverse newborn measures. The parallel infant cry analysis coupled with 
neurophysiological measures as near-infrared spectroscopy (NIRS), 
electroencephalography (EEG) and simultaneously behavioral signals 
(extracted from facial expressions and body movements using video 
recordings), arises as a promising pioneer approach to provide scientific 
and objective evidence to support and validate literature on cry acous
tics and its analysis [4]. 

The primary aim of this study is to characterize different newborns’ 
cry sounds based on acoustic features, neurophysiological and behav
ioral signals. The secondary goal is to determine the most relevant fea
tures that allow the distinction of different crying reasons based on 
Machine Learning (ML) within a multimodal dataset. Lastly, we aim to 
demonstrate that DL approaches, such as the one presented in this paper 
(i.e. the Acoustic MultiStage Interpreter (AMSI [18])), developed by our 
research group, are automatic, effective and reliable tools for inter
preting infant cries and assessing the well-being of newborns. 

Therefore, we hypothesize that what is occurring at an acoustic level 
can be reinforced with behavioral and brain neurophysiological pattern 
analysis. Moreover, by analyzing sound features of infant cries, AMSI 
[18] is able to identify valuable acoustic biomarkers that are indicative 
of a newborn’s wellness status. Through this multimodal analysis 
approach, we gain a better comprehension and a more accurate inter
pretation of the complex phenomenon of infant crying. This could have 
significant implications for bonding and also implying important out
comes for newborns’ healthcare based on a reliable understanding of the 
first human communicative attempt. 

2. Methods 

2.1. Participants 

The study included 38 healthy full-term newborns that were part of a 
previous dataset [19], and recruited at the maternity ward of the Hos
pital Clínic of Barcelona (mean gestational week 39.34 ± 1.33, 
recording age 15.54 ± 21.46 days after birth, 21 males/17 females, head 
circumference 34.41 ± 1.21 cm, birth weight 3132.91 ± 404.29 g). 
APGAR scores were collected at 1, 5 and 10 min: 8.86 ± 0.713, 9.83 ±
0.56 and 9.965 ± 0.185 respectively. Infants had been assessed by 
board-certified neonatologists and diagnosed as healthy term newborns 
with no major congenital abnormalities or illness since birth. Newborns 
under medication and/or with congenital malformations, chromosomal 
abnormalities, hypoxic-ischemic encephalopathy, intraventricular 
hemorrhage greater than grade 2, and any other type of brain damage, 
congenital heart disease, siblings with autism spectrum disorders or 
other neurodevelopmental disorder were excluded from this study. 

2.2. Ethical considerations 

The study was conducted following the Institutional Research Ethics 
and the Declaration of Helsinki. Formal ethical approval was granted by 
the Local Ethical Committee, Hospital Clínic of Barcelona (Ref: Neuro
Cry/HCB/2021/0843). The consent form documents the study’s aims, 
nature, and data acquisition procedures. Anonymization and data 
confidentiality was maintained throughout the study, and all parents 
agreed and signed the informed consent prior to participation. 

2.3. Procedure 

Data collection was performed during the standard routine of 
newborn nursing (before and post feeding, during some necessary 
medical procedures, etc.). Synchronized EEG, NIRS, audio, and video 
recordings were acquired for each newborn, lying down comfortably in 
a cot in the hospital maternity ward. Each session lasted from 20 to 120 
min when newborns were calm-awake or crying. Cries were never 
induced for the purpose of this study, as spontaneous vocalizations are 
part of normal infant behavior. During the recording sessions, different 
cry types were defined as changes in the newborn’s status generated by 
different scenarios (i.e., hunger, sleepiness, fussiness, need to burp, 
stress, pain, etc.), yielding in the following cry conditions: resting, hun
gry, sleepy, fussy, burp, and distress. 

2.4. Audio analysis 

Data acquisition. Audio acquisition and processing analysis were 
described in Ref. [19]. Briefly, newborn cries were recorded using a 
ZOOM H1N™ recorder (with a unilateral microphone) positioned 30 cm 
from the infant’s mouth. Audio recordings were stored on a Waveform 
Audio Format (WAV) file with a double channel audio track, with a 
sampling frequency of 48 kHz and 24-bit resolution. 

Data processing. 
Segmentation. Audio recordings were manually segmented into cry 

episodes (CEs – the amount of time the infant cries in each audio 
recording divided by silence periods). Then, CEs were manually 
segmented into cry units (CUs - individual cry patterns within a CE 
separated by an expiration phase). Visual spectrographic analysis was 
carried out using iZotope RX 7 Audio Editor™. Both the segmentation 
and the qualitative assessment of every CEs and CUs into different cry 
types have been carefully reviewed by two authors (AL, PP) through 
visual inspection of the acoustic features following what has been done 
in previous research articles [9,20,21]. An additional author (SO) 
randomly reviewed annotated CUs achieving a level of agreement of 
100% on the cry annotation. Cries without unanimous agreement 
among the experts were excluded from further analyses. Afterwards, 
newborns’ states or behaviors were identified in every CE using the 
following criteria [4,22]:  

1. resting: no CEs, pause, or resting periods with silent audio recordings, 
the newborn is not crying but awake.  

2. hungry: pre-feeding arousal state acoustically characterized by short, 
rhythmic, symmetrical, harmonic structured and intensity sound 
patterns with pitch range of 200–600Hz. 

3. sleepy: post-feeding state, when the infant starts feeling tired char
acterized by softer, quieter sounds with a falling melody prolonged in 
duration, showing smaller amplitude or variability.  

4. fussy: baby unsettled, low level intermittent protest cries similar to 
whimper or whine, not reaching the point of full-blown crying and 
separated by periods of silence.  

5. burp: whining or noise during or post-feeding phases characterized 
by a sound of effort related to the need to expel something out of the 
body.  

6. distress: stressed infant showing more acoustically urgent and intense 
CEs composed of high spectral content CUs, disphonation, increased 
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fundamental frequency (F0), and instability (greater amplitude, 
etc.). 

Feature extraction. Audio processing of each CU was conducted 
through Praat software [23] using a band-pass filter between 200 and 
1200 Hz to compute the F0 and a low-pass filter of 10,000 Hz to compute 
the spectrum [24]. We then computed the F0 descriptive statistics 
(maximum, minimum, mean, and standard deviation defined as maxF0, 
minF0, F0 and stdF0 respectively). Other typical voice quality parame
ters related to the phonation were also included, such as jitter, shimmer, 
and harmonic-to-noise ratio (hnr) [25]. Basic crying melody shapes, the 
trend of F0 over time (F0 melody), were defined as falling, rising, 
symmetric, plateau, and complex using 1st and 2nd derivatives based on 
F0 [26]. CU durations were also extracted and analyzed. Each feature 
was extracted for each CU and averaged in each cry type (i.e. hungry, 
sleepy, fussy, burp, and distressed). 

2.5. EEG analysis 

Data acquisition. Neurophysiological data were acquired using an 8- 
channel ANT Nëo Monitor eego™ (ANT Neuro, Germany – CE mark 
MDD 93/42/EEC, CE class Iia, FDA 510(k) in USA) at a sampling fre
quency of 512 Hz. Electrodes were placed according to the 10–20 in
ternational standard positioning system and were re-referenced to the 
average reference. Sensors’ impedance was kept below 10 kΩ. Elec
trodes were fixed at key locations, including F3, F4, C3, C4, P3, P4, T7, 
and T8, ensuring consistency and compatibility with widely accepted 
conventions. 

Data processing. The dataset was analyzed using Matlab r2022a 
with the Brainstorm Toolbox [27]. To remove the power line contami
nation and low frequency artifacts, a band-pass filter between 1 and 45 
Hz was applied. A careful visual inspection of EEG data was performed 
to detect artifacts produced by newborn movements and/or the hard
ware. After that, bad channels were identified and interpolated using 
spherical splines [28]. The remaining artifact-free data were segmented 
into 4-s epochs according to the audio segmentation criteria mentioned 
before. 

EEG data analysis was performed for the following classical fre
quency bands: delta (ẟ = 1–4Hz), theta (θ = 4–8Hz), and alpha (α =
8–12Hz). To avoid contamination from muscle activity, higher fre
quencies from the beta to gamma range were not included in the anal
ysis. Additionally, the normalized power spectrum density (PSD) of each 
EEG sensor was computed using Welch’s periodogram method with the 
Neural Toolbox [29]. 

2.6. NIRS analysis 

Data acquisition. NIRS data acquisition was performed using a Root 
O3™ (Masimo, USA - CE mark G1 092076 0013 Rev. 00). This device 
collects data every 2 s using 4 wavelengths (730/760/805/880 nm) with 
70% representing venous blood and 30% arterial blood. Root O3™ 
provides a regional hemoglobin oxygen saturation (rSO2) ranging from 
0 to 100%. Due to the limited available space on the newborn’s head, we 
used a single NIRS forehead sensor to enable measuring rSO2. Func
tional arterial hemoglobin oxygen saturation (SpO2) is continuously and 
non-invasively monitored with a fingertip sensor on the newborn. 

Data processing. rSO2 and SpO2 data were analyzed in Python 3. A 
preprocessing step was applied to eliminate rSO2 and SpO2 values with 
a standard deviation lower than 0.5 to reduce errors from the acquisition 
process. Additionally, the interquartile range (1.5*IQR) method was 
used to remove outliers. Then, clean data were segmented into resting, 
hungry, sleepy, fussy, burp, and distress based on the audio segmentation 
criteria. The 15 s preceding and following each segment were discarded 
[30]. In addition, to reduce noise and errors derived from newborn’s 
movements, SpO2 mean values lower than 80 [31] and rSO2 lower than 
50 [32] were removed. 

2.7. Facial expression & body movement analysis 

The COMFORT scale [33,34] was used to qualitatively evaluate the 
high-quality video recordings acquired of facial expressions and body 
movements of the newborns during each session and CE. Two experts 
reviewed and assessed the newborns individually according to the 
COMFORT scale for each CE on the video. In case of disagreement be
tween the experts, a third reviewer was asked to present their evalua
tion. The aspects evaluated include six sections: alertness, agitation, 
crying, body movements, muscular tone, and facial tension. Each section 
can be rated from 1 (calm infant) to 5 (stressed infant), and the total 
score of each CE ranging from 5 to 30, with larger score values indicating 
a higher arousal threshold. 

2.8. Statistical analysis 

Statistical analysis was performed using Matlab r2022a (MathWorks, 
USA - mathworks.com) and SPSS22 (IBM, USA - https://www.ibm. 
com/es-es/products/spss-statistics). The Shapiro-Wilk test was applied 
to verify that data were not normally distributed. Also, due to the nature 
of the data collection, which consisted of spontaneous cry recordings 
during the newborn’s daily routine, the segments of the six different 
conditions were not balanced. As such, we randomly selected a repre
sentative number of segments for each signal feature (audio, EEG, NIRS); 
after that, an outlier removal (interquartile range) procedure was 
applied to each variable. Thus, balance audio data, EEG, NIRS, and the 
COMFORT scale were processed to be compared between all conditions 
(resting, hungry, sleepy, fussy, burp, and distress) using ANCOVA analysis; 
age was included in our model as a covariate. Dunn-Sidak tests were 
used for post hoc comparisons, plus a bootstrapping procedure repeated 
1000 times to correct for normality. Results are reported in terms of 
mean ± standard error mean and statistically significant p-values are 
coded as follows: ▴ p<=0.001, ■ p < 0.01 and ✱p < 0.05. 

2.9. Machine Learning and Deep Learning analysis 

Two approaches have been implemented to classify cry types. The 
first approach involved training different well-known ML algorithms 
(AdaBoost [35], Random Forest [36], and Logistic Regression [37]) 
based on the multimodal dataset. The following are the specific features 
computed for each data signal: cry acoustics (duration, F0, minF, maxF0, 
stdF0, hnr, jitter, shimmer, F0 melody), EEG (PSD for delta, theta and 
alpha bands for each electrode position), NIRS (rSO2 and SpO2) and 
COMFORT scale scores (alertness, agitation, crying, body movements, 
muscular tone, and facial tension). They were introduced in the models 
to classify five classes (i.e., hungry, sleepy, fussy, burp, distress) within a 
total of 156 CEs. 70% of the data was used to train the models and 30% 
for validation. 

The comparative analysis of the outcomes obtained from the three 
ML models allows us to determine the most relevant set of features for 
cry classification. In particular, we identified three distinct feature 
subsets: 1) a dataset with the audio features; 2) a dataset without audio 
features (NIRS, EEG, and COMFORT scale); 3) the whole multimodal 
dataset (audio cry, NIRS, EEG, and COMFORT scale). 

Finally, for visualization purposes, a 2D graph of the CE clusters was 
accomplished with the most relevant features using the dimensionality 
reduction t-distributed Stochastic Neighbor Embedding (t-SNE) [38] 
model. 

The second approach used the images of the spectrogram of each CU 
as input after applying the Fourier transform to the raw audio signal. We 
used a realistic cry dataset composed of 5002 CUs from the 156 CEs as 
test data to evaluate the applicability of AMSI [18], a pre-trained Con
volutional Neural Network (CNN) [39] method developed by our 
research team. AMSI [18] breaks down audio recordings into a series of 
internal stages to extract the meaning of a baby’s cry from cepstral 
features. The output is the multiclass classification of the CE within five 
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possible labels: hungry, sleepy, fussy, burp, and distress. Further infor
mation regarding the algorithm can be found under patent registration 
[18]. 

3. Results 

3.1. Acoustic features on different cry types 

We found statistically significant differences between the different 
cry types among the audio features. Fig. 1A shows the differences across 
cry types in terms of duration of CUs. The ANCOVA analysis on duration 
indicated a significant effect of the cry type (F = 14.095, p < 0.001), an 
effect of the age (F = 10.14, p = 0.002), and an interaction effect (F =
2.603, p = 0.035). The duration of crying events in the sleepy, fussy, burp, 
and distress CU categories were found to be longer compared to those in 
the hungry category, which displayed lower values. Also, Fig. 1B shows 
F0 changes through the different cry categories. A significant effect of 
the cry type (F = 15.354, p < 0.001) was found, along with an inter
action effect (F = 9.167, p < 0.001) and no effect of age (F = 0.851, p =
0.357). Higher mean F0 and minF0 values can be observed for hungry 
and fussy while distress, burp, and sleepy exhibited lower values. More
over, higher values of maxF0 and stdF0 can be observed for burp and 
distress and lower values for hungry, sleepy, and fussy. 

Additionally, Fig. 1C presents changes in hnr for each cry type. We 
found a statistically significant effect of the cry type (F = 47.435, p <
0.001), no effect of the age (F = 1.586, p = 0.209) and an interaction 
effect (F = 9.507, p < 0.001). Hungry, sleepy and fussy presented higher 
values of hnr compared to burp and distress. For jitter (Fig. 1D) and 
shimmer (Fig. 1E), we found a significant effect of the cry type (F =
59.063, p < 0.001 and F = 87.144, p < 0.001), an effect of the age (F =
19.670, p < 0.001 and F = 9.595, p = 0.002) and an interaction effect (F 
= 5.090, p < 0.001 and F = 17.119, p < 0.001). Also, lower values of 
jitter and shimmer were observed for hungry, sleepy and fussy compared 
to burp (where shimmer showed the highest values) and distress. 

Additionally, we analyzed different F0 melody shapes for the 
different cry types. The ANCOVA analysis revealed that there was no 

effect of the cry type on the F0 melody (F = 2.223, p = 0.066), a sig
nificant effect of the age (F = 8.386, p = 0.004) and no interaction effect 
(F = 1.031, p = 0.391). Fig. 1F shows the distribution of the computed 
melodies. We observed a more falling trend for fussy and sleepy and 
distress, complex/symmetric for hungry and burp, which also showed a 
rising tendency. 

3.2. Neurophysiological patterns for cry types 

The PSD analysis unveiled different topological patterns for all cry 
conditions and frequency bands (Fig. 2). In delta band power (Fig. 2Aẟ), 
the hungry category showed a higher left fronto-parietal PSD distribu
tion, while sleepy and fussy presented only a higher power distribution in 
the left frontal region. Furthermore, the burp category showed a higher 
PSD distribution in the right fronto-temporal region. Lastly, distress 
displayed a similar PSD distribution all over the scalp for each frequency 
band. 

In the theta band PSD of hungry (Fig. 2Aθ), we found a higher PSD 
distribution in the right fronto-parietal region. Also, sleepy and fussy 
showed a higher PSD in the centro-posterior area for theta band, while 
burp exhibited a higher PSD distribution in the left centro-temporal re
gion. Distress reflected a similar PSD distribution all over the scalp. 

In the alpha band (Fig. 2Aα), the hungry category depicted a higher 
right fronto-parietal PSD distribution, while sleepy and fussy showed a 
higher centro-posterior PSD distribution like in the θ band. Burp dis
played activation of the left hemisphere, and distress showed a similar 
pattern all over the scalp. 

Lastly, the PSD distribution of the resting condition reflected higher 
values in the left parietal for the delta band power, in the fronto-central 
for theta band power, and in the right fronto-central region for the alpha 
band power. 

On the other hand, Fig. 2B showed the statistically significant dif
ferences in PSD for each condition, electrode, and frequency band. In the 
delta band power (Fig. 2Bẟ), we found that most of the cry types’ PSD 
values decreased compared to the resting, except for the burp whose PSD 
values increased. In theta band (Fig. 2Bθ), when compared to resting, 

Fig. 1. Differences for each cry type on audio features. ANCOVA testing the effect of cry type and age and Dunn-Sidak were used for pairwise comparisons of the 
different cry types: hungry (n = 102 segments), sleepy (n = 111 segments), fussy (n = 101 segments), burp (n = 95 segments) and distress (n = 104 segments), n was 
balanced using random sampling. The figures show the different cry features studied: A. duration. B. F0 and its descriptive statistics. C. hnr. D. jitter. E. shimmer. F. 
F0 melody. Data are presented as the mean ± standard error mean and statistically significant p-values are coded as follows:▴ p<=0.001, ■ p < 0.01 and ✱ p < 0.05. 
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sleepy and distress PSD values increased. Hungry, fussy and burp power 
values decrease compared to the resting condition. Finally, for the alpha 
band (Fig. 2Bα), PSD values for hungry, fussy and distress increased 
compared to resting. 

3.3. Brain oxygenation changes during different cry types 

We analyzed the differences among cry types for the SpO2 and rSO2 
features. The ANCOVA analysis revealed a significant effect of the cry 
type on SpO2 (F = 13.735, p < 0.001) and rSO2 (F = 104.93, p < 0.001), 
an effect of the age on SpO2 (F = 6.469, p = 0.011) and an interaction 

effect on rSO2 and SpO2 (F = 8.356, p < 0.001; F = 68.142, p < 0.001). 
Fig. 3A displays the statistically significant differences for pairwise 
comparisons between the different cry types. Compared to resting, SpO2 
and rSO2 values decreased for all the cry types. For rSO2 values, hungry 
presented lower regional oxygenation values than the rest of the cate
gories. For SpO2, burp exhibited lower oxygen values compared to the 
other cry types. 

3.4. Behavioral assessment of cry types 

Fig. 3B shows the differences between all items within the behavioral 

Fig. 2. A. Topographic EEG maps of PSD distributions for ẟ, θ, and α bands for resting, hungry, fussy, burp and distress. The upper portion of each map shows the nose 
(frontal area), and the lower side shows the occipital side. B. Differences in PSD for resting (n = 87), hungry (n = 79), sleepy (n = 81), fussy (n = 83), burp (n = 88), and 
distress (n = 75) conditions were obtained by applying an ANCOVA test with age as a covariate and a Dunn-Sidak test (for post-hoc comparisons) plus a bootstrapping 
procedure. Data are presented as the mean ± standard error mean and statistically significant p-values are coded as follows: ▴ p<=0.001, ■ p < 0.01 and ✱ p < 0.05. 
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assessment scored with the COMFORT scale for all cry categories. 
Compared to the resting condition, higher scores were found for the cry 
types on every item of the COMFORT scale. In general, the distress 
category presented higher scores in all items compared to the other cry 
types. The ANCOVA analysis revealed a significant effect of the cry type 
on Physical Mov (F = 6.304, p < 0.001), Face Tension (F = 6.145, p <
0.001), Muscle Tone (F = 6.357, p < 0.001), Alertness (F = 11.126, p <
0.001), Agitation (F = 17.496, p < 0.001) and Cry (F = 26.040, p <
0.001). There was no significant statistical difference in age and inter
action on all the variables of the COMFORT scale. 

3.5. Relevance of audio features in the classification of cry types 

The examination of the feature importance assigned by each ML 
model applied to distinguish cry types based on a multimodal dataset is 
essential for the interpretation of our results. We found that the most 
relevant features for cry interpretation within the three ML models using 
audio, EEG, NIRS and COMFORT scale features correspond to the 
following audio features: duration, hnr, jitter, shimmer, minF0, mean 
F0, F0 melody (mean test accuracy for all models of 71.5% and the area 
under the curve (AUC) 90.4% (more details on the classification per
formance metrics per model including specificity, precision, recall and 
f1-score are reported in Table 1SA and Table 1SB of the Supplementary 

Material). Some other features related to body language from the 
COMFORT scale, such as facial tension and crying were also found sig
nificant. In Fig. 4 we can observe the clusters, identified by feeding a t- 
SNE model with the features mentioned above. 

Regarding the comparison of the different subsets of features, we 
found that when including audio features within the dataset all the 
evaluation metrics improved. In particular, the mean accuracy of the ML 
models increased by around 13%, AUC 6%, specificity 2%, precision 
22%, and recall and f1-score 19%. Specifically, when only audio features 
were used, an accuracy of 74% and AUC of 90.3% were found. When 
audio features were excluded, the classification accuracy decreased to 
61% and AUC to 84% (more details on the classification performance 
metrics per model and dataset including specificity, precision, recall and 
f1-score are reported in Table 1SA and Table 1SB in the Supplementary 
Material). 

Lastly, when comparing the ML to the DL method, the mean classi
fication accuracy achieved by the DL model AMSI [18] was 92.0%. 
These results can be translated into a 18% increase in test accuracy using 
cepstral features and CNNs. For more details on the classification per
formance refer to Table 1SA and Table 1SB in the Supplementary 
Material. 

Fig. 3. A. ANCOVA testing the effect of cry type and age on NIRS features: SpO2 and rSO2, and pairwise comparisons (Dunn-Sidak test) of cry types: resting, hungry, 
sleepy, fussy, burp and distress (n = 121 segments). B. Comparisons of the COMFORT scale scores among cry types (resting: n = 4 segments, hungry: n = 46 segments, 
sleepy: n = 17, fussy: n = 32, burp: n = 12 and distress: n = 57). Physical Movements, Facial Tension, Muscular Tone, Alertness, Agitation, and Cry scores are reported. 
An ANCOVA test with age as a covariate, Dunn-Sidak test (for post-hoc comparisons), and bootstrapping procedure were used. Data are presented as mean ±
standard error mean and statistically significant p-values are coded as follows:▴ p<=0.001, ■ p < 0.01 and ✱ p < 0.05. 

Fig. 4. A. Visualization of the cry type clusters found using a t-SNE model.  
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4. Discussion 

Limited quantitative research has been conducted to understand 
infant cry as a communication response and complex neurophysiological 
and behavioral functions [17]. To the best of our knowledge, there is no 
literature regarding multimodal data collection concurrently analyzing 
infant cry acoustics with reliable and objective measures. 

Thence, this study represents a pioneering analysis of infant cry in 
combination with neurophysiological and behavioral signals, comparing 
acoustic cry features (e.g., F0, jitter, shimmer, F0 melody) to EEG power 
spectrum, NIRS regional hemoglobin oxygenation, physiological fea
tures (e.g., body oxygen saturation), body movement features (e.g., 
muscle tone), facial expression characteristics (e.g., facial tension) 
during different newborn needs (i.e., resting, hungry, sleepy, fussy, burp, 
and distress). 

Our primary findings showed how every condition is characterized 
by different acoustics, neurophysiological and behavioral patterns. In 
the case of hungry, a condition that represents a survival physiological 
need ensuring nutrition and hydration, our acoustic patterns matched 
the existing literature [4,40] and described this condition as urgent, 
constant, rhythmic and short in duration, intense/loud (mean F0) but 
not high-pitched (maxF0). We also found a prevalence of rising/falling 
or symmetric shapes for melody patterns of hungry. Regarding oxygen
ation, our results showed that hungry had a direct and significant 
negative impact on newborn oxygenation (central and body) also 
observed in a similar study evaluating prior, during and after feeding 
states in newborns [41]. As for brain activity, hungry showed a decrease 
in theta band which is reflected in the literature when analyzing infants’ 
EEG activity before feeding [42]. Additionally, we found an increase in 
alpha PSD distribution related to feeding cries, which has been linked to 
hunger in EEG in adult studies [43]. This PSD increase in the alpha band 
in newborns is usually associated with a relaxed but awake state of mind 
and possibly reflects a state of heightened alertness or arousal as the 
infant seeks nourishment [44,45]. This restlessness tendency was also 
observable in the results from the COMFORT scale, where physical 
movements, facial expressions, muscle tone, and agitation are highest 
compared to the rest of the conditions (except distress) indicating a state 
prior to feeding that reflects large-amplitude and jerky movements at the 
age of 2 and 10 weeks [42]. Overall, hungry in newborns can cause a 
variety of facial expressions and body movements aimed at getting the 
attention of caregivers and indicating a need for food, among them: 
rooting reflex, sucking motions, fidgeting or squirming, or arching the 
back. 

The results of the distress category matched the conclusions found in 
Ref. [19]. This condition represents the state of an infant suffering 
physically (e.g., pain) or emotionally (e.g., overstimulation) and from an 
acoustic perspective, our results showed that distressed cries were more 
erratic, with fewer pauses, prolonged in duration and high-pitched 
(maxF0). Lower hnr, higher jitter, and higher shimmer values 
compared to non-distressed cries reflect more noise, less harmonic 
structure, and increased variation in frequency and amplitude. All these 
acoustics measurements indicate a loss of stability in the vocal folds 
caused by a stressful situation similar to literature in adults [46]. 
Regarding oxygenation, distress in newborns presented a less direct 
impact on oxygenation compared to other bottom-up mechanisms such 
as hungry and burp, but higher than other more central mechanisms such 
as sleepy and fussy. While distress can trigger a physiological response 
that affects heart rate [19], newborns’ distress responses are still 
developing and may not be as pronounced as in older children or adults 
[47]. However, according to our results, an infant in distress reflected 
significant changes in the brain in theta and alpha PSD [19], indicating 
increased arousal. These findings reinforce the existing literature sug
gesting that EEG alpha activity may be a useful measure of stress in 
newborns [48]. The restlessness tendency was also clear in the COM
FORT scale assessment, where the results for this condition presented 
the highest values pointing out to newborn’s discomfort and emotional 

distress highlighting increased motor activity as an expression of a high 
discomfort level or emotional distress expressed through the body [49] 
characterized by common facial expressions and body movements (i.e., 
facial grimaces, flailing limbs, arching the back, or clenched fists). 

The burp condition reflects a gastrointestinal physiological need to be 
expelled, even in the form of air or solid. This condition presented 
common characteristics to the audio frequency features found in distress 
(even though the spectral patterns are completely different), due to the 
strain put on the vocal folds leading to more hoarseness and other vocal 
quality problems [50]. According to our results in the burp condition, 
infants with gastrointestinal issues produced longer cries (compared to 
hungry and distress) with more variable pitch and intensity reflecting 
vocal folds instability. These cries presented lower hnr, meaning that the 
cry may have more noise components and fewer harmonics. Addition
ally, burp exhibited higher jitter and shimmer values, which indicate 
more irregularities in the frequency and amplitude of the cry signal. 
Compared to distress, cries were less continuous and more sparse in time 
with more unvoiced segments. Melody was characterized by more rising 
shapes, putting most of the strength at the end, like expressing the act of 
expelling something. Oxygenation levels analyzed for our burp condition 
showed the lowest values compared to the other conditions, eliciting 
that gastrointestinal issues such as reflux could interfere with proper 
breathing and decreased oxygen saturation levels [51]. From a brain 
activity perspective, our results showed a similar tendency to the resting 
condition on delta power and less activity in theta or alpha bands as 
gastrointestinal actions like bowel movements involve physical activity, 
such as abdominal muscle contractions but less brain activity levels. This 
tendency was confirmed by the COMFORT scale results, where burp 
values were also the closest to the resting condition showing lower 
alertness levels or body movements, but more tension or muscle tone 
presence due to body muscles contraction or facial tension as an un
conscious response to the effort required to expel something out of the 
body [52]. Generally, this condition looks more like whining related to a 
physiological complaint than an actual urgent cry, where the arousal 
state is not very high. This low alertness can be linked to the fact that 
burp usually happens after a feed, which is when newborns usually tend 
to relax. 

The sleepy condition represents a fatigued infant not able to fall 
asleep. From an acoustic perspective, we found the longest patterns in 
duration, with prolonged monotonous cries presenting a clear falling 
melody. These cries also exhibited the highest hnr, meaning that the cry 
has fewer noise components and more harmonics, in combination with 
lower jitter and shimmer values, indicating fewer irregularities in the 
frequency and amplitude of the cry signal indicating reduced arousal 
[53]. Body oxygenation levels were not highly impacted, similar to the 
resting condition. However, our results for brain oxygenation showed 
alterations when compared to resting, indicating that the need to sleep 
may be linked to reduced cortical oxygenation [54]. Furthermore, we 
found an increase in theta band related to sleepiness in newborns, which 
is associated with drowsiness, alertness reduction, and sleep induction 
found in similar studies in children [55,56] or adults [57,58]. Body 
language also reinforces the baby’s calmness in the sleepy and fussy 
categories showing lower scores on the COMFORT scale on muscle tone, 
indicating a more relaxed state. 

The fussy condition is a catch-all category whose interpretation from 
the caregivers will really depend on the contextual information avail
able. Even if most of the time is related to the demand for attention or 
contact, it could also be the cause of a diaper change, uncomfortable 
position, temperature regulation, etc. Acoustically, fussy has similar 
characteristics in duration and F0 melody to sleepy (as a tired infant also 
presents fussiness), but sounds more like whining than an actual cry [4]. 
F0 for fussy is closer to hungry and its melody is flat or falling with more 
unvoiced segments. Regarding oxygenation, fussy is the closest category 
to the resting condition, highlighting an awake but calm state. However, 
the increase found in alpha power reinforces the alert level, looking for 
attention, contact and/or comfort [44,45,48]. 
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In general, both fussy and sleepy conditions showed very similar 
acoustics, body language and oxygenation characteristics also present in 
similar topographic activations in the brain signals. The big difference is 
that fussy EEG activity showed more alertness reflected through alpha 
increased compared to sleepy which indicates more drowsiness pre
sented in theta bands. Even though none of those conditions seems 
extremely urgent (compared to hungry or distress), they express an intent 
to communicate certain physiological needs or emotions very important 
to be covered for the comfort, well-being, and proper development of the 
newborn. 

Overall, our results demonstrated our primary objective showing 
that there are statistically significant differences among cry acoustics, 
EEG, NIRS, facial expression, and body movements features character
izing the different causes of crying in a newborn (hungry, sleepy, fussy, 
burp, and distress). 

Regarding our secondary aim, the pioneer multimodal data analysis 
based on ML highlighted that features involved in communication (body 
language and voice) are the most relevant ones to express the cause of 
cry, matching also with adults’ communicative approach [59]. As shown 
in a recent literature review [16], several articles tried to identify five 
cry types using ML approaches using only acoustic data [60,61]. How
ever none of these studies used a multimodal approach, being the idea 
behind this analysis, to identify the most important features (among 
audio, EEG, NIRS, facial expressions and body movements) to better 
understand the causes of infant crying. Thus, the most significant impact 
comes from audio quantitative features (e.g., duration, hnr, jitter, 
shimmer, etc.) that considerably improve all the performance metrics 
over the rest of the signals, emphasizing the cry acoustic analysis as a 
powerful biomarker to assess infant’s well-being. 

Interestingly, the most important audio features found with the ML 
analyses allowed us to characterize the cry types based on urgency levels 
(Fig. 4, y-axis) and brain (socio/emotional processes) and body (physi
ological processes) mechanisms (Fig. 4, x-axis) representing an overview 
over the results of the statistical analysis of acoustical, neurophysio
logical and behavioral signals. In this context, both distress and hungry 
(Fig. 4, upper quadrant) showed an intense and noisy cry, indicating the 
need for urgent external/physiological attention for hungry (Fig. 4, right 
upper quadrant) and emotional care or internal cognitive regulation for 
distress (Fig. 4, left upper quadrant). They also share a higher brain 
activation, eventually due to a newborn’s cognitive regulation attempt 
to solve this arousal state. Burp (Fig. 4, right bottom quadrant) requires 
low urgency levels with an important body activity/effort presence. 
Both burp and hungry (Fig. 4, right quadrant) showed lower levels of brain 
oxygenation and a similar muscular tone pattern. This suggests that the 
physiological states that trigger these cries may involve a more auto
mated response rather than a conscious effort. Regarding burp and fussy 
(Fig. 4, bottom quadrant), both showed a less urgent communicative 
pattern, suggesting a less agitated state compared to distress or hungry. 
However, they differ in brain activation and oxygenation, and body 
movement, possibly due to the fact that being fussy involves cognitive or 
emotional regulation, while burp cries are more related to physiological 
and practical care. Lastly, fussy (Fig. 4-left bottom quadrant) and sleepy 
(Fig. 4, left-middle quadrant) are very similar in their communicative 
pattern (i.e., long cries) indicating a not-so-urgent but emotional care 
needed or an internal cognitive regulation. However, sleepy is more 
urgent than fussy, which probably indicates that the fussy state is less 
aroused than the sleepy state. These categories also showed similar low 
oxygenation brain level and low body movement highlighting an awake 
but calm state and physiological processes that do not precise particular 
parts of the body compared to hungry and burp. 

Finally, to address our third aim, we validated the DL algorithm 
AMSI [18] based on cepstral features and CNN using the collected infant 
cries as a test set achieving an accuracy of 92%, which represents a 18% 
improvement in performance over the best accuracy obtained with the 
ML models. Previous studies on DL for cry type classification reported 
accuracies between 89% (comparing feeding, pain, sleep cries) [14] and 

94% (comparing pain, hunger, discomfort, burp, belly pain cries) using 
CNN [62] and CNN-RNN (recurrent neural networks) [63] with spec
trographic features. However, none of these studies used naturalistic 
data recordings. Also, previous studies [14,60,61] used a limited sample 
size and did not provide robust classification metrics to validate their 
models. 

5. Limitations 

Nonetheless, there are some limitations in our exploratory study. The 
foremost limitation concerned the small sample size and the low density 
of EEG (i.e., only 8 electrodes were recorded) and NIRS (only one frontal 
electrode was used) systems. Deep subcortical brain structures have 
been associated in some studies [64,65] with emotional processing and 
crying but with the EEG system, applied in this study, we did not have 
access to these structures. Despite this constraint, we found that brain 
activity patterns showed statistically significant differences in the 
different cry types, proving how crying analysis can add relevant in
formation to understanding the earlier human communication process. 
Furthermore, EEG and NIRS data collection and analysis while crying 
can be quite challenging due increase in noise artifacts, environmental 
noise, excessive movement, and muscle activity of the infant. Also, the 
pulse oximeter, as the fingertip sensor, was not always able to detect a 
clear signal, for example, when the infant was agitated, the signal was 
polluted with noise artifacts. In our specific scenario, the restriction of 
infant movement becomes notably intricate, as our intent is to assess all 
variables within a naturalistic environment. Consequently, this inherent 
limitation prompts a deliberate selection of methodological strategies 
designed to enhance the signal’s quality. Another limitation of our study 
is related to the montage of the EEG and NIRS implies the infant wearing 
a cap and forehead sensor. Despite the lightweight and flexible nature of 
these components, it is important to acknowledge that they may 
potentially induce discomfort in the infant, possibly resulting in more 
fussy cries. Lastly, we were not able to collect balanced data samples for 
each condition due to the nature of spontaneous crying and naturalistic 
recording contexts. To mitigate the effect of noisy audio recordings a 
careful detection and removal of artifacts was carried out ensuring a 
clean dataset for every feature. Future investigations should include 
longitudinal and follow-up studies utilizing multimodal datasets, 
thereby enabling an exploration of the evolving neurodevelopment of 
infants and the potential influence of this brain development on the 
patterns elucidated in this study. 

We recognize that continuously monitoring newborns’ brain physi
ological patterns, facial expressions, and body movements to classify cry 
types may not be a practical long-term solution. Therefore, our study 
puts forth the concept that acoustic analysis alone can significantly 
enhance the interpretation of newborns’ needs and emotions. In real- 
world scenarios, relying on a single audio signal is undeniably more 
feasible than deploying a comprehensive array of clinical equipment 
(such as EEG, NIRS, etc.) for the same purpose. Our research highlights 
the potential of audio cry analysis as a valuable tool for assessing an 
infant’s well-being, both in clinical and home settings, owing to its 
practicality and non-invasive nature as a vocal biomarker. 

Despite our limitations, our results represent a preliminary step to
ward the development of a reliable tool for cry analysis. We were able to 
verify our hypothesis and confirm that what is occurring at an acoustic 
level can be reinforced with behavioral and brain neurophysiological 
patterns leading to a better understanding of the human infant cry never 
accomplished until now. We also confirmed the importance and po
tential use of cry acoustics as a biomarker for infant well-being assess
ment. Lastly, we proved the effectiveness of the audio DL algorithms for 
cry characterization and interpretation. 

6. Conclusion 

Hence, we set a precedent on cry analysis research, stating that infant 
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cry expression of a need and/or emotion triggers a complex communi
cative process involving neurophysiological and behavioral patterns 
that are able to characterize and differentiate cry types associated with 
distinct arousal states in the newborn. 

Moreover, we demonstrated that acoustics play a key role in the 
interpretation of the reasons for crying over the rest of the infant’s 
features within a multimodal approach using ML. Thus, we also vali
dated the strength of the audio DL AMSI technology as a tremendous aid 
for the understanding of what is communicated by an infant’s crying. 

In conclusion, our results support the potential use of infant cry 
analysis as an automatic, promising, objective, accessible, and non- 
invasive tool to improve the infant-parent relationship ensuring the 
family’s well-being and proper newborn development. At the same time, 
this study elicits the implicit consideration for further research in infant 
cry as a clinical biomarker, also supporting clinicians in the assessment 
of the infant’s health status. 
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Summary 

In this manuscript, our multi-modal analysis combines infant cry 
audio recordings and neurophysiological signals such as electroen
cephalography (EEG) and near-infrared spectroscopy (NIRS) as well as 
facial expression and body movements from 38 healthy term newborns 
recruited at Hospital Clínic (Barcelona). Statistical analysis was con
ducted on a multimodal dataset to characterize and differentiate cry 
types during five different infant conditions (i.e., hunger, sleepiness, 
fussiness, burp, distress). 

Additionally, Machine Learning (ML) was used within this multi
modal dataset to determine the most relevant features that allow the 
distinction of different crying reasons. Finally, we want to demonstrate 
the effectiveness of audio Deep Learning (DL) algorithms as a valuable 
tool for interpreting infant cries and assessing the well-being of 
newborns. 

Our findings show significant differences for the different cry types 
based on acoustics, EEG, NIRs, facial expressions, and body movements. 
Acoustical features and body language were found to be the most rele
vant ML features to support the cause of crying. Moreover, the DL al
gorithm tested on the naturalistic cry database achieved an accuracy 
rate of 92%. 

With our study we were able to confirm that what is occurring at an 
acoustic level can be reinforced with behavioral and brain neurophysi
ological patterns leading to a better understanding of human infant cry 
never accomplished until now. Also, we were able to confirm the 

importance and potential use of cry acoustics as a tremendous tool for 
infant well-being assessment and also to confirm that audio DL algo
rithms are the best state of the art solution for cry analysis 
interpretation. 
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