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Abstract

The control of non-coding repeated DNA by DNA methylation plays an important role in

genomic stability, contributing to health and healthy aging. Mind-body practices can elicit

psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. How-

ever, in this context the effects of movement meditations have rarely been examined.

Consequently, the current study investigates the effects of a specifically structured move-

ment meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing

and on the methylation level of repeated sequences. An 8-week daily QMT program was

administered to healthy women aged 40–60 years and compared with a passive control

group matched for gender and age. Psychological well-being was assessed within both

groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ]

and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated

sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-

sequencing. In contrast to controls, the QMT group exhibited increased Search for Mean-

ing, decreased Presence of Meaning and increased Positive Relations, suggesting that

QMT may lessen the automatic patterns of thinking. In the QMT group, we also found

site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, con-

sistent with increased genome stability. Finally, the correlations found between changes

in methylation and psychometric indices (MLQ and PWB) suggest that the observed epi-

genetic and psychological changes are interrelated. Collectively, the current results
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indicate that QMT may improve psychophysical health trajectories by influencing the

DNA methylation of specific repetitive sequences.

Introduction

DNA methylation (DNAm), the addition of a methyl group in the carbon 5 of cytosines pres-

ent in cytosine-guanine (CG) dinucleotides, is an epigenetic modification that enables hetero-

chromatin formation and gene silencing. The DNAm pattern is established throughout

prenatal developmental and differentiation processes. The subsequent maintenance of a

proper methylation profile is essential for the normal functioning of the adult organism [1].

This is particularly important with regard to the repetitive elements of DNA (REs), which

make up a large portion, about one-third, of the human genome [2]. The REs include tan-

demly repeated sequences (satellites and repeats of ribosomal DNA, rDNA) and interspersed

sequences such as long interspersed nuclear elements (LINEs) and Alu sequences (Alus). Most

REs are highly methylated to maintain a heterochromatic and repressed state, which is essen-

tial to preserve genome stability and control gene expression. Hypomethylation of REs is, in

fact, related to chromatin relaxation, alterations in recombination processes, and unscheduled

transcription. This can result in genetic alterations, which include chromosome fragility, gross

chromosomal rearrangements, and insertional mutagenesis due to the mobility of REs that

have retrotransposon activity, such as LINEs and Alus [3]. Moreover, hypomethylation of REs

has been observed in various human diseases, from cancer to psychiatric disorders, highlight-

ing the importance of REs methylation status [2, 4–11].

DNAm profiles can be impaired during lifetime, impacting on individual health and ageing

pathways [12, 13]. Age-associated DNAm changes have been widely described [14–16] and

include hypo/hyper-methylation events at specific CG sites, with a trend towards global hypo-

methylation of the genome due to the loss of DNAm at REs, generally associated with cellular

aging and genome instability.

There is growing evidence that various environmental stressors, which include psychologi-

cal stress, can cause long-lasting alterations in the methylation pattern. Such epigenetic effects

may mediate the embodiment of stressful events and increase the risk of disease [13, 17–19].

In this context, hypomethylation of REs has been correlated with psychopathologies in patients

with a previous history of chronic stress, childhood adversities, and emotional trauma [2, 8,

20, 21].

However, some studies suggest that the deleterious epigenetic effects induced by stress may

be counterbalanced by stress management practices through remodeling of the epigenome

(reviewed in [22, 23]). Meditation, a set of techniques based on control of attention and emo-

tions, has the capability of significantly reducing stress, in addition to eliciting other beneficial

emotional and cognitive effects [24–30]. Moreover, studies have demonstrated the relationship

between meditation and improved psychophysical wellbeing [26, 31], as measured by instru-

ments such as the Psychological Wellbeing scales (PWB; [32]) and the Five Facet Mindfulness

Questionnaire (FFMQ; [33]).

In the context of promoting wellbeing, it is relevant to highlight the mind-body component

of meditation and mindfulness. These practices have been found to enable a more physically

relaxed, mentally embodied presence in the “here and now” [34, 35]. In fact, movement medi-

tation (i.e., a practice that combines meditation and movement) and somatic focus techniques

allow and enhance the top-down alpha rhythm modulation, which, in turn, sensitizes the

PLOS ONE QMT impacts DNA repeats methylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0293199 October 25, 2023 2 / 22

(project DBA.AD005.225-NUTRAGE-FOE2021).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0293199


practitioner to better detect and self-regulate sensory attention deployment. This would facili-

tate refocusing of attentional spotlight when the mind wanders from its somatic focus [36].

Consequently, enhanced regulation of somatic mind-wandering may be an important early

stage of mindfulness training that leads to expand cognitive functions and metacognition,

thereby improving psychophysical wellbeing. In addition, practices aiming to improve cogni-

tion, must not only recruit cognitive resources but challenge them continually, rendering the

importance of examining the effects of movement meditations particularly relevant [37].

A recent specifically structured movement meditation that has produced interesting psycho-

logical, neurophysiological and biological effects is the Quadrato Motor Training (QMT). QMT

requires whole-body coordinated movements in response to simple oral instructions within a

50 x 50 cm square, eliciting a state of divided attention between the motor response and cogni-

tive processing (to produce the correct direction of movement according to the instruction), as

well as a rapid monitoring function (reviewed in [38, 39]). In terms of its impact, QMT has

been found to enhance physical, emotional, and cognitive wellbeing [38, 40, 41].

Some studies have shown links between meditation and the DNAm pattern of genes related

to stress [42], immune response/inflammation [43–45], common human diseases [46] as well

as genomic sites involved in epigenetic aging [47]. This evidence supports the idea that medita-

tion-based interventions can positively influence gene expression profiles through an epige-

netic “resetting” involving DNAm (reviewed in [22, 23]). However, the specific epigenetic

effects of QMT have yet to be investigated.

In the present study, we aimed to evaluate possible DNAm changes resulting from QMT,

with a specific focus on REs. In particular, the current study has three primary aims: (1) to

examine the effects of 8 weeks of daily QMT on participants’ psychophysical wellbeing versus a

passive control group; (2) to investigate the effects of QMT on the methylation of REs (rDNA,

LINE-1, and Alus) in saliva samples; and (3) to test for possible correlations between changes

of these measures.

Materials and methods

Enrollment of participants and experimental design

A total of 30 healthy female participants were enrolled in the study (mean age = 43.65 years; s.

d. = 9.84). Written informed consent was obtained, in accordance with the Declaration of Hel-

sinki, including informing participants of the option to withdraw at any time for any reason.

This study was approved by the Department of Psychology Research Ethics and Bioethics

Advisory Committee, Sapienza University of Rome, Prot. n. 0001799 October 3rd, 2019. Partic-

ipants were semi-randomly assigned to the experimental QMT group and to the passive con-

trol group according to their availability to carry out or not to carry out the training in a

defined window of time, until 15 volunteers for each group were enrolled. Participants

assigned to the QMT group underwent daily QMT practice for 8 consecutive weeks. The dura-

tion of the intervention was chosen on the basis of the literature adopting meditative and

mindfulness training programs [48–50]. The duration of 8 weeks has in fact proved to be ade-

quate to provide observable and reliable effects [51]. Thus, we wanted to design the experiment

in a way that it would allow comparison with results from other studies which have similar

practice duration.

Collection of psychometric data and saliva samples for DNA methylation profiling was car-

ried out on all participants at baseline (Time 1 or T1) and again after 8 weeks (Time 2 or T2).

The two groups were comparable in terms of days between T1 and T2 data collection and were

tested in the same period of time in order to avoid possible season-related changes in molecu-

lar data.
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After collection of saliva samples, participants were seated in a quiet room to complete the

psychometric tests. Six questionnaires were administered to address psychological state

through psychometric evaluation. The questionnaires chosen were the Meaning in Life Ques-

tionnaire [52], Psychological Wellbeing Scales [32], Five Facet Mindfulness Questionnaire

[33], Pain Catastrophizing Scale [53], Perceived Stress Scale [54], and Positive and Negative

Affect Schedule [55].

The DNA methylation level of rDNA, LINE-1 and Alus repeats was determined at single

nucleotide resolution on DNA isolated from saliva samples.

Several participants were excluded. The exclusion criteria related to adherence to practice

were selected to have a homogeneous sample. We decided to exclude the participants who

practiced for less than one standard deviation from the mean of the whole sample. The average

of the days of practice was 47.93 days, and the standard deviation was 11.82. Thus, two partici-

pants were outside the range of acceptability of 36.11 days (Subject 03 = 16 days; Subject

05 = 31 days).

Two participants from both groups were excluded from the analysis because they had too

many missing molecular or psychometric data (i.e., showing less than 75% of data). Thus, the

final control group was comprised of 13 participants and the QMT group by 11 participants.

Participants characteristics including age, menopausal status, and lifestyle habits (smoking,

alcohol consumption, sports activity and meditation), are shown in Table 1 (Table 1 in

S1 Appendix).

The research design is depicted in Fig 1.

QMT training

QMT is a structured meditative movement training that involves sequences of vertical, hori-

zontal, and diagonal movements performed on a 50 x 50 cm square [38, 56]. The execution of

movements is guided by verbal commands and is designed to engage executive functions (e.g.,

divided attention and inhibition of automatic movement). After being instructed on how to

perform QMT at T1, participants performed the QMT daily between T1 and T2. They were

instructed to practice it preferably always in the same place (i.e., in a dedicated space in their

house with enough space to freely move in front of a white empty wall) and at the same time of

the day.

Psychometric evaluation

As our objective was to address whether QMT practice could have impacts on variables associ-

ated with wellbeing, with a particular regard for stress-related behaviors and affective states,

we administered several psychometric scales aimed at exploring psychological wellbeing, affec-

tive states and stress-related experiences widely used in studies adopting mindfulness and

meditation training [57–60].

Meaning in Life Questionnaire. The Meaning in Life Questionnaire (MLQ) [52] is a

10-item questionnaire divided in two 5-item subscales: Presence of Meaning (MLQ-P) and

Search for Meaning (MLQ-S). The MLQ-P subscale reflects the subjective sense that life has a

clear subjective meaning and purpose. The MLQ-S subscale represents the attitude toward the

active search for meaning and reflects motivation to find or increase one’s own understanding

of life meaning.

Psychological Wellbeing Scales. The Psychological Wellbeing (PWB) questionnaire [32]

is designed to assess six different core dimensions of personal psychological wellbeing: Auton-

omy (AU) indicating self-determination and independence from social pressure in decision

making; Environmental Mastery (EM) indicating ability to manage and control complex
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activities involving one’s own context and environment; Positive Relations With Others (PR)

indicating goodness and satisfaction related to social relations and empathic behavior; Per-

sonal Growth (PG) indicating openness to novel experiences and self-improvement; Purpose

in Life (PL) indicating directedness and pursuit of defined objectives/aims; and Self-Accep-

tance (SA) indicating embracing different aspects of one’s self and positive attitudes about

one’s past, present and future life.

Five Facet Mindfulness Questionnaire. The Five Facet Mindfulness Questionnaire

(FFMQ) [33] is a questionnaire designed to evaluate five fundamental mindfulness-related

dimensions: Observation (the ability to notice and observe different internal and external sti-

muli), Description (the ability to verbalize and communicate one’s thoughts and perceptions),

Acting with Awareness (the ability to weigh and give volitional values to actions as opposed to

Fig 1. Experimental design. The figure displays the study design with the main stages of the experimental process, the sample size for each, their order and the

corresponding timeline.

https://doi.org/10.1371/journal.pone.0293199.g001
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absent-minded action), Non-Judgmental (the ability to refrain from judgmental evaluation of

thoughts, perceptions and emotions), and Non-Reactivity (the ability to let thoughts and feel-

ings flow without resistance). In addition, a total score is generated from the average of the five

subscale scores, representing a general measure of a mindful attitude.

Pain Catastrophizing Scale. The Pain Catastrophizing Scale (PCS) [53] is a 13-item scale

designed to evaluate and measure the subjective experience of pain and pain-related thoughts

before, during or following pain experiences. In actual fact, this questionnaire does not need

the respondent to be in pain at the time, but it instead explores general beliefs and thoughts

about such experiences. It is divided into different subscales: Rumination describes the ten-

dency to continuously think about painful experiences, Magnification reflects the tendency to

exacerbate the subjective experience of pain, and Helplessness reflects the tendency to feel that

pain cannot be avoided or reduced. A total PCS score is the general scale representing how cat-

astrophic the subjective experience of pain can be.

Perceived Stress Scale. The Perceived Stress Scale (PSS) [54] is a 10-item widely used

scale designed to quantify the amount of subjective feelings and thoughts about one’s own

stress levels. It is a measure of the degree to which every day experiences are generally per-

ceived and appraised as being stressful and out of control.

Positive and Negative Affect Schedule. The Positive and Negative Affect Schedule

(PANAS) [55] is a 20-item scale measuring positive and negative affect, reflected in separate

subscales. The Positive Affect (PA) subscale targets positive mood states (e.g., enthusiasm,

proactivity, and joyfulness), while the Negative Affect (NA) subscale targets aversive mood

states (e.g., fear, anger, and general distress). These subscales have been found sensitive to

affect changes both in the short-term (state-like measurement) and over long periods such as

years (trait-like measurement) [55].

DNA methylation profiling

Collection of saliva, DNA extraction and sodium bisulfite treatment. Unstimulated

saliva (3–4 ml) was collected from each participant at T1 and T2. Collected saliva was kept on

ice, divided in aliquots into 1.5 ml tubes and centrifuged at 2500 rpm for 10’ at 4˚C. The sedi-

ment, depleted of the supernatant, was stored at -80˚C until DNA extraction. Genomic DNA

was isolated from the sediment using the Qiamp DNA Mini Kit (Qiagen, Hilden, Germany)

following the manufacturer’s protocol. The resulting DNA was quantified by Qubit dsDNA

BR Assay Kit (Thermo Fisher, Waltham, MA, USA) and loaded on an agarose gel electropho-

resis to check quality. Purified DNA was stored at 4˚C. Genomic DNA (500 ng) was processed

using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA), which allows treating DNA

with sodium bisulfite and converting unmethylated cytosines to uracil, leaving the methylated

cytosines unmodified.

Library construction and target-specific deep sequencing. Targeted bisulfite sequencing

is a quantitative and high throughput approach to measure DNAm of target genomic loci.

Briefly, a PCR is performed on bisulfite-converted DNA using primers that target the region of

interest and to which the Illumina adapter sequences are added. PCR products are indexed

and subjected to next-generation sequencing. The alignment of the sequencing reads to the

reference sequence allows deriving the DNAm status of each CG site in each read.

The procedures adopted were published previously [61]. Specifically, DNAm standard

curves were prepared using the universal methylated and unmethylated control DNA (Milli-

pore, Burlington, MA, USA), which were combined to generate standard samples with DNAm

levels of 0, 25, 50, 75, and 100% and then subjected to bisulfite treatment. Each standard sam-

ple was sequenced in triplicate.
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Bisulfite-converted DNA (5 ng) was used in PCR reactions using previously published

[5, 61] target-specific primers (Table 2 in S1 Appendix). The Illumina adapter sequences

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG and GTCTCGTGGGCTCGGAGATGTG
TATAAGAGACAG were respectively added to each forward and reverse primer.

Sequencing libraries were generated by a two-step PCR approach. Briefly, in the first ampli-

fication step, 5 ng of bisulfite-converted DNA was amplified using 0.016 units of Phusion U

Taq polymerase (ThermoFisher, Waltham, MA, United States) in 1X Phusion U buffer with

the addition of 1M betaine (Merk, Darmstadt, Germany), 150 nM forward and reverse prim-

ers, 1.75 mM MgCl2 (Agena Bioscience, San Diego, CA, United States) and 200 μM dNTPs

(ThermoFisher, Waltham, MA, United States) in 5 μl volume. Thermocycler conditions were

set as follows: 1x cycle at 95˚C for 1’ 40”; 1x cycle at 98˚C for 1’; 1x cycle at 58˚C for 2’; 1x cycle

at 72˚C for 1’; 36 x cycles at 98˚C for 10”, 58˚C for 40”, 72˚C for 20”; 1x cycle at 72˚C for 5’;

maintenance at 4˚C. PCR products were checked on agarose gel, pooled sample-wise and puri-

fied using the MagSi-NGS plus microspheres (MagTivio BV, Nuth, The Netherlands) as speci-

fied by the manufacturer.

In the second amplification step, 5 μl of each pooled sample was indexed using Illumina

Nextera XT Index Set A, performing an 8-step PCR according to the 16S Metagenomic

Sequencing Library Preparation protocol. The indexed libraries were then purified and nor-

malized before sequencing as indicated in the Nextera Library Prep Guide. Sequencing was

performed with a Micro V2 300 PE reagent kit on an Illumina MiSeq system (Illumina, San

Diego, CA, USA).

Methylation data handling. Paired-end reads, obtained from Illumina MiSeq, were qual-

ity screened using the FastQC tool (www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Adapter sequences were removed using Cutadapt [62]. Subsequently, paired-end reads were

merged using the PEAR tool (www.h-its.org/downloads/pear-academic/) [63], adopting a

minimum number of 20 overlapping residues and a maximum read length of 450 nucleotides.

The reads, assembled in FASTQ, were converted to FASTA using the Seqtk tool (https://

github.com/lh3/seqtk). All handling and processing tools used were compiled in Anaconda2-

based environments.

Analysis of deep bisulfite sequencing data was performed by the AmpliMethProfiler tool to

estimate the DNAm level of CG sites within each target amplicon [64]. Briefly, for each

sequencing target, the tool recovers all the reads with at least 80% of sequence identity (prim-

Tresh 0.8) and further filters out reads having a length differing more than 20% from that of

the reference target sequence (threshLen 0.2). The Blastn tool is then used to align each read to

the reference sequence, slightly modifying default parameters (dust no) in order to avoid the

loss of reads with TG stretches deriving from the bisulfite-conversion of genomic regions rich

in CpG sites, as previously described [65]. Binary values are assigned to each CG position in

each read: 1 (methylated) is assigned when the read contains a C in the CG position, 0

(unmethylated) is assigned when the read contains a T in the CG position. Finally, the methyl-

ation ratio, calculated as the number of methylated sites out of the total number of read sites

(methylated + unmethylated), across the reads was calculated for each CG position and used

in further statistical analyses.

Sequencing coverage was calculated for each target region and samples with

coverage< 200 were excluded from further analysis. After this filtering, the average coverage

(mean ± SD) was 1965.25 ± 504.93 for LINE-1; 1300.40 ± 415.56 for Alu; 2147.26 ± 619.39 for

RiboProm1; 2172.15 ± 619.39 for RiboProm2; 1817.51 ± 533.80 for 18S1; 2350.49 ± 694.14 for

18S2 and 1873.34 ± 554.18 for 28S.
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Statistical analysis

Statistical analysis was designed to explore any changes between time points among and

between the groups. First, data outliers deviating by more than 2 standard deviations from the

mean of each variable were identified and withdrawn from analysis. Then, each psychometric

and epigenetic variable were entered into separate repeated measures ANCOVAs (rmAN-

COVA) with time points (T1 vs. T2) as a within-participants variable, group (QMT vs. Con-

trol) as a between-participants variable, and age as a continuous covariate. Since 12-to-37

different sites were taken in account for each gene, the p-values of the Time x Group interac-

tion describing the differences between groups across time points were corrected for multiple

comparisons adopting the FDR correction (alpha = .05, q-value = .1) with the aim to control

for any Type 1 errors. In the results section, the sites showing a significant Time x Group inter-

action will be shown with particular emphasis on the interactions surviving the FDR correc-

tion. Observed statistical power (1-β) and partial eta squared (ηp
2) were computed and

reported for each significant term from ANOVAs. All post-hoc comparisons were corrected

for multiple comparisons adopting the Bonferroni method (computed as alpha/number of

comparisons). All the p-values related to the post-hoc comparisons shown in the current man-

uscript are Bonferroni adjusted. To explore potential relationships between psychometric and

epigenetic variables, epigenetic variables that showed a significant Time x Group interaction

in the set of rmANCOVAs were further entered in a set of correlations together with the psy-

chometric data. Since changes between baseline (T1) and follow-up (T2) were the main targets

of this study, these correlations were computed on delta scores representing the difference

between T2 and T1 scores. Also FDR correction with the same parameters adopted for ANO-

VAs was further applied to the p-values obtained from the correlations.

The data set supporting this study is provided as supplementary information (S1 Data).

All analyses were conducted on SPSS (SPSS Inc., Chicago IL, vers. 26.0).

Results

Psychometric indices

MLQ. MLQ Presence of Meaning (MLQ-P) total scores showed a significant Time x

Group interaction [F(1,18) = 9.62, p< .01, ηp
2 = .35, 1-β = .83] and a significant Time x Age

interaction [F(1,18) = 4.5, p< .05, ηp
2 = .20, 1-β = .51]. Post-hoc Bonferroni correction of the

Time x Group interaction revealed that the groups’ total MLQ-P scores were not statistically

different at T1 (QMT T1 = 24.5, Control T1 = 28.04; p = .08), but did show a significant differ-

ence at T2 (QMT T2 = 21.8, Control T2 = 29.3, p< .001) (Fig 2A). Moreover, while the

Fig 2. MLQ and PWB subscale scores by time and group representing Time x Group interaction results. (A) MLQ-Presence of Meaning (MLQ-P)

subscale scores at Time 1 (T1) and Time 2 (T2) by group; (B) MLQ-Search for Meaning (MLQ-S) subscale scores at T1 and T2 by group; (C)

PWB-Positive Relations (PWB-PR) subscale scores at T1 and T2 by groups. Data are estimated marginal mean ± 95% CI. * p< .05, ** p< .01 and ***
p< .001 post-Bonferroni correction.

https://doi.org/10.1371/journal.pone.0293199.g002
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Control group showed a statistically non-significant MLQ-P score change over time (Control

T1 = 28.04, Control T2 = 29.3; p = .15), the QMT group showed a significant decrease in

MLQ-P scores after training compared to before training (QMT T1 = 24.5, QMT T2 = 21.8; p

< .01). In addition, a significant main effect of Time [F(1,18) = 5.33, p< .05, ηp
2 = .03, 1-β =

.59] and a significant main effect of Group [F(1,18) = 10.29, p< .01, ηp
2 = .36, 1-β = .86] were

observed.

Further analysis of the Time x Age interaction showed a significant decrease in the differ-

ence between MLQ-P scores at T1 and T2 as a function of age, suggesting that the older the

participants, the lower is the MLQ-P difference over time, without regard to group (Fig 3A in

S1 Appendix).

Search for Meaning (MLQ-S) subscale scores showed a significant main effect of Age [F

(1,19) = 7.11, p< .05, ηp
2 = .27, 1-β = .71] and a significant Time x Group interaction [F(1,19)

= 4.81, p< .05, ηp
2 = .20, 1-β = .55]. Post-hoc Bonferroni correction of the Time x Group

interaction indicated that both groups’ MLQ-S scores were not statistically different either at

T1 (QMT T1 = 15.36, Control T1 = 16.17; p = .79) or T2 (QMT T2 = 18.34, Control

T2 = 15.93; p = .44) (Fig 2B). The main effect of Age suggests that MLQ-S scores tended to

decrease with age without regard to group (Fig 3B in S1 Appendix). However, the QMT group

showed a significant increase in MLQ-S scores after QMT compared to pre-training

(T1 = 15.36, T2 = 18.34; p< .01), while the Controls showed no changes in MLQ-S scores over

time (T1 = 16.17, T2 = 15.93; p = .80) (Fig 2B).

All other main effects and interactions were not significant (all p-values > .41).

PWB questionnaire. The Positive Relations With Others (PR) subscale scores of the PWB

questionnaire showed a significant main effect of Age [F(1,18) = 5.15, p< .05, ηp
2 = .22, 1-β =

.57] and a significant Time x Group interaction [F(1,18) = 5.84, p< .05, ηp
2 = .24, 1-β = .63].

The main effect of Age suggests that PWB-PR scores decreased with age without group differ-

ences (Fig 3C in S1 Appendix). Post-hoc Bonferroni correction of the Time x Group interac-

tion showed that while both groups’ PWB-PR scores were not significantly different at either

T1 (QMT T1 = 11.76, Control T1 = 12.75; p = .11) or T2 (QMT T2 = 12.79, Control

T2 = 12.42; p = .48) (Fig 2C), a significant increase in PWB-PR scores was observed for the

QMT group at T2 (T1 = 11.76, T2 = 12.79; p< .05), while the Control group showed no

changes over time (T1 = 12.75, T2 = 12.42; p = .40). All other main effects and interactions

were not significant (all p-values > .53).

The PWB questionnaire—Personal Growth (PG) subscale scores showed a significant main

effect of Age [F(1,17) = 8.98, p< .01, ηp
2 = .34, 1-β = .80]. The main effect of Age indicates

that PWB-PG scores decreased with age without differences between groups (Fig 3D in

S1 Appendix). Moreover, the main effect of Group approached significance [F(1,17) = 4.35, p

= .052, ηp
2 = .20, 1-β = .50] suggesting a trend towards a difference between groups, with the

QMT group showing slightly higher mean scores compared to the Controls (QMT = 12.54,

Control = 11.32).

All other main effects and interactions were not significant (all p-values > .41) and all other

PWB subscales (i.e., Autonomy, Environmental Mastery, Purpose In Life, and Self-Accep-

tance) showed no significant main effects or interactions (all p-values > .07).

FFMQ. The FFMQ Description subscale scores showed a significant main effect of Age [F

(1,18) = 8.97, p< .01, ηp
2 = .33, 1-β = .81], suggesting that the scores decrease with age regard-

less of group (Fig 3E in S1 Appendix). All other main effects or interactions of the Description

subscale were not significant (all p-values > .09).

The FFMQ Act With Awareness subscale, the FFMQ Non-Judgmental subscale and the

FFMQ total score showed a significant main effect of Age [F(1,19) = 5.03, p< .05, ηp
2 = .21, 1-

β = .56; F(1,18) = 6.24, p< .05, ηp
2 = .25, 1-β = .65; F(1,19) = 8.81, p< .01, ηp

2 = .31, 1-β = .80,
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respectively], indicating that scores decrease with age without differences between groups (Fig

3F–3H in S1 Appendix).

All other main effects or interactions of the FFMQ Total scale were not significant. Addi-

tionally, the Observation and the Non-Reactivity subscales of the FFMQ showed no significant

main effects or interactions (all p> .09).

PCS, PSS and PANAS. These questionnaires showed no significant main effect or inter-

actions in their subscales (all p-values > .09).

DNA methylation profile

Structure of the rDNA, LINE-1 and Alu units. The rDNA unit encodes the 45S pre-ribo-

somal RNA (RNA45S), which is the precursor for 18, 5.8 and 28S rRNAs. Each unit is repeated

a varying number of times in the genome (30–40 rDNA repeats) at the short arm of five acro-

centric chromosomes (HSA13, HSA14, HSA15, HSA21 and HSA22), resulting in approxi-

mately 400 rDNA copies in diploid cells. The promoter region was analyzed at the RiboProm1

and RiboProm2 targets (Fig 3A), as reported in previous studies [5]. RiboProm1 is upstream

of the rDNA promoter, whereas RiboProm2 encompasses the upstream control element

(UCE), the central promoter (CP) and the transcription start site (TSS).

The 18S and 28S gene bodies were analyzed at the 18S1, 18S2 and 28S targets, designed to

cover the 5’ end of the respective sequences in the rDNA unit (Fig 3A), as described in previ-

ous studies [61, 66, 67]. The RiboProm1, RiboProm2, 18S1, 18S2 and 28S targets contain 37,

26, 27, 13 and 30 CG sites, respectively (Fig 1, upper panel, in S1 Appendix).

LINE-1 and Alu repeats are sequences dispersed throughout the genome, present in nearly

all chromosomes. The human genome contains about 600,000 LINE-1 and 1,000,000 Alu

repeats that contribute to about 17% and 11% of the total genomic DNA [68], respectively.

Methylation of LINE-1 and Alu repeats was analyzed at target sequences described in previous

studies [5]. The LINE-1 target is in the 5’ untranslated region (5’ UTR) of the repeat unit, near

the transcription start site (Fig 3B). The Alu target is in the body of the repeat unit (Fig 3C).

The LINE-1 and Alu targets contain 18 and 12 CG sites, respectively (Fig 2 in S1 Appendix).

DNA methylation level of rDNA, LINE-1 and Alus repeats. The DNA methylation level

of rDNA repeats, LINE-1 and Alus was determined at the single CG dinucleotide level. Posi-

tion of CG sites within DNA targets and the corresponding methylation level found in the

Control and QMT groups at experimental times T1 and T2 are given in Table 3 (left side) and

plotted in Figs 1 and 2 in S1 Appendix. To trace QMT-associated methylation changes, data

were compared between groups (QMT, Control) and experimental times (T1, T2) by a Time x

Group age-adjusted rmANCOVA (Table 3, right side, in S1 Appendix).

The methylation level of seven CG sites of the rDNA unit showed significant Time x Group

interactions. Three CG sites belonged to RiboProm regions: RiboProm1 CG 210 [F(1,18) =

6.87, p< .05, ηp
2 = .27, 1-β = .69] and RiboProm2 CG 56 [F(1,19) = 5.03, p< .05, ηp

2 = .21, 1-

β = .56] and CG 204 [F(1,21) = 5.46, p< .05, ηp
2 = .21, 1-β = .61]. Four sites belonged to the

18S and 28S coding regions: 18S1 CG 75 [F(1,20) = 5.03, p< .05, ηp
2 = .20, 1-β = .57], CG 120

[F(1,19) = 6.94, p< .05, ηp
2 = .27, 1-β = .70], CG 179 [F(1,19) = 9.27, p< .01, ηp

2 = .33, 1-β =

.82] and 28S CG 246 [F(1,19) = 7.19, p< .05, ηp
2 = .27, 1-β = .72]. Other rDNA CG sites were

non-significant for Time x Group interactions (all p-values > .065).

Three CG sites belonging to the interspersed DNA repeats showed a significant Time x

Group interaction, specifically Alu CG 94 [F(1,19) = 5.37, p< .05, ηp
2 = .22, 1-β = .60], LINE-1

CG 99 [F(1,20) = 8.11, p< .01, ηp
2 = .29, 1-β = .77] and CG 173 [F(1,19) = 10.70, p< .01, ηp

2 =

.36, 1-β = .87]. Other interspersed DNA repeats sites were non-significant (all p-values > .08).
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Three interactions survived the FDR correction: 18S1 CG 179 and LINE-1 CG 99 and CG

173 (for a complete overview of descriptive statistics and results see Table 3 in S1 Appendix).

Age did not have a significant effect on the above associations, except for RiboProm1 CG

210 which showed a significant main effect of Age [F(1,18) = 5.38, p< .05, ηp
2 = .23, 1-β =

.59]. In fact, although overall methylation levels at this site tend to decrease with age, no signifi-

cant mean methylation differences were noted between groups (Fig 4 in S1 Appendix).

Pairwise comparison analysis was performed for all Time x Group interactions using the

post-hoc Bonferroni correction. For the rDNA unit, all CG sites showed significant changes in

Fig 3. Structure of the rDNA, LINE-1 and Alu units and localization of target regions assessed. (A) General structure of the rDNA unit. The

position of each amplicon (RiboProm1, violet arrow; RiboProm2, red arrow) included in the targeted-bisulfite sequencing assay is defined by its

distance (in base pairs) from the transcription start site (TSS) relative to the 45S pre-ribosomal RNA transcript (chrUn_gl000220, GRCh37/hg19).

UCE = upstream control element; CP = core promoter; TSS = transcription start site; ETS = external transcribed spacer; ITS = internal transcribed

spacer; 18S = 18S rRNA coding region; 5.8S = 5.8S rRNA coding region; 28S = 28S rRNA coding region. (B) General structure of the LINE-1 unit

[adapted from [69]]. The amplicon (blue arrow) included in the targeted-bisulfite sequencing assay is located next to the transcription start sites (black

arrow), relative to the Human LINE-1 (L1.4) repetitive element DNA sequence (GenBank: L19092.1). UTR = untranslated region; ORF = open

reading frame; EN = endonuclease coding region; RT = reverse transcriptase coding region. (C) General structure of the Alu unit [adapted from [70]].

The amplicon (blue arrow) included in the targeted-bisulfite sequencing is located centrally inside the repeated unit, between the RNA polymerase III

promoters (P3P A and P3P B) and the long A-rich region (AT). DR = direct repeat; SAR = small A-rich region; TS = T-rich transcription terminator

sequence. The black filled arrow indicates the typical Alu transcript. The orientation of the arrows representing the amplicons in (A), (B) and (C)

indicates the 5’-3’ direction of the sequenced DNA molecule. Bp = base pairs.

https://doi.org/10.1371/journal.pone.0293199.g003
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methylation levels across time (T1 to T2) in the QMT group. However, while methylation lev-

els decreased at promoter sites (RiboProm1 CG 210; RiboProm2 CG 56 and CG 204) (Fig 4A–

4C), they increased at gene body sites (18S1 CG 75, CG 120 and CG 179; 28S CG 246) (Fig

4D–4G). In contrast, the Control group showed no significant changes from T1 to T2, nor

were they statistically different from the QMT group at either time points.

For interspersed DNA repeats, LINE-1 CG 99 and CG 173 showed increased methylation

levels for the QMT group from T1 to T2, whereas the Control group showed no significant

change. While methylation levels were significantly higher in QMT compared to the Control

group at T2, no group difference was evident at T1 (Fig 5A and 5B). Conversely, Alu CG 94

showed a significant methylation increase across time (T1 to T2) for the Control group,

whereas no significant changes were found for the QMT group, or between Control and QMT

groups at either time points (Fig 5C).

Correlation between psychometric variables and CG methylation levels

Associations between changes over time in psychometric and methylation indices (Δ, T2-T1

difference) were assessed by means of a bivariate linear correlation analysis (Table 4 in S1

Fig 4. Methylation levels by Time (T1, T2) and Group (QMT, Control) representing Time x Group interaction results. Methylation levels for

QMT and Control (CT) groups over time for: (A) RiboProm1 CG 120, (B) RiboProm2 CG 56, (C) RiboProm2 CG 204, (D) 18S1 CG 75, (E) 18S1

CG 120, (F) 18S1 CG 179, (G) 18S1 CG 246. Data are estimated marginal mean ± 95% CI. * p< .05, ** p< .01 and *** p< .001 post-Bonferroni

correction. aTime x Group interaction that survived the FDR correction (q = .1).

https://doi.org/10.1371/journal.pone.0293199.g004
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Appendix). Analyses examined only indices showing significant Time x Group interaction in

the previously described set of rmANCOVAs.

The changes in MLQ’s Presence of Meaning subscale (MLQ-P) scores negatively correlated

with changes in methylation levels of 18S1 CG 75 (r = -.642, p< .01), CG 120 (r = -.531, p<

.05) and CG 179 (r = -.599, p< .01), and 28S CG 246 (r = -.533, p < .05). The changes in

MLQ’s Search for Meaning subscale (MLQ-S) scores correlated with changes in methylation

levels of 18S1 CG 120 (r = .481, p< .05) and CG 179 (r = .451, p< .05). The changes in Psy-

chological Wellbeing Scales’ Positive Relations With Others subscale (PWB-PR) scores corre-

lated with changes in methylation levels of 18S1 CG 120 (r = .572, p< .05) and LINE-1 CG

173 (r = .620, p< .01). However, the association of 18S1 CG 120 and 28S CG 246 with MLQ-P

subscale score, together with the association of 18S1 CG 120 and CG 179 with MLQ-S subscale

score, did not survive the FDR correction (for a complete report of all correlations results, see

Table 4 and Fig 5 in S1 Appendix).

Discussion

The current study shows that eight weeks of daily QMT in healthy women resulted in some

psychometric and methylation changes compared to a passive control group. In particular, the

QMT intervention was correlated with modified psychological indices in association with

DNAm profile changes at various repetitive DNA sequences.

Changes at the level of psychometric measurements

In contrast to the Control group’s lack of change in psychometric indices over time, changes

were observed in the QMT group after eight weeks of QMT practice (T2) compared to baseline

(T1). Interestingly, while Presence of Meaning (MLQ-P) was reduced following QMT, Search

for Meaning (MLQ-S) was increased. One possible interpretation of this finding may relate to

the fact that QMT was found to diminish the automaticity of habitual thinking patterns by

improving motor and cognitive inhibition [38], reflectivity [56] and creativity [71, 72]. Conse-

quently, the daily engagement in the highly mindful QMT practice could induce the observed

changes in MLQ-P and MLQ-P scores by shifting a more habitual automatic daily behavior

into a more dynamic pro-active attitude, thus stimulating further search for new meaning.

QMT practice was also associated with increased scores in the Positive Relations With Oth-

ers subscale of the PWB scales. The effect of QMT on social perception may stem from the

impacted brain areas. In fact, previous studies have shown QMT can improve affective balance

[73], as well as increase synchronization between bilateral limbic and prefrontal areas [74].

Fig 5. Methylation levels by Time (T1, T2) and Group (QMT, Control) representing Time x Group interaction results. Methylation levels for

QMT and Control (CT) groups over time for (A) LINE-1 CG 99, (B) LINE-1 CG 173 and the (C) Alu CG 94. Data are estimated marginal mean ± 95%

CI. ** p< .01 and *** p< .001 post-Bonferroni correction. aTime x Group interaction that survived the FDR correction (q = .1).

https://doi.org/10.1371/journal.pone.0293199.g005
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This may promote functional integration of affective and non-affective executive functions

[39], suggesting that QMT can influence complex affective processes by promoting neural

plasticity in emotion-related brain areas thereby affecting the quality and subjective appraisal

of social interactions. Further studies are needed to clarify the nature, magnitude, and neuro-

cognitive mechanisms underlying this change.

Age was found to covariate with scores on the Personal Growth subscale of the PWB scales, as

well as the FFMQ total score and three of its subscales (i.e., Description, Acting With Awareness,

Non-Judgmental), indicating that lower scores were a function of greater age. It is possible that the

PWB construct of personal growth (openness to new experiences and self-improvement) evoked

the inter-relation with age, as this type of goal seeking and positive attitude towards the future is

often observed more in youth and tends to decrease with age by becoming less relevant [75]. Con-

cerning the FFMQ, a previous study found a positive relationship between age and the Acting

With Awareness FFMQ subscale scores [31]. However, other authors debated the inter-relation of

FFMQ scores with age showing that meditation history correlated with age while FFMQ total

score did not [76], suggesting that different variables are involved in these relationships.

Changes at the DNAm level

DNAm analyses were performed on saliva, one of the most easily accessible sample types and a

good proxy for DNAm changes in other tissues such as brain and blood [77, 78]. The majority

of methylation changes that varied significantly over time were associated with QMT training.

Significant DNAm changes were found associated with QMT practice in specific CG sites

located at REs such as rDNA and interspersed LINE-1. These findings suggest QMT practice

might contribute to modulating DNAm profiles at the level of specific REs, which could result

in positive effects such as increased genome stability.

The observed changes appear to be target-specific, suggesting that the effect of QMT prac-

tice depends on the functional role of the REs. For instance, at the rDNA targets, promoter

regions underwent hypomethylation, while 18S and 28S gene body regions underwent hyper-

methylation. Both processes are of potential functional relevance because they stimulate rRNA

transcription [79, 80], which in turn favors ribosome biogenesis and protein synthesis. In con-

trast, loss of this bimodal methylation profile has been associated with cellular senescence [81,

82] and high suicide rates among individuals abused as children [83]. Moreover, it has been

reported that methylation of both promoter and coding regions increases during aging leading

to an age-related decline in rDNA levels [61, 84, 85]. Therefore, QMT training may represent

an effective tool to promote an epigenetic retuning of rRNA synthesis via counteracting

DNAm alteration caused by aging.

The effect of QMT appears to be target-specific even for interspersed transposable elements,

as it affects LINE-1, rather than Alu sequences. This probably reflects differences in the biolog-

ical and functional characteristics of these repetitive elements, but still remains unclear [86].

Nevertheless, the association between QMT practice and the methylation level of LINE-1 is

particularly significant since it able to differentiate the QMT group from the Controls group at

T2. The hypermethylated state of these regions plays extremely important structural and regu-

latory roles in the entire genome. In fact, hypermethylation of LINE-1 ensures the genetic sta-

bility of the genome by counteracting the retrotransposition process and controls the global

3D structure of chromatin [87]. Conversely, failure of these regulatory functions due to loss of

LINE-1 methylation is associated with diseases, primarily cancer [88–90]. Loss of methylation

is also observed in healthy people during the aging process [91–94], as well as in age-related

diseases and conditions such as menopause [95], frailty [96] and Alzheimer’s disease [97, 98].

Significantly, recent evidence suggests that transcriptional derepression of LINE-1 sequences
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during cellular senescence activates a type-I interferon (IFN-I) response and sustains age-asso-

ciated chronic inflammation (inflammaging) [4]. Accordingly, our finding of increased LINE-

1 methylation levels associated with QMT provides preliminary evidence that consistent prac-

tice of this movement meditation may induce favorable health outcomes.

Although statistically significant and functionally relevant, the vast majority of both hypo-

methylated and hypermethylated CG sites associated with QMT exhibited quite subtle

changes. The small magnitude of mean differences across time points, the small sample size,

and the naturally high variability of DNA repeats methylation among the general population

[99], might explain the suboptimal statistical power (1-β frequently below .8) and the classifica-

tion of many discovered associations as false positive findings after the FDR correction. This is

plausible and probably accounts for the increase in Alu CG 94 methylation across time points

in the control group.

The correlation between the CG methylation levels of 18S, 28S, and LINE-1 regions and

scores of the MLQ and PWB questionnaires indicates that the observed epigenetic and psycho-

logical changes are inter-related and that better wellbeing is concomitant with favorable epige-

netic remodeling. This possibility is supported by previous studies. In particular, the

association of 18S and 28S rDNA methylation levels with indices of Presence of Meaning in

Life, Searching for Meaning, and Positive Relations With Others reported here, is congruent

with previous findings linking the loss of rDNA methylation with states of psychological dis-

tress/pathology [100, 101]. Similarly, the positive association found between LINE-1 methyla-

tion and the Positive Relations With Others subscale is consistent with the hypothesis that

LINE-1 hypomethylation is associated with unhealthy lifestyles [102] and mental disorders

such as schizophrenia [8] and posttraumatic stress disorder [9].

Strengths and limitations

The main outcome of the current study is the evidence that an important epigenetic mecha-

nism like DNAm variations at the genomic DNA repeats may contribute to explain the physio-

logical and psychological changes induced by the QMT practice. To our knowledge, this is the

first study to describe an effect of meditation on DNAm of repeated elements.

Several study limitations must be acknowledged, beginning with the small, homogeneous

(age and gender) cohort, which may have affected the internal validity of inferences and the

degree to which the results can be generalized. Notably, although the effect sizes (ηp
2) were

above .14 for most of the significant associations, indicating a good explanatory power of the

Time x Group interaction, the statistical power (1-β) was generally below the commonly

accepted minimum threshold of .8. This result, together with the outcome of the FDR correc-

tion, suggests that our data have good explanatory power but some improvements will be nec-

essary to guarantee a better protection against Type II errors. The small sample size also

precluded multivariable and sub-group analyses, as well as investigation of other potential con-

founding variables beyond age. Finally, given the tissue-specific nature of DNAm and the cel-

lular heterogeneity of saliva [103], changes in cell type composition of saliva are additional

potential sources of variation that may have impacted both case-control and pre-post analyses.

Despite these limitations, the results show biological plausibility and can act as a basis for

achieving in the future a more complete picture of the effect of meditation practices on DNA

methylation profile.

Conclusions

Considering the relative long-term stability of DNAm profiles, our results suggest that QMT

may improve psychological health trajectories by influencing, at least in part, the DNAm status
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of specific repetitive sequences. Larger cohort studies with longer observation durations are

needed to confirm these noteworthy preliminary findings.
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Response to Mindfulness in Peripheral Blood Leukocytes Involves Genes Linked to Common Human

Diseases. Mindfulness (N Y). 2018 Aug 1; 9(4):1146–59.
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