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Tracking-Based Distributed Equilibrium
Seeking for Aggregative Games
Guido Carnevale , Member, IEEE, Filippo Fabiani , Filiberto Fele ,

Kostas Margellos , Member, IEEE, and Giuseppe Notarstefano , Member, IEEE

Abstract—We propose fully distributed algorithms for
Nash equilibrium seeking in aggregative games over net-
works. We first consider the case where local constraints
are present and we design an algorithm combining, for each
agent, the projected pseudogradient descent and a tracking
mechanism to locally reconstruct the aggregative variable.
To handle coupling constraints arising in generalized set-
tings, we propose another distributed algorithm based on a
recently emerged augmented primal-dual scheme and two
tracking mechanisms to reconstruct, for each agent, both
the aggregative variable and the coupling constraint satis-
faction. Leveraging tools from singular perturbations anal-
ysis, we prove linear convergence to the Nash equilibrium
for both schemes. Finally, we run extensive numerical sim-
ulations to confirm the effectiveness of our methods and
compare them with state-of-the-art distributed equilibrium-
seeking algorithms.

Index Terms—Distributed algorithms, game theory, net-
work analysis and control, optimization algorithms.

I. INTRODUCTION

R ECENT years have seen an increasing attention to the
computation of (generalized) Nash equilibria in games

over networks [1], [2], [3]. Indeed, numerous applications
falling within different domains such as smart grids manage-
ment [4], [5], economic market analysis [6], cooperative control
of robots [7], electric vehicles charging [8], [9], [10], network
congestion control [11], and synchronization of coupled os-
cillators in power grids [12] can be modeled as networks of
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selfish agents—aiming at optimizing their strategy according to
an associated individual cost function—that compete with each
other over shared resources.

Among these examples, one can often find instances modeled
as an aggregative game, where the strategies of all the agents
in the network are coupled through the so-called aggregative
variable (expressing, e.g., the mean strategy), upon which each
agent’s cost function depends; see, e.g., [13], [14], [15] for a
comprehensive overview. Our work investigates such a frame-
work proposing novel distributed algorithms for generalized
Nash equilibrium (GNE) seeking under partial information, i.e.,
assuming that each agent is only aware of its own local informa-
tion (e.g., its strategy set and cost function) and can communicate
only with few agents in the network. This restriction naturally
calls for the design of fully distributed mechanisms for GNE
seeking.

Our approach is motivated by recent developments in coop-
erative optimization, where agents in a network collaborate to
minimize the sum of individual objective functions depending
both on local decision variables and an aggregative variable [16],
[17], [18], [19], [20].

A. Related Work

In the context of NE problems in aggregative form, first at-
tempts to design equilibrium seeking algorithms involve semide-
centralized approaches in which a central entity gathers and
shares global quantities (such as the aggregative variable and/or
a dual multiplier) with all the agents [21], [22], [23], [24], [25],
[26], [27], [28].

To relax the communication requirements, Koshal et al.[29]
proposed a gradient-based algorithm for nongeneralized games
with diminishing step-size that relies on dynamic averaging
consensus (see, e.g., [30], [31]) to reconstruct the aggrega-
tive variable in each agent. Such a method has been refined
in [32] to deal with privacy issues and, as a consequence, only
guarantees approximate equilibrium computations. In [33], the
distributed computation of an approximate Nash equilibrium is
guaranteed through a best-response-based algorithm requiring
multiple communication exchanges per iteration. In [34], in-
stead, an asynchronous distributed algorithm based on proximal
dynamics is proposed.

Looking at GNE problems where the agents’ strategies are
coupled also by means of constraints, in [35] the distributed com-
putation of an approximate NE is guaranteed through an algo-
rithm requiring, however, several communication exchanges per
iteration. Exact convergence is instead guaranteed in [36], where
a distributed algorithm with diminishing step-size is proposed,
combining dynamic tracking mechanisms, monotone operator
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TABLE I
SETUP WITHOUT COUPLING CONSTRAINTS

TABLE II
SETUP WITH COUPLING CONSTRAINTS, WHERE SCQ STANDS FOR SLATER’S CONSTRAINT QUALIFICATION

TABLE III
EXECUTION TIME OF A SINGLE ITERATE WITH PRIMAL TRADES

(ALGORITHM 1) AND THE CONSIDERED ALGORITHMS IN [33] AND [38].
MEAN AND 1-STANDARD DEVIATION ARE BASED ON MONTE CARLO

SIMULATIONS OF THE CASE STUDY IN [33]

splitting, and the Krasnosel’skii–Mann fixed-point iteration. An
exactly convergent distributed equilibrium-seeking algorithm
with constant step-size is given in [37], where the authors pro-
pose a distributed method based on a forward–backward splitting
of two preconditioned operators requiring a double communi-
cation exchange per iteration. Finally, distributed equilibrium-
seeking algorithms based on proximal best-responses are pro-
posed in [38].

B. Contributions
The main contribution of the article is the design and the anal-

ysis of novel, fully distributed iterative—i.e., discrete-time—
algorithms for (generalized) NE seeking in aggregative games
over networks. First, to address the case where local constraints
are present, we combine a projected pseudogradient method
with a local, auxiliary variable that compensates for the lack
of knowledge of the aggregative variable in each agent. Succes-
sively, we deal with the case of coupling constraints, however, no
local constraints are present. To achieve this, we take inspiration
from a recent augmented primal-dual scheme for centralized,

continuous-time optimization [39] and resort to 1) an averaging
step to enforce consensus among the agents’ multipliers and 2)
two auxiliary variables to locally reconstruct both the aggrega-
tive variable and the coupling constraint status. Both iterative
schemes are analyzed from a system-theoretic perspective that
allows us to establish linear convergence to the (G)NE. To the
best of our knowledge, the algorithm proposed for the case
where coupling constraints are present is the first distributed
scheme in the literature with guaranteed linear convergence to a
GNE (see Section A of Appendix for the formal definition). As
such, it constitutes the main contribution of our article. More-
over, as discussed in detail in Section II-B, such a linear con-
vergence rate is enabled by our system-theoretic interpretation,
which offers a new proof-line perspective. Further, we also guar-
antee linear convergence when only local constraints are present.
A similar result is also achieved by the recent contribution [38]
(see [38, Rem. 12]): our algorithm complements the proximal
best-response scheme of Bianchi et al. [38] by constituting its
gradient-based counterpart. Proximal algorithms require solving
some optimization program (which in turn may rely on some
iterative method), whereas our projected gradient descent step
can allow a simpler update rule if the projection can be performed
in an easy manner. As such, gradient-based approaches are often
computationally less intensive compared to proximal ones, as
verified in the numerical simulations of Section V (see Table III);
however, such a conclusion is case-dependent.

As a side technical contribution, in contrast with existing
methods, our algorithms i) do not require compactness of the lo-
cal feasible sets and ii) allow for a general form of the aggregative
variable, thus not necessarily requiring the mean of the agents’
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strategies to operate. To better classify our work within the exist-
ing literature, Tables I and II compare it with the most relevant
works. Specifically, Table I considers the framework without
coupling constraints, while Table II the one with coupling con-
straints (GNE) (note that some of the technical conditions and
variables appearing in the table entries will become clear in the
sequel). The analysis of our iterative algorithms is carried out by
relying on a singular perturbations approach that allows us to see
each procedure as the interconnection between a slow subsystem
and a fast one. Specifically, the slow dynamics are produced
by the update of the strategies and, in the case with coupling
constraints, of the mean of the multipliers over the network. The
fast dynamics, instead, describes the evolution of the auxiliary
variables used to compensate for the lack of knowledge of the
global quantities and, in the case with coupling constraints, the
consensus error among the agents’ multipliers. Based on this in-
terpretation, we construct two auxiliary, simplified subsystems,
known as boundary layer and reduced system, to separately
study the fast and slow dynamics, respectively. Leveraging this
connection, we first provide the convergence properties of these
auxiliary dynamics with Lyapunov-based arguments, and then
we merge the obtained results to establish linear convergence
to the (G)NE of the whole interconnection. This last step relies
on a general theorem (cf., Theorem 2.5) considering a class of
singularly perturbed systems that includes the proposed iterative
algorithms. In detail, this theorem shows that global exponential
stability results for the interconnection can be achieved, while
typical results in literature only provide semiglobal properties
(see [40, Prop. 8.1], or [41, Ch. 11] for the continuous-time
case). To the best of our knowledge, similar results are not yet
available in the literature: besides the construction of a novel,
fully distributed iterative mechanism with appealing features for
their practical implementation, they offer a new proof line for
equilibrium-seeking problems. Finally, we provide detailed nu-
merical simulations to confirm the effectiveness of our methods
and compare them with state-of-the-art distributed NE-seeking
algorithms.

C. Article Organization

In Section II we introduce aggregative games over networks,
while in Section III-A we propose and analyze a novel distributed
algorithm to find NE when only local constraints are present. In
Section IV, we devise a novel distributed GNE-seeking algo-
rithm to address the case of linear coupling constraints. Finally,
in Section V we provide detailed numerical simulations to test
our methods. The proof of the result on singular perturbations—
instrumental in the derivation of our main theorems—is deferred
to Section Section B of Appendix; Sections C and D of Appendix
gather the proofs of all other technical results and lemmas.

Notation: A matrix M ∈ R
n×n is Schur if all its eigenvalues

lie in the open unit disc. The identity matrix in R
m×m is Im.

0m is the all-zero matrix in R
m×m. The vector of N ones is

denoted by 1N , while 1N,d := 1N ⊗ Id with ⊗ being the Kro-
necker product. Dimensions are omitted whenever clear from the
context. Given a function of two variables f : Rn1 × R

n2 →
R, we denote as ∇1f ∈ R

n1 its gradient with respect to its
first argument and as ∇2f ∈ R

n2 its gradient with respect to
the second one. The vertical concatenation of column vectors
v1, . . . , vN ∈ R

n is COL(v1, . . . , vN ). Rn
+ is the positive orthant

in R
n. diag(v1, . . . , vn) denotes the diagonal matrix whose ith

diagonal element is given by vi. blkdiag(M1, . . . ,MN ) is the

block diagonal matrix whose ith block isMi ∈ R
ni×ni . Given a

vector x ∈ R
n and a set X ⊆ R

n, PX [x] denotes the projection
of x on X . For matrix (resp., vector) A ∈ R

m×n (v ∈ R
n),

we denote as [A]j ([v]j) its jth row (jth component). Given
two matrices A,B ∈ R

m×m, A � B (resp. A � B) is equiva-
lent to saying that A−B is positive definite (resp. semidefi-
nite). Given x ∈ R

n and M ∈ R
n×n such that M =M� � 0,

‖x‖M =
√
x�Mx.

II. MATHEMATICAL PRELIMINARIES

A. Problem Definition and Main Assumptions

We consider a population of N ∈ N agents—designated by
the set I := {1, . . . , N}—whose interaction is described by the
following collection of coupled optimization problems:

∀i ∈ I :

{
min
xi∈Xi

Ji(xi, σ(x))

s.t. Aixi +
∑

j∈I\{i}Ajxj ≤
∑

i∈I bi.

(1a)

(1b)

In words, every agent i ∈ I seeks an individual strategy
xi ∈ Xi ⊆ R

ni to minimize a local cost defined by the function
Ji : R

ni × R
d → R, which depends on xi as well as on some

aggregate measure of other agents’ strategies σ(x) ∈ R
d, where

x := COL(x1, . . . , xN ) ∈ R
n and n :=

∑N
i=1 ni. The agents’

decisions shall satisfy some global constraints, which can be ex-
pressed in the affine form Ax ≤ b, where A := [A1 · · · AN ] ∈
R

m×n and b :=
∑

i∈I bi ∈ R
m. The aggregative variable σ(·)

formally reads as

σ(x) :=
1

N

∑
i∈I

φi(xi) (2)

where each aggregation rule φi : Rni → R
d models the contri-

bution of the corresponding strategyxi to the aggregateσ(x). We
define the constraint functions ci : Rni → R

m, c−i : R
n−ni →

R
m, and c : Rn → R

m as follows:

ci(xi) = Aixi − bi (3a)

c−i(x−i) =
∑

j∈I\{i}
(Ajxj − bj) (3b)

c(x) = ci(xi) + c−i(x−i) = Ax− b (3c)

where x−i := COL(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ R
n−ni .

Then, the collective vector of strategies x belongs to the feasible
set C := {x ∈ X | c(x) ≤ 0} ⊆ R

n.
We refer to any equilibrium solution to the collection of inter-

dependent optimization problems (1) as aggregative GNE [3] (or
simply GNE), and to the problem of finding such an equilibrium
as GNE problem (GNEP) in aggregative form—as opposed to a
NE problem (NEP), which is characterized by local constraints
only. We will design distributed algorithms to find aggregative
GNEs, which formally correspond to the following definition.

Definition 2.1 (GNE [3]): A collective vector of strategies
x� ∈ C is a GNE of (1) if we have:

Ji(x
�
i , σ(x

�)) ≤ min
xi∈Ci(x�

−i)
Ji(xi,

1
N φi(xi) + σ−i(x

�
−i))

for all i ∈ I, with Ci(x−i) := {xi ∈ Xi | Aixi ≤ bi −
c−i(x−i)} and σ−i(x

�
−i) :=

1
N

∑
j∈I\{i} φj(x

�
j ) �.

We remark that the definition of NE follows directly from the
above by noting that, in the case without coupling constraints, it
holds Ci(x�−i) ≡ Xi. An equivalent definition of GNE requires
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one to find a fixed point of the best response mapping xi,br :
R

n−ni → R
ni of each agent, which is formally defined as

xi,br(x−i) ∈ arg min
xi∈Ci(x−i)

Ji (xi, σ(x))

= arg min
xi∈Ci(x−i)

Ji
(
xi,

1
N φi(xi) + σ−i(x−i)

)
.

In fact, a collective vector of strategies x� is a GNE if, for all
i ∈ I, x�i = xi,br(x

�
−i). Next, we enforce customary assump-

tions about the regularity of some quantities in (1).
Standing Assumption 2.2 (Cost functions): For all i ∈ I,

the function Ji(·, φi(·)/N + σ−i(x−i)) is of class C1, i.e., its
derivative exists and is continuous, for all x−i ∈ R

n−ni . �
A key ingredient in this game-theoretic framework is the so-

called pseudogradient mapping F : Rn → R
n:

F (x) := COL(∇x1
J1(x1, σ(x)), . . . ,∇xN

JN (xN , σ(x))). (4)

With this regard, we also make the following assumption.
Standing Assumption 2.3 (Strong monotonicity and Lipschitz

continuity): F is μ-strongly monotone, i.e., there exists μ > 0
such that

(F (x)− F (y))�(x− y) ≥ μ ‖x− y‖2
for all x, y ∈ R

n. Moreover, given any xi, x′i ∈ R
ni and y, y′ ∈

R
n−ni , for all i ∈ I, we assume that

‖∇xi
Ji(xi, φi(xi)/N + y)−∇x′

i
Ji(x

′
i, φi(x

′
i)/N + y′)‖

≤β1‖COL(xi, y)−COL(x′i, y
′)‖

‖∇1Ji(xi, y)−∇1Ji(x
′
i, y

′)‖ ≤β1‖COL(xi, y)−COL(x′i, y
′)‖

‖∇2Ji(xi, y)−∇2Ji(x
′
i, y

′)‖ ≤β2‖COL(xi, y)−COL(x′i, y
′)‖

‖φi(xi)− φi(x
′
i)‖ ≤ β3 ‖xi − x′i‖ .

�
While assumptions on strong monotonicity and Lipschitz

continuity of the game mapping are quite standard in the litera-
ture [15], [25], [26], the second part of Standing Assumption 2.3
specializes the Lipschitz properties of the gradients of the cost
functions in both the local and aggregate variables, as well
as of each single aggregation rule φi(·). Note that we assume
partial information, i.e., each agent i is only aware of its own
local information xi, Ji, φi, Ai, and bi. Moreover, each agent
can exchange information with a subset of I only. Specifically,
we consider a network of agents whose communication is per-
formed according to a directed graph G = (I, E), with E ⊂ I2

such that i can receive information from agent j only if the
edge (j, i) ∈ E . The set of in-neighbors of i is represented by
Ni := {j ∈ I | (j, i) ∈ E} (where also i ∈ Ni), while N out

i :=
{j ∈ I | (i, j) ∈ E}denotes the set of out-neighbors of the agent
i. Graph G is associated with a weighted adjacency matrix
W ∈ R

N×N whose entries satisfy wij > 0 whenever (j, i) ∈ E
and wij = 0 otherwise. The next assumption characterizes the
considered graphs.

Standing Assumption 2.4 (Network): The graph G is strongly
connected, i.e., for every pair of nodes (i, j) ∈ I2 there exists a
path of directed edges that goes from i to j, and the matrix W
is doubly stochastic, namely it holds that

W1N = 1N , 1�NW = 1�N .

�

B. Key Result on Singularly Perturbed Systems

The convergence analysis of the iterative schemes introduced
in Sections III and IV exploits a system-theoretic perspective
based on singular perturbation, which strongly relies on the fol-
lowing crucial result proved in Section Section B of Appendix.

Theorem 2.5 (Global exponential stability for singularly per-
turbed systems): Consider the system

xt+1 = xt + δf(xt, wt) (5a)

wt+1 = g(wt, xt, δ) (5b)

with xt ∈ D ⊆ R
n, wt ∈ R

m, f : D × R
m → R

n, g : Rm ×
R

n × R → R
m, δ > 0. Let f and g be Lipschitz continuous

with respect to both xt and wt, with Lipschitz constants Lf

and Lg , respectively. Assume that there exists an Lh-Lipschitz
continuous function h : Rn → R

m such that, for all x ∈ R
n,

h(x) = g(h(x), x, δ)

and further assume that there exists x� ∈ R
n such that

0 = δf(x�, h(x�)).

Then, let
xt+1 = xt + δf(xt, h(xt)) (6)

be the reduced system and
ψt+1 = g(ψt + h(x), x, δ)− h(x) (7)

be the boundary layer system with ψt ∈ R
m.

Assume that there exists a continuous function U : Rm → R

and δ̄1 > 0 such that, for any δ ∈ (0, δ̄1) (cf. (5)), there exist
b1, b2, b3, b4 > 0 such that for all ψ,ψ1, ψ2 ∈ R

m, x ∈ R
n,

b1 ‖ψ‖2 ≤ U(ψ) ≤ b2 ‖ψ‖2 (8a)

U(g(ψ + h(x), x, δ)− h(x))− U(ψ) ≤ −b3 ‖ψ‖2 (8b)

|U(ψ1)− U(ψ2)| ≤ b4 ‖ψ1 − ψ2‖ ‖ψ1‖
+ b4 ‖ψ1 − ψ2‖ ‖ψ2‖ . (8c)

Further, assume there exists a continuous function W :
D → R and δ̄2 > 0 such that, for any δ ∈ (0, δ̄2), there exist
c1, c2, c3, c4 > 0 such that for all x, x1, x2, x3 ∈ D

c1 ‖x− x�‖2 ≤W (x) ≤ c2 ‖x− x�‖2 (9a)

W (x+ δf(x, h(x)))−W (x) ≤ −δc3 ‖x− x�‖2 (9b)

|W (x1)−W (x2)| ≤ c4 ‖x1 − x2‖ ‖x1 − x�‖
+c4 ‖x1 − x2‖ ‖x2 − x�‖ . (9c)

Then, there exist δ̄ ∈ (0,min{δ̄1, δ̄2}), a1 > 0, and a2 > 0
such that, for all δ ∈ (0, δ̄), it holds∥∥∥∥

[
xt − x�

wt − h(xt)

]∥∥∥∥ ≤ a1

∥∥∥∥
[
x0 − x�

w0 − h(x0)

]∥∥∥∥ e−a2t

for all (x0, w0) ∈ D × R
m. �

Theorem 2.5 establishes a stability result for the system in (5),
which can be thought of as an interconnection of a fast and a
slow subsystem (for sufficiently small δ > 0). This is schemat-
ically illustrated in Fig. 1. To analyze this interconnection, we
study separately the simplified auxiliary systems (6) and (7).
For all x ∈ R

n, h(x) is a parametric equilibrium of the fast
subsystem; we can then fix the slow state xt = x into the fast
dynamics (5b), to obtain the so-called boundary layer system,
as pictorially shown in Fig. 2. This is the auxiliary system
described by (7), whose state ψt encodes the distance of the
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Fig. 1. Block diagram of the original interconnected system (5).

Fig. 2. Block diagram of the boundary layer system (7).

Fig. 3. Block diagram of the reduced system (6).

statewt of the fast subsystem from the equilibrium h(x), once x
is fixed. Existence of a Lyapunov-like function with properties
as in (8) ensures then that for all x ∈ R

n, the boundary layer
system is exponentially stable. Setting now wt = h(xt) for all
t ≥ 0 in (5a), i.e., considering the fast state at its parametric
equilibrium, we obtain the so-called reduced system, i.e., the
auxiliary system (6). This is schematically shown in Fig. 3.
Existence of a Lyapunov-like function with properties as in (8)
ensures then that x� is globally exponentially stable for the
reduced system. By properly combining these two Lyapunov
functions, Theorem 2.5 ensures that, for sufficiently small values
of δ, the point (x�, h(x�)) is globally exponentially stable for
the original interconnected system (5). The detailed proof is
provided in Section Section B of Appendix. We will show next
how our algorithms, namely Primal TRADES and Primal-Dual
TRADES, can be recast in the form of the interconnected system
(5) while satisfying all assumptions of Theorem 2.5, and hence
prove their convergence in Theorems 3.3 and 4.3, respectively,
provided in the next sections. Compared with traditional ap-
proaches, taking a singular perturbation view offers a novel proof
line for (generalized) equilibrium-seeking problems.

III. AGGREGATIVE GAMES OVER NETWORKS WITHOUT

COUPLING CONSTRAINTS

A. Primal TRADES

In this section, we introduce and analyze Primal
TRacking-based Aggregative Distributed Equilibrium Seeking
(TRADES), a fully distributed iterative NE seeking algorithm

for a special case of the aggregative game described by (1), i.e.,
where the local decision spaces are decoupled. Formally,

∀i ∈ I : min
xi∈Xi

Ji(xi, σ(x)) (10)

where Xi ⊆ R
ni , the local feasible set known to agent i only,

satisfies the following conditions.
Assumption 3.1: For all i ∈ I, the feasible set Xi is

nonempty, closed, and convex. �
Remark 3.2: The general structure of the aggregative variable

σ(x) in (2) can accommodate “soft” possibly nonlinear, coupling
constraints; these can be incorporated in the game (10) by
penalizing their residual in the players’ cost functions. �

Let xti ∈ R
ni be the strategy chosen by each agent i at it-

eration t ≥ 0. Taking its convex combination with a projected
pseudogradient step may be an effective way to steer each agent’s
strategy to the best response xi,br(σ−i(x

t
−i)). When applied to

problem (10), it reads as
xt+1
i = xti + δ

(
PXi

[
xti − γ∇xi

Ji(x
t
i, σ(x

t))
]− xti

)
(11)

where δ ∈ (0, 1) is a constant performing the combina-
tion and γ > 0 plays the role of the gradient step-size.
We point out that the chain rule and the definition of
σ(xt) [cf., (2)] lead to ∇xi

Ji(x
t
i, σ(x

t)) = ∇1Ji(x
t
i, σ(x

t)) +
∇φi(x

t
i)

N ∇2Ji(x
t
i, σ(x

t)). In our distributed setting, however,
agent i cannot access the global aggregate variable σ(xt). To
compensate for this lack of information, we rely on the locally
available φi(xti) and the auxiliary variable zti ∈ R

d. Thus, for
all i ∈ I, let the operator F̃i : R

ni × R
d → R

ni be defined as

F̃i(xi, s) := ∇1Ji(xi, s) +
∇φi(xi)
N

∇2Ji(xi, s)

and, in accordance, we modify the update (11) as

xt+1
i =xti+δ

(
PXi

[
xti − γF̃i

(
xti, φi(x

t
i) + zti

)]− xti

)
(12)

which can be directly implemented without violating the dis-
tributed nature of the algorithm. By comparing (11) and (12),
we note that the global term σ(xt) has been replaced by the
locally available proxy φi(xti) + zti . Therefore, if

zti → −φi(xti) + σ(xt) (13)
then the implementable law (12) coincides with the desired one
given in (11). Note that zti encodes the estimate of σ(xti)−
φi(x

t
i), i.e., the aggregate of all other agents’ strategies except

for the ith one. For this reason, we update each auxiliary variable
zti according to the following causal version of the perturbed av-
erage consensus scheme (see, e.g., [42], where a similar scheme
has been used to locally compensate the missing knowledge
of the global gradient of a distributed consensus optimization
problem):

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijφj(x
t
j)− φi(x

t
i). (14)

This is implementable in a fully distributed fashion since it
only requires communication with neighboring agents j ∈ Ni.
We report the whole algorithmic structure in Algorithm 1 and,
from now on, we will refer to it as Primal TRADES.

We note that Algorithm 1 requires the initialization z0i = 0
for all i ∈ I; we will discuss in the sequel the interpretation of
this particular initialization. The local update (15) leads to the
stacked vector form of Primal TRADES, namely

xt+1 = xt + δ
(
PX

[
xt − γF̃

(
xt, φ(xt) + zt

)]− xt
)
(16a)
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Algorithm 1: Primal TRADES (Agent i).

Initialization: x0i ∈ Xi, z
0
i = 0.

for t = 1, 2, . . . do

xt+1
i = xti + δ

(
PXi

[
xti − γF̃i

(
xti, φi(x

t
i) + zti

)]− xti

)
(15a)

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijφj(x
t
j)− φi(x

t
i). (15b)

end for

zt+1 = Wdz
t + (Wd − I)φ(xt) (16b)

with X :=
∏

i∈I Xi ⊆ R
n, Wd := W ⊗ Id ∈ R

Nd×Nd, zt :=
COL(z1,t, . . . , zN,t), φ(xt) := COL(φ1(x

t
1), . . . , φN (xtN )),

and F̃ (xt, φ(xt) + zt) := COL(F̃1(x
t
1, φ1(x

t
1) + zt1), . . . , F̃N

(xtN , φN (xtN ) + ztN )). We remark that, since F is μ-strongly
monotone (cf., Assumption 2.3) and X nonempty, closed,
and convex (cf., Assumption 3.1), there exists a unique
Nash equilibrium x� ∈ R

n for (10). Moreover, for such an
equilibrium it holds

x� = PX [x� − γF (x�)]

for any γ > 0, see [43, Ch. 12]. This result, in turn, guarantees
that x� = x� + δ(PX [x� − γF (x�)]− x�) for any δ > 0. We
establish next the properties of Primal TRADES in computing
the NE x� of problem (10).

Theorem 3.3: Consider the dynamics in (16) and Assump-
tion 3.1. There exist constants δ̄, γ̄, a1, a2 > 0 such that, for
any δ ∈ (0, δ̄), γ ∈ (0, γ̄) and (x0, z0) ∈ R

n+Nd such that
1�
N,dz

0 = 0, it holds∥∥xt − x�
∥∥ ≤ a1e

−a2t.

�
The proof of Theorem 3.3 relies on a singular perturbation

analysis of system (16), and will be given in the next section.

B. Proof of Theorem 3.3

We build the framework to prove Theorem 3.3 by analyzing
(16) under a singular perturbations lens. We therefore establish
the related proof in five steps: 1) Bringing (16) in the form of (5):
we leverage the initialization z0 so that 1�

N,dz
0 = 0 to introduce

coordinates z̄ ∈ R
d and z⊥ ∈ R

(N−1)d defined as[
z̄
z⊥

]
:=

[
1�
N,d

N
R�

d

]
z ⇒ z = 1N,dz̄ +Rdz⊥ (17)

where Rd ∈ R
Nd×(N−1)d with ‖Rd‖ = 1 is such that

RdR
�
d = I − 1N,d1

�
N,d

N
and R�

d 1N,d = 0. (18)

Then, by using the definition of z̄ given in (17), the associated
dynamics reads as

z̄t+1 =
1�
N,d

N
zt+1 (a)

=
1�
N,d

N
Wdz

t +
1�
N,d

N
(Wd − I)φ(xt)

(b)
=

1�
N,d

N
zt

(c)
=

1�
N,d

N

(
1N,dz̄

t +Rdz
t
⊥
) (d)
= z̄t (19)

where in (a) we exploit the update (16), in (b) we use the facts
that, in view of Standing Assumption 2.4, 1) 1�

N,dWd = 1�
N,d

and 2)1�
N,d(Wd − I) = 0, in (c)we rewrite zt according to (17),

and in (d) we use the fact that 1�
N,dRd = 0. Thus, (19) leads to

z̄t+1 ≡ z̄0 ≡ 0 for all t ≥ 0, where the last equality follows by
the initialization 1�

N,dz
0 = 0 and the definition of z̄ [cf., (17)].

We are thus entitled to ignore the null dynamics of z̄t and,
according to (17), we equivalently rewrite (16) as

xt+1 = xt+δ
(
PX [xt − γF̃ (xt, φ(xt) +Rdz

t
⊥)]− xt

)
(20a)

zt+1
⊥ = R�

dWdRdz
t
⊥ +R�

d (Wd − I)φ(xt). (20b)
For all t ≥ 0, the interconnected system (20) can thus be ob-
tained from (5) by setting

wt := zt⊥

f(xt, wt) := PX

[
xt − γF̃ (xt, φ(xt) +Rdw

t)
]
− xt

g(wt, xt) := R�
dWdRdw

t +R�
d (Wd − I)φ(xt). (21)

In particular, we refer to the subsystem (20a) as the slow system,
while we refer to (20b) as the fast one.

2) Equilibrium function h : Under the expression for RdR
�
d

in (18) and since W is doubly stochastic (cf., Standing Assump-
tion 2.4) notice that for all xt = x ∈ R

n,
z⊥ = h(x) := −R�

d φ(x) (22)
constitutes an equilibrium of (20b). Since R�

dWdRd is Schur in
view of Standing Assumption 2.4, we interpret (20b) as a strictly
stable linear system with nonlinear input R�

d (Wd − I)φ(xt)
parametrizing the equilibrium of the subsystem. The role of γ
is to slow down the variation of xt so that z⊥ always remains
close to the parametrized equilibrium h(xt).

3) Boundary layer system and satisfaction of (8): the so-called
boundary layer system associated with (20) can be constructed
by fixing xt = x for all t ≥ 0, for some arbitrary x ∈ R

n in
(20b), and rewriting it according to the error coordinates z̃t :=
zt⊥ − h(x). Using (18), we obtain that

z̃t+1 = R�
dWdRdz̃

t. (23)
Notice that the latter is in the form of (7) with ψ = z̃t, and
g(ψ + h(x), x)− h(x) = R�

dWdRdz̃
t. The next lemma pro-

vides a Lyapunov function for (23).
Lemma 3.4: Consider system (23). Then, there exists a con-

tinuous functionU : R(N−1)d → R satisfying (8) with z̃ in place
of ψ. �

4) Reduced system and satisfaction of (9): the so-called re-
duced system can be obtained by plugging into (20a) the fast
state at its steady-state equilibrium, i.e., we consider zt = h(xt)
for all t ≥ 0. We thus have

xt+1 = xt + δ
(
PX

[
xt − γF̃ (xt, φ(xt) +Rdh(x

t))
]
− xt

)
.

(24)
Due to (18) we have that F̃ (xt, φ(xt) +Rdh(x

t)) =

F̃ (xt,1N,dσ(x
t)) = F (xt), so (24) is equivalent to

xt+1 = xt + δ
(
PX

[
xt − γF (xt)

]− xt
)
. (25)

The next lemma provides a Lyapunov function for (24).
Lemma 3.5: Consider system (24). Let x� ∈ R

n be such that
f(x�, h(x�)) = 0 with f defined as in (21). Then, there exist a
continuous function W : Rn → R and γ̄, δ̄2 > 0 such that, for
any γ ∈ (0, γ̄) and δ ∈ (0, δ̄2), W satisfies (9). �

5) Lipschitz continuity of f , g and h: as we will be invoking
Theorem 2.5, we need to ensure that the Lipschitz continuity
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assumptions required by the theorem are satisfied. In particular,
we requiref and g in (21) to be Lipschitz continuous with respect
to both arguments and h in (22) to be Lipschitz continuous with
respect to x.

Lipschitz continuity of f follows by the fact that ∇Ji is Lips-
chitz continuous due to Standing Assumption 2.3. To show Lip-
schitz continuity of g in (21) notice that for allw,w′ ∈ R

(N−1)d

and all x, x′ ∈ R
n,∥∥R�

dWdRd(w − w′) +R�
d (Wd − I)(φ(x)− φ(x′))

∥∥
≤ ∥∥R�

dWdRd

∥∥ ‖w − w′‖+ β3
∥∥R�

d (Wd − I)
∥∥ ‖x− x′‖

where the inequality is due to triangle inequality and the fact
that by Standing Assumption 2.3, φ is Lipschitz continuous with
Lipschitz constant β3. To show Lipschitz continuity of h, notice
that for all x, x′ ∈ R

n,

‖h(x)− h(x′)‖ ≤ β3‖Rd‖ ‖x− x′‖ = β3 ‖x− x′‖
where the inequality follows from (22) and Lipschitz continuity
of φ, while the equality from the fact that ‖Rd‖ = 1.

By combining Lemmas 3.4 and 3.5 with the Lipschitz con-
ditions expressed above, Theorem 2.5 can therefore be applied.
Thus, there exists δ̄ ∈ (0, δ̄2) so that (x�, h(x�)) is an exponen-
tially stable equilibrium for (20).

IV. GNE PROBLEMS IN AGGREGATIVE FORM

A. Primal-Dual TRADES

In this section, we introduce the Primal-Dual TRADES algo-
rithm, i.e., a distributed iterative methodology to find a GNE in
aggregative games with affine coupling constraints as formalized
in (1).

In addition to the assumptions made in Section II, we need
some further conditions for our mathematical developments.

Assumption 4.1 (Feasibility): The set C is nonempty. �
Note that the condition C �= ∅ is weaker than Slater’s con-

straint qualification required by many results in the literature.
However, to establish linear convergence of our distributed al-
gorithm, we will enforce an additional assumption on the matrix
A (see Assumption 4.2). Consider the following variational
inequality, defined by the mapping F in (4) over the domain
C:

F (x�)�(x− x�) ≥ 0, for all x ∈ C. (26)

It is known that every point x� ∈ C for which (26) holds is
a GNE of the game (1) and, specifically, a variational GNE
(v-GNE) (cf. [3, Th. 3.9]). The converse, however, does not hold
in general. However, sinceF is strongly monotone (cf., Standing
Assumption 2.3) and C is nonempty (cf., Assumption 4.1),
closed and convex (since the constraint are in the formAx ≤ b),
[43, Prop. 1.4.2 and Th. 2.3.3] guarantee that a unique v-GNE
exists, and this satisfies (26).

In the following, we devise an iterative algorithm that asymp-
totically returns the (unique) v-GNE of (1). Inspired by Qu and
Li [39], where an augmented primal-dual scheme was used for
continuous-time, centralized optimization, we require the fol-
lowing additional condition on the matrixA, which characterizes
the coupling constraints [cf., (1b)].

Assumption 4.2 (Full-row rank): There exist κ1, κ2 > 0 such
that κ1Im � AA� � κ2Im. �

We note that Assumption 4.2 imposes, as a necessary condi-
tion, the fact that m ≤ n, i.e., that the number of constraints is

at most equal to the total number of components of the global
strategy vector.

Following [39], for all i ∈ I we consider the augmented
Lagrangian function Li : R

n × R
m → R defined as

Li(x, λ) := Ji(xi, σ(x)) +

m∑
�=1

H�([Ax− b]�, [λ]�)︸ ︷︷ ︸
=:H(Ax−b,λ)

(27)

where

H�([Ax− b]�, [λ]�) :={
[Ax− b]�[λ]� +

ρ
2 ([Ax− b]�)

2 if ρ[Ax− b]� + [λ]� ≥ 0
− 1

2ρ [λ]
2
� if ρ[Ax− b]� + [λ]� < 0

with λ ∈ R
m being the multiplier associated with the coupling

constraints, and ρ > 0 a constant. We therefore address the
v-GNE seeking problem by obtaining a saddle point of (27)
through the discrete-time dynamics:

xt+1
i =xti−δ

(∇xi
Ji(x

t
i, σ(x

t))+∇xi
H(Axt−b, λt)

)
(28a)

λt+1=λt + δ∇λH(Axt − b, λt) (28b)

where xti and δ have the same meaning as in (11), λt ∈ R
m is

the multiplier at t ≥ 0, and the explicit form of the gradients
∇xi

H(Axt − b, λt) and ∇λH(Axt − b, λt) reads as

∇xi
H(Axt − b, λt) =

m∑
�=1

∇xi
H�([Ax

t − b]�, [λ
t]�)

=

m∑
�=1

max
{
ρ[Axt − b]� + [λt]�, 0

}
[Ai]

�
� (29a)

∇λH(Axt − b, λt) =

m∑
�=1

∇λH�([Ax
t − b]�, [λ

t]�)

=

m∑
�=1

1

ρ
e�(max

{
ρ[Axt − b]� + [λt]�, 0

}− [λt]�) (29b)

where e� ∈ R
m is the 
th vector of the canonical basis of Rm,


 ∈ {1, . . . ,m}. The stacked-column form of (28) is

xt+1 = xt − δ
(
F (x) +∇xH(Axt − b, λt)

)
(30a)

λt+1 = λt + δ∇λH(Axt − b, λt) (30b)

where ∇xH(Axt − b, λt) := COL(∇x1
H(Axt − b, λt), . . . ,

∇xN
H(Axt − b, λt)). By computing the KKT conditions of

the VI (26) and using [39, Prop. 1], we obtain that the v-GNE
x� and the corresponding (unique) optimal multiplier λ� ∈ R

m

are such that

0 = F (x�) +∇xH(Ax� − b, λ�) (31a)

0 = ∇λH(Ax� − b, λ�). (31b)

The above result ensures that COL(x�, λ�) represents an equilib-
rium point of (30) for any δ > 0.

However, since agent i does not have access neither to σ(xt)
nor to Axt − b, the scheme in (28) cannot be directly imple-
mented. Moreover, dynamics (28) requires a central unit that
can compute the global quantity Axt − b and communicate the
multiplier λt to all the agents. For this reason, in Algorithm 2
we introduce for all i ∈ I 1) two additional variables zi ∈ R

d

and yi ∈ R
m to compensate the local unavailability of σ(xt) and

Axt − b, respectively, 2) a local copy λi ∈ R
m of the multiplier
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λ, and 3) an additional averaging step to enforce consensus
among the multipliers λi [cf., (33b)–(33d)]. As already done
in (14), we choose causal perturbed consensus dynamics to
update zi and yi. For all i ∈ I, we then introduce operators
Gx,i : R

m × R
m → R

ni and Gλ,i : R
m × R

m → R
m as

Gx,i(s1, s2) :=
m∑
�=1

max{ρ[s1]� + [s2]�, 0}[Ai]
�
�

Gλ,i(s1, s2) :=
1

ρ

m∑
�=1

(max{ρ[s1]� + [s2]�, 0} − [s2]�) e�.

(32)
In Algorithm 2, these operators encode the component of

the gradients in (29) available to agent i at iteration t, plus the
auxiliary variable yti that is used to trackAxt − b (see (33a) and
(33b) in Algorithm 2). The steps of the proposed method are
hence summarized in Algorithm 2 from the perspective of agent
i, which is then referred to as Primal-Dual TRADES. Note that
all the quantities involved in the agent’s calculations are purely
local, thus making Algorithm 2 fully distributed.

Algorithm 2 Primal-Dual TRADES (Agent i)

Initialization: x0i ∈ Xi, λ
t
i ∈ R

m
+ , z

0
i = 0, y0i = 0.

for t = 0, 1, . . . do

xt+1
i = xti − δF̃i(x

t
i, φi(x

t
i) + zti)

− δGx,i(N(Aix
t
i − bi) + yti , λ

t
i) (33a)

λt+1
i =

∑
j∈Ni

wijλ
t
j + δGλ,i(N(Aix

t
i − bi) + yti , λ

t
i)

(33b)

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijφj(x
t
j)− φi(x

t
i) (33c)

yt+1
i =

∑
j∈Ni

wijy
t
j +

∑
j∈Ni

wijN(Ajx
t
j − bj)

−N(Aix
t
i − bi) (33d)

end for

Differently from customary primal-dual schemes, (33b) does
not need the projection over the positive orthant R

m
+ due to

the chosen augmented Lagrangian functions Li (27). We only
need to initialize λ0

i ≥ 0 for all i ∈ I, and choose δ and ρ
appropriately so that we avoid situations, where λt

i ≥ 0 implies
λt+1
i < 0. To see this notice first that if λt

i = 0, then it is easy
to checkGλ,i(N(Aix

t
i − bi) + yti , λ

t
i) ≥ 0 and, thus, λt+1

i ≥ 0.
The critical scenario for agent i occurs when all the multipliers
of its neighbors are zero, namely λt

j = 0 for all j ∈ Ni, and
when max{ρ[N(Aix

t
i − bi) + yti ]� + [λt

i]�, 0} = 0 for at least
one 
 ∈ {1, . . . ,m}. Indeed, specializing (33b) for this case
leads to the following update of that 
th component of λt

i:

[λt+1
i ]� =

(
wii − δ

ρ

)
[λt

i]�. (34)

From (34), we conclude that [λt+1
i ]� remains nonnegative if [λt

i]�
is nonnegative, thus alleviating the need for a projection, as long
as δ and ρ satisfy wii > δ/ρ. This feature plays a key role in
proving exponential stability properties for the continuous-time,

centralized primal-dual scheme proposed in [39]. As in the case
without coupling constraints, the purpose of the initialization
step will become clear in the next section. The steps of Algorithm
2 in (33) can be compactly written as

xt+1 = xt + δfx(x
t, λt, zt, yt) (35a)

λt+1 = Wmλt + δGλ(N(Āxt − b̄) + yt, λt) (35b)

zt+1 = Wdz
t + (Wd − I)φ(xt) (35c)

yt+1 = Wmy
t + (Wm − I)N(Āxt − b̄) (35d)

where fx : Rn × R
Nm × R

Nd × R
Nm → R

n is defined as

fx(x, λ, z, y) := −F̃ (x, φ(x) + z)−Gx(N(Āx− b̄) + y, λ)

and, similarly to (16), λ : COL(λ1, . . . , λN ), Wd := W ⊗
Id, Wm := W ⊗ Im, Gx(N(Āxt − b̄) + yt, λt) :=
COL(Gx,1(N(A1x

t
1 − b1) + yt1, λ

t
1), . . . , Gx,N (N(ANx

t
N −

bN ) + ytN , λ
t
N )), and Gλ(N(Āxt − b̄) + yt, λt) :=

COL(Gλ,1(N(A1x
t
1 − b1) + yt1, λ

t
1), . . . , Gλ,N (N(ANx

t
N −

bN ) + ytN , λ
t
N )). Next, we establish the convergence properties

of Primal-Dual TRADES in computing the v-GNE of (1).
Theorem 4.3: Consider 35 and Assumptions 4.1 and 4.2. Let

(x0, λ0, z0, y0) ∈ X × R
Nm
+ × R

Nd × R
Nm satisfy 1�

N,dz
0 =

0 and 1�
N,my

0 = 0. Then, there exist δ̄, a1, a2 > 0 such that, for
any δ ∈ (0, δ̄), with wii >

δ
ρ for all i ∈ {1, . . . , N}, it holds∥∥xt − x�
∥∥ ≤ a1e

−a2t.

�
Note that the additional condition wii > δ/ρ needs to be

satisfied by δ, given ρ, to ensure the dual variables remain
nonnegative, as discussed below (34). As in the case of NE
seeking without coupling constraints, the proof of Theorem 4.3
relies on a singular perturbations analysis of system (35). We
provide this in the next section.

B. Proof of Theorem 4.3

As with the proof of Theorem 3.3, we show that the setting of
Theorem 4.3 fits the framework of Theorem 2.5, and organize
its proof in five steps.

1) Bringing (35) in the form of (5): we introduce the change
of coordinates[

z̄t

zt⊥

]
=

[
1�
N,d

N
R�

d

]
zt,

[
ȳt

yt⊥

]
=

[
1�
N,m

N
R�

m

]
yt

[
λ̄t

λt
⊥

]
=

[
1�
N,m

N
R�

m

]
λt (36)

where Rd ∈ R
Nd×(N−1)d, R�

dRd = I , Rm ∈ R
Nm×(N−1)m,

R�
dRd = I , ‖Rd‖ = 1, ‖Rm‖ = 1, and

RdR
�
d = I − 1N,d1

�
N,d

N
, RmR

�
m = I − 1N,m1�

N,m

N
. (37)

As in the proof of Theorem 4.3, we use the initialization
1�
N,dz

0 = 0 and 1�
N,my

0 = 0 to ensure that z̄t = 0 and ȳt = 0
for all t ≥ 0. In view of (36), we can therefore rewrite (35) by
ignoring the dynamics of z̄t and ȳt, thus obtaining the system

χt+1 = χt + δf(χt, wt) (38a)

wt+1 = Swt +K(δ)u(χt) (38b)
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in which

χt :=

[
xt

λ̄t

]
, wt :=

⎡
⎣λt

⊥
zt⊥
yt⊥

⎤
⎦ (39a)

f(χt, wt)

:=

[
fx(x

t,1N,mλ̄t +Rmλt
⊥, Rdz

t
⊥, Rmy

t
⊥)

1�
N,m

N Gλ(N(Āxt − b̄) +Rmy
t
⊥,1N,mλ̄t +Rmλt

⊥)

]
(39b)

S :=

⎡
⎣R�

mWmRm 0 0
0 R�

dWdRd 0
0 0 R�

mWmRm

⎤
⎦ (39c)

K(δ) :=

⎡
⎣δR�

m 0 0
0 R�

d (Wd − I) 0
0 0 R�

m(Wm − I)

⎤
⎦ (39d)

u(χt) :=

⎡
⎣Gλ(N(Āxt − b̄) +Rmy

t
⊥,1N,mλ̄t +Rmλt

⊥)
φ(xt)

N(Āxt − b̄)

⎤
⎦ .

(39e)
We view (38) as a singularly perturbed system, namely the

interconnection between the slow dynamics (38a) and the fast
one (38b). Indeed, system (38) can be obtained from (5) by
considering χt as the state of (5a) and setting

g(χt, wt, δ) := Swt +K(δ)u(χt). (40)

2) Equilibrium function h: Under the double stochasticity con-
dition of W , due to Standing Assumption 2.4, and using (37),
for all χt = χ,

h(χ) :=

⎡
⎣ 0

−R�
d φ ([ In 0 ]χ)

−R�
mN

(
Ā [ In 0 ]χ− b̄

)
⎤
⎦ (41)

constitutes an equilibrium of (38b) (parametrized by χ).
3) Boundary layer system and satisfaction of (8): the so-called

boundary layer system associated with (38) can be constructed
by fixingχt = χ = COL(x, λ̄) for some arbitrary (x, λ̄) ∈ R

n ×
R

m, and rewriting it according to the error coordinates w̃ :=
COL(λ̃⊥, z̃⊥, ỹ⊥) := w − h(χ). Using (37), we then obtain that

w̃t+1 = Sw̃t + δũ(χ, w̃t) (42)

where

ũ(χ, w̃t)

:=

⎡
⎣ R�

mGλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄ +Rmλ̃t

⊥
)

0
0

⎤
⎦.

The next lemma provides a Lyapunov function for (42).
Lemma 4.4: Consider system (42). Then, there exists a con-

tinuous function U : R(N−1)(2m+d) → R and δ̄1 > 0 such that,
for any δ ∈ (0, δ̄1), U satisfies (8) with w̃ in place of ψ. �

4) Reduced system and satisfaction of (9): the so-called re-
duced system can be obtained by considering the fast dynamics
in (38a) at steady state, i.e., wt = h(χt) for all t ≥ 0. We thus
have

χt+1 = χt + δf(χt, h(χt)). (43)

Let us expand (43). Using (37), we obtain

xt+1 = xt − δF̃
(
xt,1N,dσ(x

t)
)

− δGx

(
1N,m(Axt − b),1N,mλ̄t

)
(44a)

λ̄t+1 = λ̄t + δ
1�
N,m

N
Gλ

(
1N,m(Axt − b),1N,mλ̄t

)
. (44b)

Notice that

F̃ (x,1N,dσ(x)) = F (x)

Gx

(
1N,m(Axt − b),1N,mλ̄t

)
= ∇xH(Axt − b, λ̄t)

and also
1�
N,m

N
Gλ

(
1N,m(Axt − b),1N,mλ̄t

)
= ∇λH(Axt − b, λ̄t).

Therefore, (43) is identical to the original update (30). Given
the unique v-GNE x� of (30) (see Assumptions 4.1, 4.2) and
the associated multiplier λ� ∈ R

m, the next lemma provides a
Lyapunov function for (43), hence for (30).

Lemma 5.5: Consider system (43) and Assumptions 4.1, 4.2.
Then, there exist a continuous functionW : Rn+m → R, δ̄ > 0
such that, for any δ ∈ (0, δ̄), W satisfies (9) with χ in place of
x. �

5) Lipschitz continuity of f , g, and h: As we will be invoking
Theorem 2.5, we need to ensure that the required Lipschitz
properties are satisfied. In particular, we need to show that f , g
in (39b) and (40), respectively, and h in (41) are Lipschitz with
respect to their arguments. This is guaranteed by the Lipschitz
continuity of the aggregation rules and the gradients of the
cost functions (cf., Standing Assumption 2.3), and the Lipschitz
continuity of Gx and Gλ (that appear in f and g), which is
ensured as shown in (64) within the proof of Lemma 4.4.

By combining Lemmas 4.4 and 4.5 with the Lipschitz con-
tinuity properties expressed above, we can apply Theorem 2.5.
Then, there exists δ̄ ∈ (0,min(δ̄1, δ̄2)) so that, for any δ ∈ (0, δ̄),
COL(x�, λ�, h(x�, λ�)) is an exponentially stable equilibrium
point for (38).

V. NUMERICAL EXAMPLES

We demonstrate the efficacy of Primal TRADES and Primal-
Dual TRADES and compare them with the most closely related
distributed equilibrium-seeking algorithms from the literature.
First, we consider the case with local constraints only, and
then we focus also on problems with coupling constraints. In
both cases, we performed Monte Carlo simulations consisting
of 25 trials. In each trial, we randomly generate the problem
parameters, the graph of the network, and the initial conditions
of the algorithms’ variables.

A. Example Without Coupling Constraints

In this section, we consider an instance of problem (10) and
perform numerical simulations in which we compare Primal
TRADES with Algorithm 2 proposed in [33] and Algorithm 4
proposed in [38]. We consider the multiagent demand response
problem considered in [33]. ConsiderN loads whose electricity
consumption xi := COL(xi,1, . . . , xi,T ) ∈ R

T with T ∈ N has
to be chosen to solve

∀i ∈ I : min
xi∈Xi

ρi ‖xi − ûi‖2 + (λσ(x) + p0)
�xi

where ûi ∈ R
T denotes some nominal energy profile, ρi > 0 is a

constant weighting parameter, and the term λσ(x) + p0 with λ ∈
R, p0 ∈ R

T models the unit price which is taken to be an affine
increasing function of the aggregate (average) energy demand
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Fig. 4. Mean and 1-standard deviation band (based on Monte Carlo
simulations) of the normalized distance of the iterates from the NE
achieved by Primal TRADES (Algorithm 1), the algorithm by [33], and
the algorithm by [38] on a case study introduced in [33].

σ(x) = (1/N)
∑

i∈I xi. As for the local feasible set Xi ⊆ R
T ,

for all i ∈ I, we pick

Xi :=

{
xi∈R

T | si,τ+1(xi)∈Si and xi,τ ∈Ui ∀τ ∈ {1, . . . , T}

T∑
τ=1

xi,τ =

T∑
τ=1

ûi,τ

}
where Ui ⊆ R, Si ⊆ R, and si,τ (xi) is the state of the ith load
at time τ ; this, given the parameters ai, bi ∈ R, is computed
according to the linear dynamics

si,τ = aτ−1
i si,1 +

τ−1∑
k=1

ak−1bixi,τ−k

where si,1 ∈ Si is the initial condition of the state of the ith
load. To instantiate the problem, we set T = 24 and randomly
generate values for ûi, ρi, λ, p0, ai, bi, si,1 and initial strategies
xi,1 from uniform distributions. As for the sets Ui and Si, we
pick the intervals [0,1] and [0,10], respectively. We consider a
network with N = 10 players communicating according to an
undirected, connected Erdos–Rényi graph with parameter 0.3.

This setting satisfies our standing assumptions. We compare
our scheme, namely, Primal TRADES with [33, Algorithm 2]
and [38, Algorithm 4]. We empirically tune the former with
v1 = v2 = 20 communication rounds per iterate and update the
auxiliary variable zt according to zt+1 = (1− λ)zt + λAv1,v2

with λ = 0.01 (the quantity Av1,v2
is a proxy for the unavail-

able aggregative variable σ(x), see [33] for more details). We
empirically tuned the method by Bianchi et al. [38] choosing
α = 0.1,β = 1, and τi = 0.1 for all i ∈ I. As for the parameters
of our scheme, we set δ = 0.5 and γ = 0.001. Fig. 4 shows the
evolution of the normalized distance ‖xt − x�‖/‖x�‖ from the
NE x� as the communication rounds (corresponding to itera-
tions) progress. Our algorithm exhibits faster convergence and
achieves higher accuracy in the calculation of the equilibrium
x� with respect to the method in [33], while it turns out to be
slower than the algorithm in [38]. This was anticipated as 1) the
method in [33] is not guaranteed to converge to the exact NE (see
Table I) and 2) the method in [38] is based on proximal-based
updates which are known to exhibit faster behavior compared to
gradient-based updates, but are computationally more intensive
due to the proximal operator involved. In Table III, we provide a
numerical comparison of the considered methods in terms of the
mean and standard deviation based on Monte Carlo simulations
of the time needed to perform a single iterate. As expected,

Fig. 5. Mean and 1-standard deviation band (based on Monte Carlo
simulations) of the normalized distance of the iterates from the GNE
achieved by Primal-Dual TRADES (Algorithm 2), and the algorithms
by [36], [37], and [38].

Primal TRADES turns out to be much lighter than the other
algorithms from a computational point of view. The simulations
have been executed on MATLAB, using FMINCON() to solve the
optimization steps involved in the methods by [33] and [38].

B. Example With Coupling Constraints

Here, we compare our Primal-Dual TRADES algorithm with
the distributed methods proposed in [36], [37], and [38]. For
a fair comparison, we test the scheme by [36] with a constant
step-size even if convergence was theoretically proven only with
a diminishing one (see Table II); note that slower convergence
is expected by using a diminishing step-size. We focus on a case
study inspired by Li et al. [16]—where it was addressed within
a cooperative scenario—and adapt it as an instance of (1). In
particular, we consider the cost function

Ji(xi, σ(x)) =
1

2
‖xi − pi‖2 + w

2
‖xi − σ(x)‖

where w > 0 and pi ∈ R
ni for all i ∈ I, while σ(x) =

1
N

∑
i∈I xi. We consider a communication graph with ring

topology. As for the coupling constraints, in each trial of the
Monte Carlo simulations, we randomly generate each Ai and
bi by imposing the full row rank property for the former (cf.
Assumption 4.2) and extracting the latter from the interval
[0,100] with a uniform probability; we set N = 20, ni = 2.
Moreover, in each trial, we uniformly randomly extract each
pi and w from [0, 100]2 and [0,1], respectively. We empirically
tune the algorithm in [36] with αi = βi = 0.5 for all i ∈ I, and
γt = 0.1 for all t ≥ 0. As for the parameters of the method
in [37], we empirically choose c = 1,k = 0.1, τ = 0.2,α = 0.2,
and v = 0.1. The algorithm in [38] has been empirically tuned
setting α = 0.3, β = 0.1, τi = 0.3 and δi = 0.3 for all i ∈ I.
Finally, as for the parameters of our algorithm, we empirically
tune them as δ = 0.05 and ρ = 0.1. In Fig. 5, we compare the
performance of the algorithms in [36], [37], and [38] with Al-
gorithm 2 in terms of the normalized distance ‖xt − x�‖/‖x�‖
from the GNEx�. In this case, the proposed scheme outperforms
the others in terms of accuracy and convergence speed.

VI. CONCLUSION AND OUTLOOK

We propose two novel fully distributed algorithms for (gener-
alized) equilibrium seeking in aggregative games over networks.
The first algorithm is designed to address the case where only
local constraints are present. The second method does not in-
volve local constraints, however, it allows handling coupling
constraints, thus encompassing GNE problems. Both schemes
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are studied by means of singular perturbations analysis in which
slow and fast dynamics are identified and separately investigated
to demonstrate the linear convergence of the whole intercon-
nection to the (generalized) Nash equilibrium. Current work
concentrates on extending our analysis line to allow for local
constraint sets, either in a hard manner or by means of dual-
izing these and satisfying them asymptotically. An additional
aspect worth of investigation is the possibility of time-varying
communication patterns among the agents. Finally, we perform
detailed numerical simulations showing the effectiveness of
the proposed methods and that they outperform state-of-the-art
distributed methods.

APPENDIX A

A. Q-Linear Rate

Here, we report the definition of Q-linear convergence [44,
App. A.2]. For the sake of readability, in the rest of the document,
we omit the prefix Q.

Definition A.1: Let {xt} be a sequence in R
n that converges

to x� ∈ R
n. We say that the convergence is Q-linear if there is

a constant r ∈ (0, 1) such that∥∥xt+1 − x�
∥∥

‖xt − x�‖ ≤ r

for all t sufficiently large. �

B. Proof of Theorem 2.5

Let w̃t := wt − h(xt) and accordingly rewrite (5) as

xt+1 = xt + δf(xt, w̃t + h(xt)) (45a)

w̃t+1 = g(w̃t+h(xt), xt, δ)−h(xt)+Δh(xt+1, xt) (45b)

where Δh(xt+1, xt) := −h(xt+1) + h(xt). Pick W as in (9).
By evaluatingΔW (xt) :=W (xt+1)−W (xt) along the trajec-
tories of (45a), we obtain

ΔW (xt) =W (xt + δf(xt, w̃t + h(xt)))−W (xt)

(a)
= W (xt + δf(xt, h(xt)))−W (xt)

+W (xt + δf(xt, w̃t + h(xt)))

−W (xt + δf(xt, h(xt)))

(b)

≤ − δc3
∥∥xt−x�∥∥2 +W (xt+δf(xt, w̃t + h(xt)))

−W (xt + δf(xt, h(xt)))

(c)

≤ − δc3
∥∥xt − x�

∥∥2 + 2δc4Lf

∥∥w̃t
∥∥ ∥∥xt − x�

∥∥
+ δ2c4Lf

∥∥w̃t
∥∥ ∥∥f(xt, w̃t + h(xt))

∥∥
+ δ2c4Lf

∥∥w̃t
∥∥ ∥∥f(xt, h(xt))∥∥ (46)

where in (a) we add and subtract the term W (xt +
δf(xt, h(xt))), in (b) we exploit (9b) to bound the difference of
the first two terms, in (c) we use (9c), the Lipschitz continuity of
f , and the triangle inequality. By recalling that f(x�, h(x�)) = 0
we can thus write

‖f(xt, w̃t + h(xt))‖ =
∥∥f(xt, w̃t + h(xt))− f(x�, h(x�))

∥∥

(a)

≤ Lf

∥∥xt − x�
∥∥+ Lf

∥∥w̃t + h(xt)− h(x�)
∥∥

(b)

≤ Lf (1 + Lh)
∥∥xt − x�

∥∥+ Lf

∥∥w̃t
∥∥ (47)

where in (a) we use the Lipschitz continuity of f and h, and
in (b) we use the Lipschitz continuity of h together with the
triangle inequality. With similar arguments, we have∥∥f(xt, h(xt))∥∥ ≤ Lf (1 + Lh)

∥∥xt − x�
∥∥ . (48)

Using inequalities (47) and (48), we then bound (46) as

ΔW (xt) ≤ − δc3
∥∥xt − x�

∥∥2 + 2δc4Lf

∥∥w̃t
∥∥ ∥∥xt − x�

∥∥
+ δ2c4L

2
f

∥∥w̃t
∥∥2

+ 2δ2c4L
2
f (1 + Lh)

∥∥w̃t
∥∥ ∥∥xt − x�

∥∥
≤ − δc3

∥∥xt − x�
∥∥2 + δ2k3

∥∥w̃t
∥∥2

+ (δk1 + δ2k2)
∥∥w̃t

∥∥ ∥∥xt − x�
∥∥ (49)

where we introduce the constants

k1 := 2c4Lf , k2 := 2c4L
2
f (1 + Lh), k3 := c4L

2
f .

We now pick U as in (8). By evaluating ΔU(w̃t) :=
U(w̃t+1)− U(w̃t) along the trajectories of (45b), we obtain

ΔU(w̃)

=U(g(w̃t + h(xt), xt, δ)−h(xt) + Δh(xt+1, xt))− U(w̃t)

(a)

≤ U(g(w̃t + h(xt), xt, δ)− h(xt))− U(w̃t)

− U(g(w̃t + h(xt), xt, δ)− h(xt))

+ U(g(w̃t + h(xt), xt, δ)− h(xt) + Δh(xt+1, xt))

(b)

≤ −b3
∥∥w̃t

∥∥2 − U(g(w̃t + h(xt), xt, δ)− h(xt))

+ U(g(w̃t + h(xt), xt, δ)− h(xt) + Δh(xt+1, xt))

(c)

≤ −b3
∥∥w̃t

∥∥2
+ b4

∥∥Δh(xt+1, xt)
∥∥

× ∥∥g(w̃t + h(xt), xt, δ)− h(xt) + Δh(xt+1, xt)
∥∥

+ b4
∥∥Δh(xt+1, xt)

∥∥ ∥∥g(w̃t + h(xt), xt, δ)− h(xt)
∥∥

(d)

≤ −b3
∥∥w̃t

∥∥2 + b4
∥∥Δh(xt+1, xt)

∥∥2
+ 2b4

∥∥Δh(xt+1, xt)
∥∥∥∥g(w̃t+h(xt), xt, δ)−h(xt)∥∥ (50)

where in (a) we add and subtract U(g(w̃t + h(xt), xt, δ)−
h(xt)), in (b) we exploit (8b) to bound the first two terms, in
(c) we use (8c) to bound the difference of the last two terms,
and (d) uses the triangle inequality. By using the definition of
Δh(xt+1, xt) and the Lipschitz continuity of h, we write∥∥Δh(xt+1, xt)

∥∥ ≤ Lh

∥∥xt+1 − xt
∥∥

(a)

≤ δLh

∥∥f(xt, w̃t + h(xt))
∥∥

(b)

≤ δLh

∥∥f(xt, w̃t + h(xt))− f(x�, h(x�))
∥∥
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(c)

≤ δLhLf (1+Lh)
∥∥xt−x�∥∥+δLhLf

∥∥w̃t
∥∥

(51)

where in (a) we use the update (45a), in (b) we add the term
f(x�, h(x�)) since this is zero, and in (c) we use the triangle
inequality and the Lipschitz continuity of f and h. Moreover,
since g(h(xt), xt, δ) = h(xt), we obtain∥∥g(w̃t + h(xt), xt, δ)− h(xt)

∥∥
=
∥∥g(w̃t + h(xt), xt, δ)−g(h(xt), xt, δ)∥∥≤Lg

∥∥w̃t
∥∥ (52)

where the inequality is due to the Lipschitz continuity of g. Using
inequalities (51) and (52), we then bound (50) as

ΔU(w̃)

≤ −b3
∥∥w̃t

∥∥2 + 2δb4LhLgLf (1 + Lh)
∥∥xt − x�

∥∥ ∥∥w̃t
∥∥

+ 2δb4LhLgLf

∥∥w̃t
∥∥2 + δ2b4L

2
hL

2
f (1 + Lh)

2
∥∥xt − x�

∥∥2
+2δ2b4L

2
hL

2
f (1+Lh)

∥∥xt−x�∥∥ ∥∥w̃t
∥∥+δ2b4L2

hL
2
f

∥∥w̃t
∥∥2

≤ (−b3 + δk6 + δ2k7)
∥∥w̃t

∥∥2 + δ2k8
∥∥xt − x�

∥∥2
+ (δk4 + δ2k5)

∥∥xt − x�
∥∥ ∥∥w̃t

∥∥ (53)

where we introduce the constants

k4 := 2b4LhLgLf (1 + Lh), k5 := 2b4L
2
hL

2
f (1 + Lh)

k6 := 2b4LhLgLf , k7 := b4L
2
hL

2
f

k8 := b4L
2
hL

2
f (1 + Lh)

2.

We pick the following Lyapunov candidate V : D × R
m → R:

V (xt, w̃t) =W (xt) + U(w̃t).

By evaluating ΔV (xt, w̃t) := V (xt+1, w̃t+1)−
V (xt, w̃t) = ΔW (xt) + ΔU(w̃t) along the trajectories of (45),
we can use the results (49) and (53) to write

ΔV (xt, w̃t) ≤ −
[ ‖xt − x�‖

‖w̃t‖
]�
Q(δ)

[ ‖xt − x�‖
‖w̃t‖

]
(54)

where we define the matrix Q(δ) = Q(δ)� ∈ R
2 as

Q(δ) :=

[
δc3 − δ2k8 q21(δ)
q21(δ) b3 − δk6 − δ2(k3 + k7)

]
with q21(δ) := − 1

2 (δ(k1 + k4) + δ2(k2 + k5)). By relying on
the Sylvester criterion [41], we know that Q � 0 if and only if

c3b3 > p(δ) (55)

where the polynomial p(δ) is defined as

p(δ) := q21(δ)
2 + δ2c3k6 + δ2(δc3(k3 + k7) + b3k8)

− δ3k6k8 − δ4k8(k3 + k7). (56)

We note that p is a continuous function of δ and limδ→0 p(δ) =
0. Hence, there exists some δ̄ ∈ (0,min{δ̄1, δ̄2})—recall that δ̄1
and δ̄2 exist as U and W are taken to satisfy (8) and (9)—so
that (55) is satisfied for any δ ∈ (0, δ̄). Under such a choice of
δ, and denoting by q > 0 the smallest eigenvalue of Q(δ), we
can bound (54) as

ΔV (xt, w̃t) ≤ −q
∥∥∥∥
[ ‖xt − x�‖
‖w̃t‖

]∥∥∥∥2

which allows us to conclude, in view of [45, Th. 13.2], that
(x�, 0) is an exponentially stable equilibrium point for sys-
tem (45). The theorem’s conclusion follows then by considering
the definition of exponentially stable equilibrium point and by
reverting to the original coordinates (xt, wt).

C. Proofs of Technical Lemmas of Section III-B

Proof of Lemma 3.4: System (23) is a linear autonomous sys-
tem whose state matrix R�

dWdRd ∈ R
(N−1)d×(N−1)d is Schur.

Hence, there exists P ∈ R
(N−1)d×(N−1)d, P = P� � 0 for the

candidate Lyapunov function U(z̃t) = (z̃t)�P z̃t, solving the
Lyapunov equation

(R�
dWdRd)

�PR�
dWdRd − P = −Q (57)

for any Q ∈ R
(N−1)d×(N−1)d, Q = Q� � 0. Condition (8a)

follows then from the fact that U is quadratic with P � 0 so
b1 and b2 can be chosen to be its minimum and maximum
eigenvalue, respectively. The left-hand side of (8b) becomes
(z̃t)�((R�

dWdRd)
�PR�

dWdRd − P )z̃t = −(z̃t)�Qz̃t, where
the equality is due to (57). Hence, (8b) is satisfied by taking b3
to be the smallest eigenvalue of Q. To see (8c), notice that∥∥U(z̃t1)− U(z̃t2)

∥∥ =
∥∥(z̃t1)�P z̃t1 − (z̃t2)

�P z̃t2
∥∥

(a)

≤ ∥∥(z̃t1)�P z̃t1 − (z̃t1)
�P z̃t2

∥∥+ ∥∥(z̃t2)�P z̃t1 − (z̃t2)
�P z̃t2

∥∥
(b)

≤ ‖P‖∥∥z̃t1 − z̃t2
∥∥ ∥∥z̃t1∥∥+ ‖P‖∥∥z̃t1 − z̃t2

∥∥ ∥∥z̃t2∥∥ (58)

where (a) follows from adding and subtracting (z̃t1)
�P z̃t2 and us-

ing the triangle inequality, while (b) from the Cauchy–Schwarz
inequality. The bound (8c) follows from (58) by setting b4 as the
largest eigenvalue of P .

We provide here the following technical lemma which is used
in the proof of Lemma 3.5.

Lemma A.2 (Contraction of strongly monotone operator):
Let F : Rn → R

n be μ-strongly monotone and L-Lipschitz
continuous. If γ ∈ (0, 2μ/L2), then for all x, x′ ∈ R

n it holds

‖x− γF (x)− x′ + γF (x′)‖ ≤ (1− μ̄) ‖x− x′‖
where μ̄ := 1−√1− γ(2μ− γL2) ∈ (0, 1].

Proof: We have that

‖x− γF (x)− x′ + γF (x′)‖2

= ‖x− x′‖2 + γ2 ‖F (x)− F (x′)‖2

− 2γ(x− x′)�(F (x)− F (x′))

(a)

≤ ‖x− x′‖2 − γ(2μ− γL2) ‖x− x′‖2 (59)

where in (a) we use the strong monotonicity and the Lips-
chitz continuity of F . By construction, μ̄ ∈ (0, 1] is equivalent
to γ(2μ− γL2) > 0 and γ(2μ− γL2) ≤ 1. The former holds
since γ ∈ (0, 2μ/L2). To see the latter, notice that, by definition
of μ-strong monotonicity and L-Lipschitz continuity, we have

μ ‖x− x′‖2 ≤ (F (x)− F (x′))�(x− x′)

≤ ‖F (x)− F (x′)‖ ‖x− x′‖ ≤ L ‖x− x′‖2
for all x, x′, hence μ ≤ L. Thus, for any γ, it holds that 1−
2μγ + γ2 L2 ≥ 1− 2γL+ γ2 L2 = (1− γL)2 ≥ 0.
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Proof of Lemma 3.5: pick W : Rn → R defined as

W (xt) =
1

2

∥∥xt − x�
∥∥2 .

Since W is a quadratic function, conditions (9a) and (9c) are
satisfied. To show (9b) we evaluate ΔW (xt) :=W (xt+1)−
W (xt) along (25). We then have

ΔW (xt)

= 1
2

∥∥(1− δ)xt+δ
(
PX

[
xt − γF (xt)

])−x�∥∥2− 1

2

∥∥xt−x�∥∥2
(a)

≤ (1− δ)2

2

∥∥xt − x�
∥∥2

− 1

2

∥∥xt − x�
∥∥2

+ (δ−δ2) ∥∥xt−x�∥∥∥∥∥∥PX

[
xt−γF (xt)]

− PX [x�−γF (x�)]
∥∥∥∥

+
δ2

2

∥∥PX

[
xt − γF (xt)

]− PX [x� − γF (x�)]
∥∥2

(b)

≤ (1− δ)2

2

∥∥xt − x�
∥∥2 − 1

2

∥∥xt − x�
∥∥2

+ (δ − δ2)
∥∥xt − x�

∥∥ ∥∥xt − γF (xt)− x� + γF (x�)
∥∥

+
δ2

2

∥∥xt − γF (xt)− x� + γF (x�)
∥∥2 (60)

where in (a) we introduce δ(x� − PX [x� − γF (x�)]) within
the first norm, as this is zero due to the definition of x�,
expand the square, and use the Cauchy–Schwarz inequality.
Inequality (b) follows by the fact that for all a, b, we have that
‖PX [a]− PX [b]‖ ≤ ‖a− b‖, since the projection operator is
nonexpansive. SinceF isμ-strongly monotone and β1 Lipschitz
continuous (cf., Standing Assumption 2.3), set γ̄ = 2μ/(β1)

2

and choose γ ∈ (0, γ̄). Applying Lemma A.2 yields∥∥xt − γF (xt)− x� + γF (x�)
∥∥ ≤ (1− μ̄)

∥∥xt − x�
∥∥ (61)

with μ̄ = 1−√1− γ(2μ− γ(β1)2) ∈ (0, 1]. Thus, by using
the inequality in (61), we can bound (60) as follows:

ΔW (xt) ≤ (1− δ)2

2

∥∥xt − x�
∥∥2 − 1

2

∥∥xt − x�
∥∥2

+ (δ − δ2)(1− μ̄)
∥∥xt − x�

∥∥2
+ δ2(1− μ̄)2/2

∥∥xt − x�
∥∥2

(a)
= −δμ̄ (1− δμ̄/2)

∥∥xt − x�
∥∥2 (62)

where (a) is obtained by rearranging the above terms. Thus, for
any δ ∈ (0, δ̄2) with δ̄2 := 2/μ̄, (1− δμ̄/2) > 0 in (62), thus
establishing condition (9b) and concluding the proof.

D. Proofs of Technical Lemmas of Section IV-B

Proof of Lemma 4.4: Since R�
m1N,m = 0, we can write

R�
mGλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄ +Rmλ̃t

⊥
)

= R�
m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄ +Rmλ̃t

⊥
)

− 1N,m∇λH(Ax− b, λ̄)

)

= R�
m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄ +Rmλ̃t

⊥
)

−Gλ(1N,m(Ax− b),1N,mλ̄)

)
(63)

where in the last equality we used 1N,m∇λH(Ax− b, λ̄) =
Gλ(1N,m(Ax− b),1N,mλ̄). Following [39, Lemma 3], notice
that, for all r1, r2 ∈ R, there exists ε(r1, r2) ∈ [0, 1] so that1

max{r1, 0} −max{r2, 0} = ε(r1, r2)(r1 − r2). (64)

Let us introduce

qti :=

m∑
�=1

[Rmỹ
t
⊥]�+(i−1)me�, pti :=

m∑
�=1

[Rmλ̃t
⊥]�+(i−1)me�

(65)

and use them to define

rt1,i := ρ(Ax− b+ qti) + λ̄ + pti

r2,i := ρ(Ax− b) + λ̄. (66)

By the definition of ũ(χ, w̃t)we have that its norm ‖ũ(χ, w̃t)‖
is equal to the norm of the quantity in (63). Let nw := (N −
1)(2m+ d). As such, for all χ ∈ R

n+m and w̃t ∈ R
nw , we use

the definition of Gλ in (32), rt1,i and r2,i in (66), and apply (64)
for each component of ũ(χ, w̃t) obtaining∥∥∥∥ũ(χ, w̃t)

∥∥∥∥
≤
∥∥∥∥R�

m

1

ρ
COL

( m∑
�=1

ε([rt1,i]�, [r2,i]�)

(
[rt1,i − λ̄ − pti]�

− [r2,i − λ̄]�

)
e�

)N

i=1

∥∥∥∥
(a)

≤
∥∥∥∥R�

m

1

ρ
COL

(
m∑
�=1

(
[rt1,i − λ̄ − pti]� − [r2,i − λ̄]�

)
e�

)N

i=1

∥∥∥∥
(b)
=

∥∥∥∥∥∥R�
m

1

ρ
COL

(
m∑
�=1

ρ[qti ]�e�

)N

i=1

∥∥∥∥∥∥
(c)
=
∥∥R�

mRmỹ
t
⊥
∥∥ (d)

≤ ∥∥w̃t
∥∥ , (67)

where in (a) we use the fact that ε([rt1,i]�, [r2,i]�) ∈ [0, 1] for
all 
 ∈ {1, . . . ,m} and i ∈ I, (b) uses the definitions in (66) to
simplify the terms, (c) follows from (65), and (d) usesR�

mRm =
I and ‖ỹt⊥‖ ≤ ‖w̃t‖ that holds since ỹt⊥ is a component of w̃t.
Now, let U : Rnw → R be

U(w̃) = (w̃)�Uw̃
where U ∈ R

nw×nw with U = U� � 0, such that

S�US − U = −I. (68)

1If r1 �= r2, pick ε =
max{r1,0}−max{r2,0}

r1−r2
, otherwise set ε = 0.
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We remark that such a matrixU always exists because, in light
of Standing Assumption 2.4, bothR�

dWdRd andR�
mWmRm are

Schur matrices and, thus, S is Schur as well. Under this choice
of U , conditions (8a) and (8c) are satisfied. To show (8b), we
evaluate ΔU(w̃t) := U(w̃t+1)− U(w̃t) along the trajectories
of (42), obtaining

ΔU(w̃t) = (Sw̃t + δũ(χ, w̃t))�U(Sw̃t + δũ(χ, w̃t))

− (w̃t)�Uw̃t

= − ∥∥w̃t
∥∥2 + 2δ(w̃t)�S�U ũ(χ, w̃t)

+ δ2ũ(χ, w̃t)�U ũ(χ, w̃t)

≤ −(1− δμ1 − δ2μ2)
∥∥w̃t

∥∥2 (69)

where the second equality is due to (68), and the inequality
follows from (67) and the Cauchy–Schwarz inequality, with the
constants μ1 := 2‖S‖‖U‖ and μ2 := ‖U‖. Thus, there always
exists δ̄1 > 0 small enough so that (1− δμ1 − δ2μ2) > 0 for
any δ ∈ (0, δ̄1), concluding the proof.

Proof of Lemma 4.5: the proof is inspired by [39, Theo-
rem 2, Lemma 3, Lemma 4], adapted to our framework. Let
F : Rn+m → R

n+m and H : Rn+m → R
n+m be defined as

F(χt) :=

[
F
([
I 0

]
χt
)

0

]

H(χt) :=

[∇xH
(
A
[
I 0

]
χt − b,

[
0 I

]
χt
)

−∇λH
(
A
[
I 0

]
χt − b,

[
0 I

]
χt
) ] . (70a)

Applying (64) to each of the components of H(χt)−H(χ�),
for all χt ∈ R

n+m we obtain

H(χt)−H(χ�)

=

[
ρA�E(χt, χ�)A A�E(χt, χ�)
−E(χt, χ�)A − 1

ρ (E(χt, χ�)− I)

]
(χt−χ�) (71)

where E(χt, χ�) := diag(ε1(χt, χ�), . . . , εm(χt, χ�)) and
ε�(χ

t, χ�) ∈ [0, 1] so that

max{ρ[Axt−b]�+[̄λt]�, 0}−max{ρ[Ax�−b]�+[λ�]�, 0}
= ε�(χ

t, χ�)(ρ[Axt − b−Ax� − b]� + [̄λt]� − [λ�]�)

for all 
 ∈ {1, . . . ,m} and χt := COL(xt, λ̄t) ∈ R
n+m. More-

over, for all xt ∈ R
n, we have

F (xt)− F (x�) =

∫ 1

0

∇F ((1− ν)x� + νxt)(xt − x�)dν

(a)
=

[∫ 1

0

∇F ((1− ν)x� + νxt)dν

]
(xt − x�)

(b)
= B(xt, x�)(xt − x�) (72)

where in (a) we have extracted the term (xt − x�) from the in-
tegral and in (b) we have introducedB(xt, x�) :=

∫ 1

0 ∇F ((1−
ν)x� + νxt)dν. Since F is μ-strongly monotone and
β1-Lipschitz continuous (cf. Standing Assumption 2.3), we can
uniformly bound the integrand term of (72) as

μI � ∇F ((1− ν)x� + νxt) � β1I

which leads to

μI �
∫ 1

0

μIdν � B(xt, x�) �
∫ 1

0

β1Idν � β1I. (73)

Combining (39b), (70), (71), and (72), we can write

f(χt, h(χt))− f(χ�, h(χ�))

= −F(χt) + F(χ�)− (H(χt)−H(χ�))

= D(χt, χ�)(χt − χ�) (74)

where D(χt, χ�) ∈ R
(n+m)×(n+m) is given by

D(χt, χ�)

:=

[−B(χt, χ�)− ρA�E(χt, χ�)A −A�E(χt, χ�)
E(χt, χ�)A 1

ρ (E(χt, χ�)− I)

]
.

We then have that for all χt ∈ R
n+m,∥∥D(χt, χ�)(χt − χ�)
∥∥2
M

≤ μ1

∥∥χt − χ�
∥∥2
M

(75)

where μ1 := (max{β1 + ρ‖A‖2, 1ρ})2 and the inequal-
ity follows by inspection of D(χt, χ�)(χt − χ�) and using
‖E(χt, χ�)‖ ≤ 1. Now, let W : Rn+m → R be defined as

W (χ) = (χ− χ�)�M(χ− χ�) (76)

where M ∈ R
(n+m)×(n+m) is defined as

M :=

[
cI A�

A cI

]
. (77)

Note that M � 0 for any c >
√
κ2 and, thus, W satisfies (9a)

and (9c). To show (9b), we evaluate ΔW (χt) :=W (χt+1)−
W (χt) along the trajectories of (43), obtaining

ΔW (χt)

=
∥∥χt + δf(χt, h(χt))− χ�

∥∥2
M

− ∥∥χt − χ�
∥∥2
M

(a)
=
∥∥χt + δf(χt, h(χt))− χ� − δf(χ�, h(χ�))

∥∥2
M

− ∥∥χt − χ�
∥∥2
M

(b)
=
∥∥χt − χ� + δD(χt, χ�)(χt − χ�)

∥∥2
M

− ∥∥χt − χ�
∥∥2
M

(c)
= δ(χt − χ�)�(D(χt, χ�)�M +MD(χt, χ�))(χt − χ�)

+ δ2
∥∥D(χt, χ�)(χt − χ�)

∥∥2
M

(78)

where (a) uses the fact that f(χ�, h(χ�)) = 0 [cf., (31)], (b)
rewrites the quantities using (74), and (c) expands ‖ · ‖2M . As
in [39, Lemma 4], since it holds (73), there exists c̄ > 0 such
that, for any c > c̄, it holds

D(χt, χ�)�M +MD(χt, χ�) ≤ −τM (79)

where τ := κ1

2c . Therefore, by using (79) and (75), we bound the
right-hand side of (78) as

ΔW (χt) ≤ −δ (τ − δμ1)
∥∥χt − χ�

∥∥2
M
.

Setting δ̄ := τ
μ1

, (78) ensures that for any δ ∈ (0, δ̄), W satis-
fies (9b), and the proof follows.
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