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Abstract: We performed a genome-wide association study (GWAS) of human extreme longevity (EL),
defined as surviving past the 99th survival percentile, by aggregating data from four centenarian
studies. The combined data included 2304 EL cases and 5879 controls. The analysis identified a locus
in CDKN2B-AS1 (rs6475609, p = 7.13 × 10−8) that almost reached genome-wide significance and four
additional loci that were suggestively significant. Among these, a novel rare variant (rs145265196)
on chromosome 11 had much higher longevity allele frequencies in cases of Ashkenazi Jewish and
Southern Italian ancestry compared to cases of other European ancestries. We also correlated EL-
associated SNPs with serum proteins to link our findings to potential biological mechanisms that
may be related to EL and are under genetic regulation. The findings from the proteomic analyses
suggested that longevity-promoting alleles of significant genetic variants either provided EL cases
with more youthful molecular profiles compared to controls or provided some form of protection
from other illnesses, such as Alzheimer’s disease, and disease progressions.

Keywords: human longevity; genetic variants; protein signatures

1. Introduction

Multiple studies have presented evidence that exceptionally long-lived individuals
are able to compress morbidity and disability towards the very end of their lives [1,2].
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Together with this observation, our group has also shown that human extreme longevity
(EL), defined as surviving past the 99th survival percentile, is a heritable trait, with increas-
ing genetic influence as age approaches the extreme of human lifespan [3–5]. Therefore,
centenarians provide a good model for examining healthy aging and studying the genet-
ics of centenarians can lead to the identification of genetic factors that promote extreme
health-span.

Many genome-wide association studies (GWASs) of EL have confirmed an association
with the APOE locus [6]. However, to date, APOE remains the only genetic locus that
has been associated with EL at the genome-wide significance level, with the association
replicated across multiple cohorts. Other candidate loci have failed to reach the stringent
genome-wide significance level [7,8], or replication in independent cohorts has failed. The
yield of findings from GWASs of EL has not been commensurate with the yields of those
for other complex genic traits, possibly due to the extreme rarity of the outcome and
the difficulty in recruiting such individuals. Moreover, the results are dampened by the
heterogeneity in genetic effects across different ethnicities [9,10] as well as the influence of
multiple aging phenotypes, many with pronounced environmental effects [11,12].

In 2017, we conducted a meta-analysis of GWASs of EL that included the New England
Centenarian Study (NECS), the Long Life Family Study (LLFS), the Southern Italian Cente-
narian Study (SICS), and the Longevity Genes Project (LGP) [8]. This analysis confirmed
the association between EL and the APOE locus and discovered a few additional candidate
loci for EL but lacked a replication study. In the current study, we conducted a GWAS of
the data aggregated from the four centenarian studies and included 234 new EL cases to
identify additional EL-associated genetic variants that are both common and rare. In addi-
tion to adding more cases, we used a different imputation reference panel, the Haplotype
Reference Consortium (HRC), which was shown to have improved accuracy, especially
for rare variants [13]. We also applied saddle point approximation (SPA) to the obtained
score tests to yield more accurate test results for both common and rare variants [14,15].
We sought the replication of our discovery results in three publicly available GWASs of
parental lifespans/survival, including the UK Biobank (UKB) [16] GWAS of father’s age at
death and mother’s age at death and the meta-analysis of parental lifespan from the UKB
and 26 independent European-heritage population cohorts (UKB+LifeGen) [17]. Finally,
we used serum proteomic data in the NECS to prioritize possible longevity variants and
link our findings to biological pathways important for longevity.

2. Materials and Methods
2.1. Study Populations and Genetic Data
Longevity Studies

This consortium included four studies of longevity with genome-wide genotype
data. The studies and the selection of additional controls were previously described in
reference [7]. The aggregated set included 2304 EL cases and 5879 controls. The NECS
contributed 1296 cases (median age = 104 years, age range = (97, 119) years). The LLFS
contributed 569 cases (median age = 101 years, age range = (97, 111) years). The LGP
contributed 313 cases (median age = 102 years, age range = (96, 115) years). The SICS con-
tributed 126 cases (median age = 99 years, age range = (96, 108) years). We imputed genome-
wide genotype data in each study to the HRC panel (version r1.1 2016) of 64,940 haplotypes
with 39,635,008 sites using the Michigan Imputation Server [18]. We analyzed approxi-
mately 1.4 million genotyped and imputed SNPs that passed an imputation quality score
threshold of 0.7, a Hardy–Weinberg Equilibrium p-value threshold of 10−6, and additional
stringent quality-control steps (see Supplementary Information for details) and that had a
minor allele count (MAC) of 3 or more for both cases and controls.

2.2. Definition of Extreme Longevity Phenotype

We defined extreme longevity as an individual’s surviving beyond the 99th survival
percentile in their sex and birth-year cohort (males: 96 years for 1900, 97 years for 1910,
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98 years for 1920; females: 100 years) based on the US social security administration cohort
tables [19]. We used this definition of EL in the mega-analysis of the four longevity studies.

We defined the controls as study participants who did not achieve the above threshold
or study controls. In the NECS, study controls were defined as NECS referent subjects
who were spouses of centenarian offspring or children of individuals who died at an
age ≤ 73 years and matched the life expectancy of their birth cohort. In the LLFS, study
controls were defined as spouses of members of the family selected for longevity. In
the LGP, study controls were defined as genetically matched offspring of parents with
usual survival (i.e., both parents died before the age of 85). In the SICS, study controls
(age range = 18–48 years) were recruited from an isolated region of Southern Italy east of
Naples with a high prevalence of longevity and health and characterized by a high level
of endogamy. To increase statistical power, we also included additional controls from the
Illumina repository as in prior studies of longevity with NECS and LLFS data [7,8]. This
repository included approximately 6000 samples of various races and ethnicities used as
controls for a variety of genome-wide association studies. Through a series of principal
component analyses, we selected a sub-sample of these controls that matched the ethnic
composition of the NECS and LLFS. Ages of death for some of these controls were unknown,
but since we expected that only a very small portion of them would live to extreme old
ages, we included all of them to avoid selection bias and bias against the null.

2.3. Replication Cohorts
2.3.1. UKB Father and Mother

We downloaded the summary statistics for the GWASs of father’s age at death (UKB-F)
and mother’s age at death (UKB-M) from the Pan-UK Biobank [20] (https://pan.ukbb.
broadinstitute.org/, accessed on 31 May 2022), which houses summary statistics from
multi-ancestry analysis of 7228 phenotypes, across 6 continental ancestry groups, for a
total of 16,131 genome-wide association studies. For father’s age at death, 310,232 par-
ticipants of European ancestry were included in the analysis. For mother’s age at death,
249,247 participants of European ancestry were included.

2.3.2. UKB+LifeGen

UKB+LifeGen performed a large-scale GWAS of parental survival combining data
from parents of European ancestry in the UKB and a previously published meta-analysis of
26 additional independent European-heritage population cohorts, totaling 1,012,240 par-
ents. In the Lifegen+UKB cohort, UKB contributed 259,003 paternal ages at death with
80,729 censored observations and 210,609 maternal ages at death with 141,280 censored
observations. The LifeGen consortium contributed 77,163 paternal ages at death with
83,298 censored observations and 62,364 maternal ages at death with 97,794 censored obser-
vations. The investigators examined the association between participants’ genotypes and
parental survival using a residualized Cox model and Martingale residuals to transform
survival into a quantitative trait. In the UKB, a sex-stratified analysis was performed and
then the allelic effects in relation to paternal and maternal survival were combined into
a single parental survival effect. The results for parental survival in the UKB and the
meta-analysis of 26 cohorts in LifeGen were then meta-analyzed using inverse variance
weighting. Detailed information about the cohorts and analysis plans can be found in
reference [17].

2.4. Statistical Analysis

We combined the data from the four centenarian studies into one data set, and we
tested the association between each genetic variant and EL using a mixed-effects logistic
regression model adjusted by sex, the first four principal components, an indicator variable
for residence in Southern Italy, an indicator variable for residence in Denmark, and the full
genetic relationship matrix (GRM). Prior to the association testing, we removed participants
of non-European ancestry based on a visual inspection of their principal component values.

https://pan.ukbb.broadinstitute.org/
https://pan.ukbb.broadinstitute.org/
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We used saddle point approximation (SPA) [15] of the derived score statistics to calibrate
p-values [21]. A p-value < 5 × 10−8 was used as the genome-wide significance level, and
p < 5 × 10−6 was used as a suggestive level of significance. We used our GWAS pipeline
tool developed by Song et al. [22] to calculate the genome-wide principal components, the
GRM, as well as the association testing and SPA-based p-values that we recently validated
against other programs [21] (see the Supplementary Information for an overview of the
pipeline). The results are displayed in Table 1.

2.5. Replication Criteria

Please note that we analyzed the associations between SNPs and the EL phenotype in
the four longevity studies using logistic regression, while a censored survival analysis of
parental lifespan of the enrolled offspring was used in the replication cohorts. Therefore,
a significant variant in the discovery GWAS was replicated in the replication cohorts if
the same variant had a consistent direction of effect and a nominal p-value < 0.05 in the
replication cohort. For example, an allele’s increasing the odds of being an EL case in
the discovery GWAS corresponded to an effect that increased parental lifespan in the
replication cohort.

2.6. Protein Quantitative Trait Loci (pQTL) Analysis

We excluded from this analysis the APOE locus that we analyzed previously using
the same data [23] and we focused attention on the four lead SNPs on chromosomes 4, 5, 9,
and 11 (Table 1) that were associated with EL at p < 5 × 10−6 in the discovery GWAS and
correlated these SNPs with serum proteins in the NECS (n = 220). The SNP rs145265196 on
chromosome 11 was rare with a minor allele frequency (MAF) of 0.003, and there was only
1 carrier of the longevity allele in the proteomic data. Therefore, this SNP was excluded
from the pQTL analysis. We used serum proteomics data of 220 NECS participants that we
generated using the Somalogic aptamer-based technology, as described in [23]. The serum
proteomic data included 4785 aptamers targeting 4116 unique human proteins that passed
a quality-control assessment for median intra- and inter-assay variability. Log-transformed
values of protein expressions were regressed on each of the three lead SNPs, adjusting for
age at blood draw and sex. To account for the non-independence of 4785 aptamers, we
estimated the effective number of independent proteins by applying the method proposed
in [24]. We determined that the effective number of independent proteins was 60, which
explained >99% of variability in the entire proteomic data. Based on this, a proteome-wide
significance threshold of 0.05/60 = 0.00083 was used to identify the protein signatures for
three SNPs.

2.7. Gene Set Enrichment Analysis

We performed a gene set enrichment analysis of the proteomic signatures using the hu-
man HALLMARK gene set compendium and the Gene Ontology (GO) Biological Processes,
Cellular Components, and Molecular Functions retrieved from msigDB [25]. We conducted
the enrichment analysis using the hypeR [26] R package, with the hypergeometric test
and the overlap between all the genes in each compendium and the whole list of proteins
analyzed in our analysis as background.

2.8. Phenome-Wide Association Study (PheWAS) Search

We also conducted a regional phenome-wide association study (PheWAS) [27] search
of the associations between the top SNPs with 778 traits in 30 million genetic variants
computed with 452,264 UK Biobank White British individuals (http://geneatlas.roslin.ed.
ac.uk/, accessed on 18 September 2022) to potentially link the identified variants to other
traits/diseases that may be relevant to EL.

http://geneatlas.roslin.ed.ac.uk/
http://geneatlas.roslin.ed.ac.uk/
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Table 1. Summary of Lead SNPs in Significant Loci.

Discovery GWAS UKB-F UKB-M UKB+LifeGen

rsID Gene Chr Pos EA/NEA EAF in
Cases

EAF
in Controls Beta SE p Beta SE p Beta SE p Beta SE p

rs429358 APOE 19 45411941 T/C 0.95 0.88 0.84 0.065 1.94 × 10−36 0.020 0.0034 3.27 × 10−9 0.019 0.0036 2.58 × 10−7 0.106 0.0055 3.14 × 10−83

rs6475609 CDKN2B-AS1 9 22106271 A/G 0.49 0.42 0.21 0.039 7.13 × 10−8 0.019 0.0025 1.41 × 10−14 0.006 0.0027 0.03 0.024 0.0039 9.98 × 10−10

rs145265196 RPLP0P2 11 61401362 G/T 0.007 0.002 1.74 0.347 6.29 × 10−7 −0.022 0.0405 0.59 0.025 0.0443 0.57 NA NA NA

rs9657521 OR7E161P|
DEFB136 8 11830502 A/C 0.76 0.71 0.20 0.044 3.86 × 10−6 0.009 0.0027 0.0012 0.005 0.0029 0.07 0.013 0.0043 0.0021

rs145282854 * ZBED1P1|
ENPEP 4 111244992 A/G 0.022 0.013 0.72 0.157 5.47 × 10−6 −0.013 0.0124 0.29 −0.014 0.0134 0.30 0.003 0.0195 0.89

EA = Effect (coded) allele (the longevity-promoting allele), NEA = Non-effect allele, EAF = Effect allele frequency, Beta = log odds ratio for EL associated with each additional effect allele,
SE = standard error of beta. * Did not reach suggestive significance (p < 5 × 10−6).
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3. Results

A flow chart that illustrates the study design is shown in Figure 1. The Manhattan
plots in Figure 2 summarizes the results of the GWAS. We decided to focus attention on
the five loci that were associated with EL at p < 5 × 10−6 and were either replicated in
the independent sets or were rare variants that were more frequent in centenarians and
for which the associations were supported by a cluster of SNPs in linkage disequilibrium.
Table 1 includes the results of the lead SNPs in these five loci, and the complete set of
GWAS results, with p < 5 × 10−6, along with the replication results, can be found in
Supplementary Table S1.
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The associations between EL and a cluster of 30 SNPs in the APOE locus (top SNP:
rs429358, p = 1.94 × 10−36) reached genome-wide significance and were replicated in the
UKB-F, UKB-M, and UKB+LifeGen. The association between the E2 allele of APOE and EL
is well established [28], and we previously determined a serum proteomic signature of the
APOE alleles that has been well replicated [23,29]. Therefore, we will describe in detail the
associations of the other loci.

3.1. Locus on Chromosome 9: CDKN2B-AS1

A cluster of 36 SNPs in the long noncoding RNA (lncRNA) gene CDKN2B-AS1 had
p-values < 5 × 10−6, and the lead SNP rs6475609 fell slightly short of the genome-wide
significance with p = 7.13 × 10−8 and was replicated in all three replication cohorts. Interest-
ingly, the effect size of the association between rs6475609 and parental survival was much
stronger in the UKB-F (beta = 0.019, p= 1.41 × 10−14) than in the UKB-M (beta = 0.0057,
p = 0.03), suggesting a possible sex-specific effect. Thus, we examined this SNP separately
for males and females in our discovery data using the same model used for the genome-
wide analysis and confirmed the same trend with beta = 0.016 (p = 0.05) in males and
beta = 0.026 (p = 6.74 × 10−6) in females. The SNP rs6475609 is a common intronic variant
in gene CDKN2B-AS1 and was previously found to be associated with EL, although the
association did not reach a genome-wide level of statistical significance [29,30]. When we
correlated the SNP rs6475609 with serum proteomic data (pQTL), we found a signature
of nine aptamers mapping to eight proteins: C-C Motif Chemokine Ligand 15 (CCL15),
Chromogranin A (CHGA), Kallikrein Related Peptidase 10 (KLK10), Mitochondrial Fission
Factor (MFF), Pro-Platelet Basic Protein (PPBP), LDL Receptor Related Protein 11 (LRP11),
Quiescin Sulfhydryl Oxidase 2 (QSOX2), and Zinc And Ring Finger 3 (ZNRF3) (Figure 3
and Table 2). Although this signature was not enriched for any pathway of the gene set, we
noticed that five of these eight proteins (CCL15, CHGA, KLK10, LRP11, and PPBP) were
associated with age at 1% FDR in the analysis we published in [31] (see columns FC and
AdjP in Table 2). The current analysis showed that individuals carrying the longevity allele
A of rs6475609 had lower expression of CCL15 (consistent for both aptamers), CHGA, and
KLK10 and that the abundances of these three proteins increased with age. The protein
KLK10 also replicated its association with genetic variants in the CDKN2B-AS1 gene with
the same trend, as found in our previous analyses [29]. Conversely, individuals carrying the
longevity allele had higher expression of PPBP that decreased with older age. We observed
this trend previously and noted that carriers of the longevity allele of CDKN2B-AS1 had
younger profiles for these and other aging biomarkers that are maintained throughout
the lifespan.

3.2. Locus on Chromosome 11: RPLPOP2

We observed a suggestively significant, although not genome-wide significant, peak on
chromosome 11 that harbors 25 rare SNPs in RPLPOP2 with p < 5 × 10−6 in our discovery
GWAS. The association of the lead SNP rs145265196 reached a p = 6.29 × 10−7 level of
significance, although this association failed to be replicated in the UKB-F and UKB-M
and this SNP was not available in the UKB+LifeGen study that focused on variants with
minor allele frequencies > 0.005. The MAF of this SNP in the EL cases was 0.0067 and in
the controls was 0.0015, which roughly represents a 4.5-fold enrichment. The frequency
of this allele was 0.00094 in the UKB-M and 0.00095 in the UKB-F—lower than the range
of MAFs reported in TopMed (0.002) and gnomAD (0.001) and ALFA (0.001). We only
found one carrier of the longevity allele in the proteomic data set and could not perform
the pQTL analysis.
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Table 2. Protein Signatures for the Top SNPs.

rs6475609 (CDKN2B-AS1)

SomaScan ID UniProt ID Gene beta se t p-Value FC ** AdjP ***

6227-1_3 O43240 KLK10 −0.09431 0.025082 −3.75987 0.00022 1.244114 0.004196
11157-35_3 Q9GZY8 MFF 0.034337 0.009403 3.651539 0.000328 0.96116 0.112067

3509-1_1 Q16663 CCL15 −0.07418 0.020842 −3.55895 0.00046 1.309531 9.30 × 10−7

11184-51_3 P10645 CHGA −0.20668 0.058159 −3.55364 0.000467 2.041239 7.03 × 10−7

8397-147_3 Q6ZRP7 QSOX2 −0.06864 0.019382 −3.54119 0.000488 0.894969 0.075736
14122-132_3 Q9ULT6 ZNRF3 −0.04099 0.01168 −3.50934 0.00055 0.976452 0.424986
14109-15_3 Q16663 CCL15 −0.08507 0.024385 −3.48852 0.000591 1.245471 0.000548
8330-1_3 Q86VZ4 LRP11 −0.07416 0.021678 −3.42106 0.000746 1.361808 2.42 × 10−9

2790-54_2 P02775 PPBP 0.06303 0.018485 3.40968 0.000777 0.873098 0.006294
rs9657521 (OR7E161P|DEFB136)

5128-53_3 Q96DU3 SLAMF6 −0.09213 0.025586 −3.60081 0.000395 1.174195 0.006707
3073-51_2 O95998 IL18BP * −0.08158 0.02414 −3.37965 0.000862 1.313291 1.73 × 10−8

9391-60_3 Q9UHG2 PCSK1N * 0.034867 0.010381 3.358835 0.000929 1.044992 0.163917
14101-2_3 P26992 CNTFR * −0.05845 0.017439 −3.35168 0.000949 1.149051 3.33 × 10−5

rs145282854 (ZBED1P1|ENPEP)
12626-6_3 Q9BQF6 SENP7 0.185977 0.044871 4.144741 4.93 × 10−5 0.973749 0.619881
12341-8_3 Q16828 DUSP6 −0.11968 0.030611 −3.90953 0.000124 0.905893 4.91 × 10−7

12431-13_3 Q9BRX2 PELO −0.12712 0.032736 −3.88324 0.000138 0.899788 5.94 × 10−6

6606-61_3 Q15726 KISS1 −0.20633 0.054011 −3.82019 0.000178 0.936344 0.141048
14624-51_3 P49711 CTCF 0.13336 0.035568 3.749403 0.000228 0.992483 0.129235
9870-17_3 P23381 WARS 0.228915 0.061876 3.699553 0.000275 1.092315 0.041444
13629-25_3 Q9Y4P1 ATG4B −0.23443 0.063475 −3.6932 0.000282 0.975495 0.854651
9749-190_3 P13796 LCP1 0.181824 0.049431 3.678319 0.000297 1.089198 0.040104
14057-68_3 O95150 TNFSF15 −0.22904 0.063327 −3.61671 0.000372 0.780793 1.10 × 10−9

12572-236_3 O43281 EFS −0.08412 0.023752 −3.54161 0.000488 0.933805 5.38 × 10−5

12784-10_3 O95704 APBB3 −0.17642 0.049996 −3.52875 0.000511 0.870573 7.23 × 10−6

10064-12_3 O75884 RBBP9 −0.10174 0.028931 −3.51656 0.000534 0.994783 0.918297
13393-46_3 Q9BUN8 DERL1 −0.1092 0.031437 −3.4736 0.000622 0.957411 0.010074
9087-8_3 Q5JS37 NHLRC3 −0.13061 0.037984 −3.4386 0.000704 0.928668 0.018714

* Did not reach proteome-wide significance. ** FC: Fold change comparing protein abundance in controls versus
centenarians. Note that FC control to centenarian >1 indicates a protein that decreases in centenarians, while FC
control to centenarian <1 indicates a protein that increases in centenarians. *** AdjP: Adjusted p-value, FC and
AdjP are extracted from the analysis reported in: Protein signatures of centenarians and their offspring suggest
centenarians age slower than other humans—Sebastiani—2021—Aging Cell—Wiley Online Library.

3.3. Locus on Chromosome 8

On chromosome 8, we observed a stretch of 18 variants with p-values < 10−4 (top
SNP: rs9657521, p = 3.86 × 10−6). The association of the lead SNP was replicated in
the UKB-F and UKB+LifeGen with a consistent direction of effects, and the association
reached statistical significance after correction for three tests (p < 0.017) in the UKB-F and
UKB+LifeGen. However, it failed to be replicated in the UKB-M (p = 0.067), although it had
a consistent direction of effects. This locus is in an intergenic region between OR7E161P
and DEFB136 on 8p23.1, which harbors genes such as GATA4, NEIL2, FDFT1, CTSB, and
DEFB136. The top SNP rs9657521 is found downstream of DEFB136. Annotations from
the pQTL results (Figure 4) detected one protein SLAM Family Member 6 (SLAMF6) as
being significantly associated with rs9657521, after correction for multiple testing, and
three additional proteins (Interleukin 18 Binding Protein (IL18BP), p = 0.000862; Proprotein
Convertase Subtilisin/Kexin Type 1 Inhibitor (PCSK1N), p = 0.000929; and Ciliary Neu-
rotrophic Factor Receptor (CNTFR), p = 0.000949) that barely missed the proteome-wide
significance level of 0.00083. SLAMF6, IL18BP, and CNTFR were associated with age at 1%
FDR in the analysis we published in reference [31]. The signature of four proteins was not
enriched for any biological pathways, but we noted that carriers of the longevity allele had
higher abundances of the three biomarkers that increase with age.
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Figure 4. pQTLs in OR7E161P|DEFB136. Proteins that correlate with genotypes of the SNP rs9657521, which was associated with extreme human longevity in
the discovery GWAS. For each protein: the boxplots on the left show the distribution of the log-transformed protein data by genotype group (red = homozygote
genotype for the longevity allele; gray/black = genotypes of carriers of one or two non-longevity alleles); the scatter plot on the right shows the distribution of the
log-transformed protein data (y-axis) versus the ages of study participants (x-axis).
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3.4. Locus on Chromosome 4

The association of an uncommon variant rs145282854 in ZBED1P1|ENPEP reached
a 5.47 × 10−6 level of significance, which barely missed the suggestive significance. This
SNP failed to be replicated in all three replication sets. This SNP is an uncommon variant,
for which the longevity allele frequencies in cases and controls were 0.022 and 0.013,
respectively. The allele frequency of this SNP was 0.01 in the UKB-M and UKB-F and
0.00875 in ALFA. Although the evidence for genetic association was weak, the correlation
with proteomic data showed that rs145282854 was associated with a signature of 14 proteins,
9 of which were associated with age at 5% FDR (Table 2, Figure 5). The signature included
tumor necrosis factor 15 (TNFS15), which decreases with older age, and carriers of the
longevity variant had lower expression levels compared with non-carriers.
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Figure 5. pQTLs in ZBED1P1|ENPEP. Proteins that correlate with genotypes of the SNP rs145282854 that was associated with extreme human longevity in the
discovery GWAS. For each protein: the boxplots on the left show the distribution of the log-transformed protein data by genotype group (red = heterozygote
genotype of carriers of the longevity allele; gray/black = genotypes of carriers of two non-longevity alleles); the scatter plot on the right shows the distribution of the
log-transformed protein data (y-axis) versus the ages of study participants (x-axis).
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4. Discussion

We conducted a GWAS of EL by aggregating the individual-level data from four
longevity studies, making for a total of 2304 EL cases and 5879 controls. In addition to
confirming the association with APOE, we found additional loci that were suggestively
significant and replicated in independent studies. Unlike common diseases or phenotypes,
a GWAS of extremely rare phenotypes, such as EL, is still underpowered when it comes to
detecting true associations at the stringent genome-wide significance level. Therefore, we
also correlated EL-associated SNPs with serum proteins to cast light on potential biological
mechanisms that are related to EL and under genetic regulation.

With the inclusion of additional EL cases, CDKN2B-AS1 variants nearly achieved
genome-wide significance using EL as a trait, instead of utilizing the reported parental
lifespans in other studies. In a prior analysis conducted by our group [29], the top variant
(rs2184061; p = 3.82 × 10−7) in CDKN2B-AS1 fell short of the genome-wide significance
level. In the current study, this locus almost achieved genome-wide significance (rs6475609,
p = 7.13 × 10−8). The SNP rs6475609 was associated with a signature of eight serum
circulating proteins that includes five aging biomarkers. Three of these proteins—CCL15,
CHGA, and KLK10— are known to be prognostic markers for various types of cancer,
and upregulation of these proteins is correlated with poorer prognosis [32–34]. LRP11 is
predicted to act in response to many biological processes linked to Alzheimer’s disease
(AD) [35]. Consistent with the analysis reported in [29], our analysis showed that expression
levels for all four proteins increased with old age, but carriers of the longevity allele had
lower levels of these proteins in serum than carriers of the non-longevity allele. PPBP
stimulates a variety of processes, including activation of neutrophils, which is the immune
system’s first line of defense [36]. The abundance of this circulating protein declines with
older age, possibly marking immune system exhaustion. However, carriers of the longevity
allele appear to maintain higher values of this biomarker across different ages (Figure 3).
The relations between age, the longevity allele, and protein abundance suggest that the
longevity variant of CDKN2B-AS1 may help individuals maintain more youthful profiles
of these biomarkers as they age. In addition, the protein MFF was higher in carriers of
the longevity variant. Mitochondrial fission is an essential process for the removal of
defective mitochondria through various mechanisms, such as mitophagy, mitochondrial
transport, and programmed cell death [37]. Evidence from model organisms has shown that
increasing mitochondrial fission (i.e., higher levels of MFF) and mitophagy in middle-aged
animals correlates with longer lifespan. Our analysis suggests that having the longevity
variant helps sustain the ability to execute appropriate mitochondrial fission at old ages.

We discovered a suggestively significant (although not genome-wide significant) locus
on chromosome 8 (rs9657521) that was associated with EL and which has not previously
been reported in the literature. This locus is in a region of 8p23.1, which contains the genes
GATA4, NEIL2, FDFT1, CTSB, and DEFB136. The protein signature that we found to be
associated with rs9657521 includes PCSK1N, also known as proSAAS, IL18BP, SLAMF6,
and CNTFR. The longevity-promoting allele of rs9657521 was associated with lower levels
of the serum protein PCSK1N (see Figure 4). The gene PCSK1N is widely expressed in
the brain, and its expression increases in the brains of rodents subjected to hypoxia and
dehydration [38]. It has been identified as a cerebrospinal fluid candidate biomarker for
AD and/or dementia [38], and a recent transcriptomic analysis showed that PCSK1N
expression increased during AD progression [39,40]. Our results suggest that the longevity
allele of the SNP rs9657521 helps maintain lower values of this protein in the serum and
can mark protection from AD or some other mechanisms that need further investigation.
In addition, protein abundance of IL18BP appeared to increase with older age, and carriers
of the longevity variant had higher expression levels compared to carriers of the non-
longevity variant. The effect of IL18BP is to reduce interleukin 18 activity, which is a
pro-inflammatory protein involved in a variety of processes that can lead to organ injury
and possibly a fatal condition characterized by cytokine storms. For example, higher levels
of IL18 were markers of poor prognosis in COVID-19 patients [41]. Therefore, higher values
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of IL18BP should correlate with lower values of IL18 and their increase with older age is
likely to represent a protective mechanism against inflammation that is enhanced in carriers
of the longevity variants.

In the literature, rs9657521 has been associated with the expression of the gene cathep-
sin B (CTSB) in blood (Open Target Genetics Portal [42]). CTSB was one of 42 newly
discovered loci in a recent GWAS meta-analysis of AD [43]. CTSB was also shown to be
linked to Parkinson’s disease [43,44]. Among the top associated traits in the PheWAS search,
BMI, platelet distribution width, and red blood cell distribution width were negatively
correlated with the longevity allele of this SNP (p < 1 × 10−12). Higher values of these traits
are strongly predictive of mortality, incident coronary heart disease, and cancer [45], and it
is interesting that carrying the longevity allele appears to confer protection. Our analyses
suggest that this is an important locus for longevity, but additional replication of the genetic
and molecular associations is needed to pinpoint the exact biological mechanism by which
this locus influences EL.

The SNP rs145265196 is an intronic rare variant in RPLPOP2. The aggregated data of
four longevity studies in the current analysis allowed for a more careful examination of a
comparison of allele frequencies (AFs) by distinct ethnicities that included individuals of
Danish, Ashkenazi Jewish, Southern Italian, and Central European ancestries. Individuals
in the “central” European ancestry group were individuals who did not belong to any
of the three distinct ethnic groups (Danish, Ashkenazi Jewish, and Southern Italian) but
who formed a cluster of their own. Among the Southern Italian individuals, the cases had
much higher AFs (0.012) compared to controls (0.0023). Similarly, among the Ashkenazi
Jewish individuals, cases had a longevity AF of 0.012 compared to 0.0024 in controls.
Similar but somewhat weak trends were observed in individuals of Danish ancestry (case
AF = 0.005 vs. control AF = 0.0022) and Central European ancestry (case AF = 0.004
vs. control AF = 0.0008). This examination revealed that the longevity allele of this rare
variant was much more prevalent among the cases of Southern Italian and Ashkenazi
Jewish ancestries and confirmed that there exists ethnicity-dependent heterogeneity in the
association between EL and genetic variants [10]. Hence, this presents a potential future
avenue for investigating the genetic effects on EL, as recently supported in Giuliani et al.
2018 and other studies [9,11,46].

SUMO Specific Peptidase 7 (SENP7) and CCCTC-Binding Factor (CTCF), which are
part of the signature for rs145282854 on chromosome 4, also presented interesting examples.
In our analysis, carriers of the longevity allele had higher expression levels of these protein
compared to non-carriers. Findings from a recent study revealed that SENP7 may act as an
oxidative stress sensor to maintain metabolic fitness and antitumor functions in CD8+ T
cells [47]. Therefore, the effect of the longevity variant may be to provide adequate stress
sensing. In a different study that examined functional roles of SENP7 [48], the authors
concluded that proper neuronal differentiation requires SENP7 and that SENP7 could be
a key regulator in neuronal differentiation. Moreover, given that neurogenesis has been
shown to be impaired at early stages of AD [49], the role of SENP7 may be potentially
important for pathways that influence AD progression. There has also been emerging
evidence that CTCF may play a vital role in DNA damage response by facilitating DNA
double-strand break repair [50]. Thus, our results may suggest that the longevity variant
may help provide DNA-repair mechanisms at older ages, which has also been found in a
whole-genome sequencing analysis of semi-supercentenarians in Italy [51].

The selection of appropriate controls presents a challenge in genetic studies of longevity.
An ideal set of controls for longevity studies would be individuals who were born in the
same birth-year cohort as the cases and who had usual survival. However, obtaining DNA
samples for these birth-year matched controls is nearly impossible in centenarian studies.
In our study, with the exception of the SICS, the study controls were selected from the
general population with no evidence of longevity, so there is likely very little selection
bias. Additionally, most of the study controls are still alive and could eventually become
centenarians later. Our rationale was that the prevalence of centenarians is very rare, so
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that any individual selected from the general population will have a very low chance of
becoming a centenarian in the future, and that inclusion of some centenarians in the control
set would lower statistical power but not introduce biases [52]. We also acknowledge that
the effects derived from our study may be biased; the effect estimates we obtained may be
larger or smaller than the actual effects due to some level of selection bias. Nonetheless, the
goal of this analysis was hypothesis testing, not estimation, to identify genetic variants for
which the distribution of alleles was different between the cases and controls.

Ensuring high imputation quality, especially for rare variants, is a crucial task to
avoid spurious associations in GWASs. We used an imputation quality score > 0.7, given
that a score > 0.5 was used in the original article describing the reference panel [13] and
that a score > 0.3 is also commonly used [53]. Additionally, the authors of reference [13]
noted increases in the imputation quality with the HRC panel in comparison with the
1000 Genomes Project (1000GP) panel with imputation quality R2 = 0.64 (HRC) vs. R2 = 0.36
(1000GP) at MAF = 0.1%. Therefore, we believe that the threshold of 0.7 was reasonable. We
further investigated the quality of an imputed rare variant (rs145265196) on chromosome
11 by comparing the imputed dosage data with the whole-genome sequence data in the
LLFS. There were 4241 overlapping LLFS subjects who had both imputed data and whole-
genome sequence data. For these participants, the computed MAC using the imputed
data was 52.798, and the MAC using the whole-genome sequence data was 52, which
resulted in a correlation coefficient of 0.9989. Therefore, we believe that the quality of
imputation for this SNP was very good. Moreover, in a paper that was recently accepted
for publication [54–56], our group performed the same type of comparison between the
imputed data and whole-genome sequence data for the top rare SNPs with an MAF of
0.0005 and we observed a perfect concordance. Therefore, these rare variants imputed to
the HRC panel with high quality appear to be trustworthy.

In addition to better imputation of uncommon and rare variants, we also used im-
proved modeling techniques to test the associations between SNPs and EL using logistic
regression. Compared with past analyses [8], we adopted a mixed-effects logistic regression
model using a full GRM and SPA of the score test that impacted the calculations for some
of the suggestive associations between chromosomes 4, 7, and 12. For example, the level of
significance for rs28391193 on chromosome 4 changed from 2 × 10−7 in the meta-analysis
to 1 × 10−4 in the current analysis.

There are a few limitations to this study. First, the sample size for the NECS proteomic
data was 220, which may have led to low power in detecting significant associations. It is
possible that some nominally significant results were true-positive associations which we
failed to detect. Second, our results from the proteomic analysis did not have a replication
set. Thus, the protein signatures we identified remain to be replicated in a future study. We
acknowledge that additional multi-omics data on a larger number of participants and the
incorporation of other approaches, such as haplotype-based methods, could help elucidate
the potential biological mechanism for identified loci in a future analysis. Third, our
replication cohorts relied on a censored survival analysis of offspring report of parental
lifespan that was not verified, while a logistic model was used for the EL phenotypes of
enrolled participants in the discovery cohort. Additionally, the inherent parent–offspring
design may have introduced unnecessary noise into the replication results. Fourth, the
current analysis, which was restricted to participants of European ancestries, may not be
generalizable to participants of other non-European ancestries. Of note, we also showed
that the genetic effects can vary even among individuals of different European ancestries for
the rare SNP rs145265196. Lastly, the three replication cohorts that used the data from the
UKB were not independent. Still, we believe that it was important to note any sex-specific
effects of longevity variants.

5. Conclusions

Genetic studies of EL have been challenged by limited sample sizes that have made
it extremely difficult to reach genome-wide levels of significance for many putative as-
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sociations with limited effects. In this study, we tried to circumvent the limited sample
sizes of individual studies by aggregating the data from four centenarian studies into one
larger analysis that provided greater power to detect suggestive associations of rare and
uncommon variants. Still, our sample size was limited, and although we do not have formal
ways to calculate the proportion of genetic variability explained by this set of variants, we
posit that these new loci explain a small portion of the genetics of EL, while much more
remains to be found. Although replication of these results in other studies is warranted,
the analysis showed new interesting variants associated with EL. The integration of genetic
data with serum proteomic data also pointed to potential interesting molecular processes
that are under genetic regulation and which may be implicated in various pathways re-
lated to living to extreme old age. Such mechanisms may provide new targets for healthy
aging therapeutics.
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