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A B S T R A C T

The Multi-depot Cumulative Capacitated Vehicle Routing Problem (MDCCVRP) extends the recently proposed
Cumulative Capacitated Vehicle Routing Problem (CCVRP). The aim is to minimize the sum of the arrival
times at the customers considering a fleet of 𝑁𝑣 capacitated vehicles and a set of 𝑁𝑑 uncapacitated depots.
This paper proposes valid lower bounds and a novel metaheuristic algorithm for the solution of the MDCCVRP.
The initial solution is obtained by combining different heuristic approaches, while the improving phase consists
of an iterated local search algorithm (ILS). Computational experiments on 78 MDCCVRP benchmark instances
show that the proposed algorithm is able to find, within reasonable computing times, solution values globally
better than those obtained by the state-of-the-art heuristic algorithms. For challenging instances (having a
large number of customers and a small fleet size), the algorithm can find, within short computing times,
solutions globally better than those obtained by the published exact algorithms. The proposed algorithm has
also been applied to the recently introduced Multi-depot k-traveling Repairman Problem (MDk-TRP) and the
Latency Location Routing Problem (LLRP). The MDk-TRP is a particular case of the MDCCVRP arising when
the vehicles are uncapacitated, while the LLRP is a generalization of the MDCCVRP in which, at most, 𝑝 of
the 𝑁𝑑 available depots can be used. The computational experiments performed on 87 MDk-TRP benchmark
instances and 76 LLRP benchmark instances show that the proposed algorithm globally outperforms the state-
of-the-art metaheuristic algorithms for what concerns both the solution quality and the computing time. For
large-size instances, the computing time required to provide a good quality solution is considerably smaller
than that required by the previously published heuristic and exact algorithms. For all the problems, the
proposed algorithm is able to find better solution values than those obtained by the respective state-of-the-art
metaheuristic algorithms when it is executed for the same computing time as the respective competitor.
1. Introduction

The Multi-depot Cumulative Capacitated Vehicle Routing Problem
(MDCCVRP) is a variant of the well-known Multi-depot Vehicle Routing
Problem (MDVRP), in which, instead of minimizing the total travel time
of the system, the aim is to minimize its global latency. The latency
can be defined as the sum of the arrival times at the customers, and
it is a metric used for defining customer satisfaction. Although the
MDVRP is a well-known variant of the vehicle routing problems (a
survey on MDVRPs can be found in Montoya-Torres et al. (2015)), the
classical objective function is not appropriate for solving real-world
cases concerning customer satisfaction. Indeed, it has been proved that
the optimal solutions for classical routing problems lead to sub-optimal
solutions for cumulative (latency) routing problems (Sze et al., 2017).
This work suggests that new methods must be developed for solving
effectively cumulative routing problems.
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Research on cumulative capacitated vehicle routing problems
(CCVRP) dates from 2010 with the seminal work of Ngueveu et al.
(2010). The CCVRP is a particular case of the MDCCVRP considering
only one depot. For a recent survey paper on cumulative-based vehi-
cle routing problems, focusing on the CCVRP, the reader is referred
to Corona-Gutiérrez et al. (2022). Although the CCVRP was relatively
recently introduced, the research on latency routing problems started
in the early 90 s with the traveling repairman problem (TRP) (Tsitsiklis,
1992), also known as delivery man problem (Fischetti et al., 1993) and
minimum latency problem (MLP) (Blum et al., 1994). The TRP consists
of finding the best sequence for visiting a set of customers considering
a single vehicle, such that the latency is minimized.

Some natural extensions of the TRP have been studied by different
researchers. The 𝑘-TRP (Fakcharoenphol et al., 2007) corresponds to
a generalization of the TRP by considering 𝑘 uncapacitated vehicles.
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Fig. 1. Relations between the different latency-based routing problems.

This problem has also been called 𝑚-MLP (Ángel-Bello et al., 2019).
The MD𝑘-TRP (Bruni et al., 2022a) is a generalization of the 𝑘-TRP by
considering multiple depots. The MD𝑘-TRP is also a particular case of
the MDCCVRP in which the vehicles have a capacity large enough to
serve the demand of the customers. A generalization of the MDCCVRP
is the latency location routing problem (LLRP) (Moshref-Javadi and
Lee, 2016), arising when at most a fixed number of the available
depots can be used. Fig. 1 shows a diagram pointing out the relations
among the previously mentioned problems. All these problems are NP-
hard since they can be reduced to the TRP, which has been proved
to be NP-hard (Fakcharoenphol et al., 2007; Ngueveu et al., 2010;
Moshref-Javadi and Lee, 2016; Lalla-Ruiz and Voß, 2020; Bruni et al.,
2022a).

The MDCCVRP can be defined by considering a complete undirected
graph 𝐺 = (𝑉 ,𝐸), where 𝑉 corresponds to the set of nodes and 𝐸 to the
set of edges. The set 𝑉 equals 𝑉 ′ ∪ 𝐷, with 𝑉 ′ representing the set of
𝑁𝑐 customers and 𝐷 representing the set of 𝑁𝑑 uncapacitated depots.
Let also 𝐾 be the set of 𝑁𝑣 homogeneous vehicles, each with capacity
𝑄. Each customer 𝑖 ∈ 𝑉 ′ has a non-negative demand 𝑞𝑖 (with 𝑞𝑖 ≤ 𝑄).
Each edge (𝑖, 𝑗) ∈ 𝐸, with 𝑖 ≠ 𝑗, has an associated non-negative travel
time 𝑐𝑖𝑗 , which satisfies the triangular inequality. The problem consists
of defining the routes to be performed by the vehicles, minimizing
the sum of the arrival times at the customers. Each customer must be
visited once. Each vehicle can perform one route. Each route starts
from a depot and visits a subset of customers whose global demand
cannot exceed the vehicle capacity 𝑄. As in the classical MDVRP, the
MDCCVRP does not consider the availability of the vehicles at each
depot. Note that it is not mandatory to use all the depots. The objective
of the cumulative routing problems is to minimize the sum of the arrival
times at the customers. Hence the last edge of each route (connecting
the last customer of the route with a depot) has not to be considered
in evaluating the objective function (Ngueveu et al., 2010). Therefore,
the routes can be considered as ‘‘open routes’’.

The notation of the problem is summarized in Table 1.
The MDCCVRP was introduced in Lalla-Ruiz and Voß (2020), where

a mixed-integer linear programming (MILP) formulation and a POP-
MUSIC matheuristic algorithm are proposed to solve the problem.
The POPMUSIC method begins generating an initial solution through
2

Table 1
Notation of the multi-depot cumulative capacitated vehicle routing problem.

Sets

𝑉 ′: Set of 𝑁𝑐 customers.
𝐷: Set of 𝑁𝑑 identical uncapacitated depots.
𝑉 : Set of nodes, 𝑉 = 𝑉 ′ ∪𝐷.
𝐾: Set of 𝑁𝑣 identical vehicles.

Parameters

𝑄: Capacity of the vehicles.
𝑞𝑖: Demand of customer 𝑖 (𝑖 ∈ 𝑉 ′).
𝑐𝑖𝑗 : Travel time between nodes 𝑖 and 𝑗 (𝑖, 𝑗 ∈ 𝑉 ′ , 𝑖 ≠ 𝑗).
𝑝: Maximum number of used depots for the LLRP.

a greedy clustering algorithm. The idea is to improve the solution
by partitioning the MDCCVRP into smaller sub-problems. The sub-
problems are solved separately with the commercial solver CPLEX, and
then included within the global matheuristic solution. Some relevant
features of the MDCCVRP have been discussed in that work; in par-
ticular, the proof that the number of vehicles in the optimal solution
is equal to 𝑚𝑖𝑛{𝑁𝑣, 𝑁𝑐}, and the relations of the MDCCVRP with the
TRPs.

In Wang et al. (2020), a perturb-based local search (PLS) meta-
heuristic algorithm has been proposed to solve the MDCCVRP. A con-
structive heuristic based on the 𝑘-regrets insertion criterion (Mattos
Ribeiro and Laporte, 2012) is used for finding the initial solution.
Then, a local search procedure is applied by exploring six different
moves under the first improvement criterion. Once no improvement
can be reached, 2-opt and 2-exchange moves are applied to perturb the
solution and explore a new search space. The efficiency of this approach
is compared with the results previously presented in Lalla-Ruiz and Voß
(2020).

A branch-cut-and-price algorithm for solving the CCVRP and the
MDCCVRP is proposed in Damião et al. (2021). The algorithm is able to
provide the optimal solution for many small/medium size instances and
high-quality solutions for large-size instances by fixing the maximum
number of customers in each route. Two MILP formulations have been
proposed in Nucamendi-Guillén et al. (2022) to solve the LLRP. These
formulations were also adapted to solve the MDCCVRP, and were
able to find some optimal solutions for small/medium-size instances
(with up to 50 customers) for both the LLRP and the MDCCVRP. The
formulations were able to solve large MDCCVRP instances (with up to
192 customers) when a large number of vehicles is considered (in Lalla-
Ruiz and Voß (2020) it has been proved that these instances are easier
than the same instances with a relative small number of vehicles).

Although the problem considered in Wang et al. (2016) does not
correspond to an MDCCVRP, it is important to point out the differences
between these two problems. Indeed, the former problem has been
defined by its authors as a cumulative multi-depot vehicle routing
problem (Cu-MDVRP), considering it as a generalization of the cumula-
tive vehicle routing problem (Cu-VRP) proposed in Kara et al. (2008).
The Cu-VRP seeks to minimize the sum of the travel times of the
traversed edges weighted by the load on the vehicle at the moment of
traversing the edges. Nevertheless, the Cu-MDVRP presented in Wang
et al. (2016) seeks to minimize the sum of the arrival times at the
customers weighted by their demands. Thus, it can be considered as a
weighted version of the MDCCVRP. In addition, Cu-MDVRP considers
a certain number of vehicles available at each depot, which is another
feature that makes it different from the MDCCVRP. For more details
about these two families of problems (Cu-VRPs and CCVRPs) the reader
is referred to the literature review presented in Corona-Gutiérrez et al.
(2022).

The MD𝑘-TRP was recently introduced in Bruni et al. (2022a). For
its solution, the authors proposed two MILP models and a genetic

algorithm (GA) under two different configurations. The formulations,
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which can solve to proven optimally several large-size instances (with
over 200 customers), are based on the multi-level network approach.
This approach was previously used to solve other related latency rout-
ing problems as the MLP (Ángel-Bello et al., 2013), the 𝑘-TRP/𝑚-
MLP (Nucamendi-Guillén et al., 2016; Ángel-Bello et al., 2019), and
the CCVRP (Nucamendi-Guillén et al., 2018). More recently, as we
already mentioned, it was also used to solve the LLRP and the MD-
CCVRP (Nucamendi-Guillén et al., 2022). On the other hand, the GA is
able to solve large-size instances within short computing times.

The LLRP, which is a combination of the facility location problem
(FLP) and the CCVRP, was introduced in Moshref-Javadi and Lee
(2016). The LLRP can be considered as an extension of the MDCCVRP in
which, at most, 𝑝 of the 𝑁𝑑 available depots can be used (i.e. opened).

wo heuristic algorithms to solve efficiently the LLRP (a memetic
lgorithm (MA) and a recursive granular algorithm (RGA)) have been
roposed in Moshref-Javadi and Lee (2016). According to the reported
omputational experiments, MA performs better than RGA for the
omplete set of the considered instances. Recently, two MILP models,
hree enumerative algorithms, and a GRASP-based iterated local search
lgorithm (GBILS) have been proposed in Nucamendi-Guillén et al.
2022) to solve the LLRP. The authors provide the optimal solution for
everal instances with up to 50 customers using the five exact methods,
hile the metaheuristic algorithm GBILS found globally better quality

olutions than those obtained by the algorithms RGA and MA within
hort computing times. The best results on the benchmark instances
urrently considered for the LLRP have been reported for the three
etaheuristic algorithms presented in Osorio-Mora et al. (2023). These

lgorithms combine simulated annealing (SA) and variable neighbor-
ood descent (VND) procedures. The main difference between the
hree proposed algorithms is the VND used strategy. The proposed
pproaches outperform the state-of-the-art algorithms for the LLRP,
eing able to find better quality solutions within comparable computing
imes.

Applications of multi-depot latency routing problems have also been
tudied, especially in post-disaster and customer-centric contexts. A
roblem in which the visit to affected areas must be planned after
natural disaster is studied in Ajam et al. (2022), where also the

ossibility of restoration of blocked paths is considered. The authors
roposed a mixed-integer programming model and two heuristic al-
orithms based on the cluster-first-route-second approach for solving
he problem. A bi-objective location routing problem under uncertainty
pplied to humanitarian logistics is studied in Zhong et al. (2020). The
roblem considers time windows and a heterogeneous fleet of vehicles,
hile a risk-averse approach is used for minimizing the total cost and

he latency of the system. The problem was solved with a hybrid genetic
lgorithm. Bruni and Khodaparasti (2022) propose a VND matheuristic
or the Drone Routing Problem in the context of last-mile delivery. The
roblem is formulated as a deterministic location-routing model and
erives its robust counterpart under the travel time uncertainty.

This paper proposes an iterated local search metaheuristic algo-
ithm called M-ILS to solve effectively the MDCCVRP, the MD𝑘-TRP,

and the LLRP. The reported computational experiments on benchmark
instances from the literature show that the proposed algorithm finds
several current and new best-known solutions within computing times
comparable with those required by the state-of-the-art algorithms pro-
posed for the considered problems. Furthermore, the optimal solution
values reported in Bruni et al. (2022a) are rectified for several MDk-
TRP instances. Finally, valid lower bounds for the MDCCVRP and the
MD𝑘-TRP are presented.

The paper is organized as follows. Section 2 describes the proposed
metaheuristic and presents lower bounds for the MDCCVRP and the
MD𝑘-TRP. The computational results are reported and analyzed in
Section 3. Finally, in Section 4, a summary of our findings and future
directions are drawn.
3

Table 2
Algorithm’s parameters.
𝑖𝑡𝑚𝑎𝑥 : Number of iterations of the iterated local search.
𝑖𝑡𝑠𝑜𝑓𝑡 : Frequency of the 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 perturbation.
𝑖𝑡ℎ𝑎𝑟𝑑 : Frequency of the 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑤𝑎𝑝 perturbation.
𝑎 : Percentage for the penalization for each unit

exceeding the capacity of the vehicles.
𝑡0 : Initial temperature in the SA-VND procedure.
𝑡𝑓 : Minimum temperature in the SA-VND procedure.
𝛼 : Cooling factor in the SA-VND procedure.

2. Description of the proposed approach

This section presents an M-ILS metaheuristic approach for solving
the MDCCVRP, the MD𝑘-TRP, and the LLRP. Besides, valid lower
bounds are proposed for the MDCCVRP and the MD𝑘-TRP. The main
body of the proposed approach (M-ILS algorithm) consists of two major
phases: the construction phase and the improvement phase. The goal
of the construction phase is to build an initial feasible solution 𝑠0 (see
Section 2.1). In the improvement phase, an Iterated Local Search (ILS)
scheme, considering several diversification and local search procedures,
is applied to improve the quality of the current solution. The ILS
procedure starts by setting the current solution 𝑠𝑐 , and the best feasible
solution 𝑠𝑏𝑓 equal to 𝑠0. It consists of three procedures executed for
𝑡𝑚𝑎𝑥 iterations: a perturbation procedure, a local search procedure
alled LS, and a procedure combining the simulated annealing (SA) and
he variable neighborhood descent (VND) frameworks (this procedure
s called SA-VND). After the execution of the ILS, the well-known
in–Kernighan–Helsgaun heuristic (LKH-3) (Helsgaun, 2017) is used to
olve a CCVRP (for the MDCCVRP and the LLRP) or a 𝑘-TRP (for the

MD𝑘-TRP) for each open depot, considering the best feasible solution.
The local search procedure LS is applied to the solution obtained by the
LKH-3 algorithm. Finally, for each route, a procedure called checking is
applied. This procedure verifies if each route’s first customer is assigned
to its closest depot. If this is not the case, the closest depot is assigned
to the corresponding route. The details of the ILS procedure are de-
scribed in Section 2.2, and a summarized representation of the overall
algorithm is presented in Algorithm 1. Table 2 shows the parameters
used for the proposed approach.

The key points for the success of the proposed approach are the
correct selection of the depots using the heuristic procedure of the
construction phase. Besides, the local search and diversification proce-
dures within the improvement phase and the Lin–Kernighan–Helsgaun
heuristic (LKH-3) allow an efficient exploration of the search space.
Since the most critical decisions of the multi-depot variants of the
single-depot vehicle routing problems are initially those concerning the
use and assignment of the depots, a correct selection of the depots
can reduce the search space for the improvement phase (avoiding
local search procedures between depots). Also, starting from a good
initial feasible solution allows for improving the current solution by
applying the correct local search procedures. The previously mentioned
procedures are described in more detail in the following subsections.

2.1. Construction phase: Initial solution

In this phase, we propose an efficient procedure to construct an
initial feasible solution. The procedure is based on an approach that
combines different heuristic procedures, including the LKH-3 heuristic.
Besides, a cluster-based method is considered as starting point within
the initial iterative framework. The initial solution 𝑠0 is obtained by the
following Constructive procedure, which generally finds good feasible
solutions within short computing times:

-Step 1: Considering all the customers, construct the corresponding
giant Traveling Salesman Problem (TSP) tour using the LKH-3 heuristic.
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Algorithm 1: Main Scheme
Input: A MDCCVRP/MD𝑘-TRP/LLRP instance, Algorithm

parameters
Output: 𝑠𝑏𝑓 (𝐵𝑒𝑠𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

1 Constructive procedure — return: 𝑠0 (initial solution)
2 Iterated local search:
3 𝑖𝑡 = 0
4 while (𝑖𝑡 < 𝑖𝑡𝑚𝑎𝑥) do
5 step 1: Perturbation
6 step 2: Local search (LS)
7 step 3: SA-VND search procedure
8 it=it+1
9 end
10 For each used depot solve a CCVRP/𝑘-TRP applying the LKH-3

heuristic
11 Local search (LS)
12 Checking
return: 𝑠𝑏𝑓

Note that for the giant TSP, the global travel time to visit all the
customers is minimized.

-Step 2: A good initial solution can be obtained by identifying
clusters of customers. To this end, the giant tour is split into 𝑁𝑣 clusters,
s described below. We apply a clustering procedure by considering
ach customer as a ‘‘starting point’’, and by splitting the giant tour into
roups of consecutive customers. For the MDCCVRP and the MD𝑘-TRP,

the splitting aims to balance the solution. The first (𝑁𝑐 𝑚𝑜𝑑 𝑁𝑣) clusters
are composed of ⌈𝑁𝑐

𝑁𝑣
⌉ customers, while the remaining clusters are com-

osed by ⌊

𝑁𝑐
𝑁𝑣

⌋ customers. The idea of considering balanced solutions

s based on the valid lower bound LB2 presented in Section 2.3. For the
LRP, a different clustering procedure is applied. It consists of splitting
he giant tour into groups of consecutive customers such that the total
oad of each cluster does not exceed the capacity of the vehicles. If
he number of clusters created is larger than 𝑁𝑣, a repair procedure is
pplied to delete the least-loaded clusters until the number of clusters
quals 𝑁𝑣. The customers are removed from the least-loaded clusters
ccording to the order given in the clusters. Each customer belonging to
least-loaded cluster is removed from its current position and inserted

n its best position in a different cluster, so as to minimize the score
efined in Eq. (1):

𝑐𝑜𝑟𝑒𝐼𝑁 𝑗
𝑖𝑘 = 𝛥𝑖𝑛𝑠𝑡𝑖𝑚𝑒𝑖𝑘𝑗 + 𝜃[𝑚𝑎𝑥{0, (𝑑𝑐𝑗 + 𝑞𝑖) −𝑄}] (1)

where: 𝛥𝑖𝑛𝑠𝑡𝑖𝑚𝑒𝑖𝑘𝑗 represents the variation of the travel time of cluster
𝑗 caused by the insertion of customer 𝑖 in position 𝑘, 𝑑𝑐𝑗 represents
the current load of cluster 𝑗, and 𝜃 represents a penalization parameter
(large positive value). The process is repeated until all the least-loaded
clusters are deleted.

-Step 3: If the total load of a cluster (say cluster 𝑗) exceeds the
vehicle capacity, a swapping procedure is applied to two customers (say
customers 𝑘 and 𝑖, with 𝑞𝑖 < 𝑞𝑘) with respect to their current clusters
(say clusters 𝑗 and 𝑙, respectively, with 𝑗 ≠ 𝑙), so as to minimize the
following score:

𝑆𝑐𝑜𝑟𝑒𝑆𝑊 𝑗𝑙
𝑖𝑘 = 𝛥𝑡𝑖𝑚𝑒𝑘𝑖𝑗 + 𝛥𝑡𝑖𝑚𝑒𝑖𝑘𝑙 + 𝜃[𝑚𝑎𝑥{0, (𝑑𝑐𝑗 − 𝑞𝑘 + 𝑞𝑖) −𝑄}

+𝑚𝑎𝑥{0, (𝑑𝑐𝑙 + 𝑞𝑘 − 𝑞𝑖) −𝑄}]
(2)

where: 𝛥𝑡𝑖𝑚𝑒𝑘𝑖𝑗 (resp. 𝛥𝑡𝑖𝑚𝑒𝑖𝑘𝑙 ) represents the variation of the travel time
of cluster 𝑗 (resp. cluster 𝑙) caused by the exchange of the customers
𝑘 and 𝑖. If no feasible splitting of the customers into 𝑁𝑣 clusters is
found by this swapping procedure, the exact algorithm MTP proposed
in Martello and Toth (1990) is applied to the Bin Packing Problem
(BPP) instance corresponding to the given MDCCVRP instance to obtain
4

a set of at most 𝑁𝑣 feasible clusters.
-Step 4: Let 𝐶𝐿 be the clusters set created in the previous step. For
each depot 𝑖 ∈ 𝐷 and for each cluster 𝑗 ∈ 𝐶𝐿, we define an allocation
cost 𝑙𝑖𝑗 , which represents the total latency of the route composed by
the customers in cluster 𝑗 and depot 𝑖. This allocation cost is obtained
by applying an intra-route local search (𝐼𝑛𝑡𝑟𝑎𝐿𝑆) procedure to the path
generated for the cluster (more details about this local search procedure
are presented in Section 2.2.2).

Step 5: The best assignment of the clusters to the depots for the
MDCCVRP and the MD𝑘-TRP is obtained by assigning each cluster
𝑗(𝑗 ∈ 𝐶𝐿) to the depot 𝑖 such that 𝑙𝑖𝑗 = 𝑚𝑖𝑛{𝑙ℎ𝑗 ∶ ℎ ∈ 𝐷}. Thus, the
latency of the solution is given by

∑

𝑗∈𝐶𝐿
min
𝑖∈𝐷

{𝑙𝑖𝑗}. We define a depot 𝑖 ∈ 𝐷

s ‘‘used’’ if at least one cluster is assigned to 𝑖. A depot configuration
orresponds to a binary vector 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 of size 𝑁𝑑 that indicates
f depot 𝑖 ∈ 𝐷 is used (𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 1) or not (𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 0).
ll the previously mentioned information is stored in this Step.

For the LLRP, the best assignment of the clusters to the depots is
btained by solving the integer linear programming (ILP) model (3)–
8). We introduce two sets of binary variables, where 𝐴𝑖𝑗 is equal to 1

if cluster 𝑗 is assigned to depot 𝑖 (𝑖 ∈ 𝐷, 𝑗 ∈ 𝐶𝐿), and 𝑦𝑖 is equal to 1 if
depot 𝑖 (𝑖 ∈ 𝐷) is opened.

𝑖𝑛
∑

𝑖∈𝐷

∑

𝑗∈𝐶𝐿
𝑙𝑖𝑗𝐴𝑖𝑗 (3)

∑

𝑖∈𝐷
𝐴𝑖𝑗 = 1 ∀𝑗 ∈ 𝐶𝐿 (4)

𝐴𝑖𝑗 ≤ 𝑦𝑖 ∀𝑖 ∈ 𝐷,∀𝑗 ∈ 𝐶𝐿 (5)
∑

𝑖∈𝐷
𝑦𝑖 ≤ 𝑝 (6)

𝐴𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐷,∀𝑗 ∈ 𝐶𝐿 (7)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐷 (8)

where 𝑙𝑖𝑗 is the latency of the route composed by the customers in
cluster 𝑗 and depot 𝑖 (see Step 4), 𝑑𝑐𝑗 is the global demand of cluster 𝑗,
and 𝑝 is the maximum number of depots to be opened.

The objective function (3) seeks to minimize the total latency.
Constraints (4) ensure that each cluster is allocated to exactly one
depot. Constraints (5) impose that the clusters can be allocated only
to open depots. Eq. (6) ensures that the maximum number of open
depots is at most 𝑝. Finally, constraints (7)–(8) define the domain of
the variables.

-Step 6: Note that there are exactly 𝑁𝑐 different possibilities to
split the giant tour, since in the clustering procedure, the definition of
the clusters depends only on the choice of the first customer (starting
point), and the clustering procedure is applied 𝑁𝑐 times, by considering
each of the 𝑁𝑐 customers as the starting point. Steps 2–5 are repeated
until all the solutions corresponding to the possible splittings of the
customers into clusters are evaluated.

A list of promising depot configurations stores all the configurations
obtained at Step 5, the number of times that each configuration is se-
lected, and the allocation of the clusters to the depots that provides the
minimum latency for that configuration. At each of the 𝑁𝑐 iterations, if
the current 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 has not yet been stored in the list, it is stored
with the respective latency and the allocation of the clusters to the de-
pots. On the other hand, if the current 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 has been already
stored in the list, the number of times that the corresponding depot
configuration has been selected is updated, and if the latency associated
with the new allocation is smaller than that previously stored, the best
latency, and the respective allocation are updated. At the end of the
𝑁𝑐 iterations, the solution corresponding to the depot configuration
with the minimum latency is selected. Each cluster is considered an
open route, which starts from the assigned depot, and the sequence of
the customers is as done at Step 4. Finally, the list of the promising
depot configurations is sorted according to the number of times that
each configuration was selected, putting in the first positions those

configurations that were selected more times. This list will be used in
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the perturbation procedure described in Section 2.2.2. For the LLRP, a
splitting procedure is applied to add new vehicles if the number of open
routes currently created is smaller than 𝑁𝑣. The splitting procedure is
erformed based on the idea that the total latency decreases by adding
ew routes for the same or different depots. It consists of a local search
rocedure with the following steps.

• Select the route 𝑟 containing the longest edge (𝑖, 𝑗) (where 𝑖 and
𝑗 ∈ 𝑉 ′).

• Split the route 𝑟 (starting from depot ℎ) by removing edge (𝑖, 𝑗).
Two new sub-routes (𝑟1 and 𝑟2) are created. 𝑟1 is the sub-route
starting from depot ℎ and composed of the customers belonging
to route 𝑟 until customer 𝑖. 𝑟2 is the sub-route composed by the
customers of route 𝑟 from customer 𝑗 to the final customer of
route 𝑟.

• Assign sub-route 𝑟2 to the best depot by considering its current or
its reverse sequence, so as to minimize the corresponding latency.

• The procedure is performed until the number of routes of the
current solution equals 𝑁𝑣.

-Step 7 : Apply the LKH-3 heuristic for each depot with its assigned
routes, solving a CCVRP or a 𝑘-TRP depending if the problem to solve
is a MDCCVRP/LLRP or a MD𝑘-TRP, respectively.

-Step 8: Apply the local search procedure LS until no improvement is
found (for more details about the procedure LS, see Section 2.2.1). This
procedure allows infeasible solutions in terms of vehicle capacity. These
solutions are penalized by using a factor 𝑎, defined as a percentage of
the solution value provided at the end of Step 7.

Although there are similarities between the algorithm proposed
in this paper and those proposed in Escobar et al. (2013, 2014b,a),
substantial differences are pointed out in the following. The major
difference is given by the improvement phase of the proposed algorithm
(which will be described in the next section) since all the mentioned
works presented a tabu-search-based approach, while this paper pro-
poses an iterated local search algorithm. Furthermore, due to the
differences in the cumulative and classical vehicle routing problems,
there are several differences concerning the construction of the initial
solution and the diversification/intensification strategies between this
paper and the mentioned works. Regarding the construction of the
initial solution, in Step 4, the mentioned works use the LKH heuristic
to solve a TSP and to calculate the values 𝑙𝑖𝑗 , while in this paper,
the 𝐼𝑛𝑡𝑟𝑎𝐿𝑆 procedure was specifically designed for solving a TRP.
In preliminary computational experiments, an approach where the
TRPs were solved using the LKH-3 heuristic was tested, but it led to
extremely high computing times for large-size instances. In addition,
the construction of the initial solution presented in the mentioned
papers does not ensure that 𝑚𝑖𝑛{𝑁𝑐 , 𝑁𝑣} vehicles will be used, while
the procedure proposed in this paper does it. Another important differ-
ence is the inclusion of the binary vector storing the promising depot
configurations. It is noted that in the previously mentioned works, the
best configuration of the depots is first selected, and then no change
of the used depots is performed. This situation may lead to skipping
promising parts of the search space.

2.2. Improvement phase: Iterated local search algorithm (ILS)

In this phase, the algorithm tries to improve the initial solution 𝑠0 by
applying an Iterated Local Search (ILS) procedure. The ILS algorithms
have been successfully applied to a wide number of combinatorial
optimization problems, and the main idea is to explore new regions
of the solution space by applying a perturbation when a local optimum
is reached. For further details about the ILS algorithms the reader is
referred to Lourenço et al. (2019).

For the proposed ILS, the current solution 𝑠𝑐 and the best feasible
solution 𝑠𝑏𝑓 are initially equal to the initial solution 𝑠0. The three steps
of the ILS are described in this section. Note that the local search
procedure LS (step 2) is explained before the perturbation step since
the neighborhoods and the local search procedures are used in the three
5

steps of the algorithm.
2.2.1. Local search
In this section, the search space and the neighborhoods are de-

scribed. The proposed algorithm accepts solutions infeasible with re-
spect to the vehicle capacity to avoid local optima and extend the
search space. Thus, the value of the objective function 𝑓 (𝑠𝑐 ) of a
solution 𝑠𝑐 , feasible or not, is given by the following formula:

𝑓 (𝑠𝑐 ) = 𝑓 (𝑠𝑐 ) + 𝑎𝑓 (𝑠0)𝛥𝑄𝑉 (9)

where 𝑓 (𝑠𝑐 ) is the sum of the arrival times at the customers, 𝑓 (𝑠0) is
the value of the objective function corresponding to the initial solution
𝑠0 found at Step 8 of the constructive procedure, and 𝛥𝑄𝑉 is the total
amount of load violating the capacities of the vehicles. It is noted that
for the feasible solutions the second term of (9) is equal to zero, and
for the case of the MD𝑘-TRP, this term is always equal to zero. The best
improvement strategy is used in the local search-based procedures.

The proposed algorithm executes the following five types of moves:
𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝, 2−𝑜𝑝𝑡, 𝑎𝑟𝑐−𝑠𝑤𝑎𝑝, and 𝑠ℎ𝑖𝑓 𝑡2−1. All the neighborhoods,
except 𝑠ℎ𝑖𝑓 𝑡2−1, can be applied for the intra-route and the inter-route
cases. For the inter-route case, the moves can be applied for routes
starting from the same or from different depots. The neighborhoods are
the following ones:

• 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛: A customer 𝑖 is transferred from its current position to
another position just after node 𝑗. Note that the selected customer
can be moved to a different position in the same or in different
routes.

• 𝑠𝑤𝑎𝑝: Two customers (𝑖 and 𝑗) exchange their positions, either in
the same route or between different routes.

• 2 − 𝑜𝑝𝑡: This move is a classical version of the well-known 2 −
𝑜𝑝𝑡 move for the TSP, in which two non-consecutive edges are
removed, and the routes are reconnected differently. Note that if
the two selected edges are in the same route, the two opt move
is equivalent to that described by Lin and Kernighan (1973). In
particular, two edges (𝑖, 𝑗) and (𝑘, 𝑙) are deleted, and two new
edges are created. When the move is applied to edges belonging
to the same route, the edges (𝑖, 𝑗) and (𝑘, 𝑙) are deleted, then the
edges (𝑖, 𝑘) and (𝑗, 𝑙) are created, and the connection from 𝑘 to 𝑗
is reversed. On the other hand, when the move is related to two
different routes, a crossing is applied: the edges (𝑖, 𝑗) and (𝑘, 𝑙),
with the edge (𝑖, 𝑗) in route 1 and the edge (𝑘, 𝑙) in route 2, are
deleted, then the edges (𝑖, 𝑙) and (𝑘, 𝑗) are created, and the initial
customers of routes 1 and 2 (until nodes 𝑖 and 𝑘, respectively)
are merged with the final customers of routes 2 and 1 (from
customers 𝑙 and 𝑗, respectively).

• 𝑎𝑟𝑐 − 𝑠𝑤𝑎𝑝: Two pairs of consecutive customers (𝑖, 𝑗) and (𝑘, 𝑙) are
swapped with respect to their current positions. The two pairs of
customers can belong to the same or to different routes.

• 𝑠ℎ𝑖𝑓 𝑡2−1: Two consecutive customers (𝑖, 𝑗) assigned to route 𝑟1
exchange their current positions with that of the customer 𝑘 in
the route 𝑟2, with 𝑟1 ≠ 𝑟2.

The local search procedure LS (step 2), calls for exploring all the
mentioned neighborhoods and applying the move which improves the
most the current solution. The procedure stops when no improvement
move is found.

2.2.2. Perturbation procedure
Since the ILS procedure can fail in finding a move to improve the

current solution, the algorithm tries to escape from a local optimum by
perturbing the current solution. The perturbation procedure considers
three possible perturbations applied with different frequencies. The
‘‘less-aggressive’’ perturbations are called 𝑅𝑜𝑢𝑡𝑒 − 𝑆𝑤𝑎𝑝 and 𝑅𝑜𝑢𝑡𝑒 −
𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, and the ‘‘most aggressive’’ one is called 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 −
𝑆𝑤𝑎𝑝. 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is applied every 𝑖𝑡𝑒𝑟𝑠𝑜𝑓𝑡 iterations,
𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑤𝑎𝑝 every 𝑖𝑡𝑒𝑟ℎ𝑎𝑟𝑑 iterations, while the 𝑅𝑜𝑢𝑡𝑒−𝑆𝑤𝑎𝑝
is applied at each iteration if no other perturbation is applied. The
descriptions of the perturbations are given in the following para-
graphs (where it is assumed that each random choice is performed by
considering the same probability with respect to the possible choices):
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• 𝑅𝑜𝑢𝑡𝑒−𝑆𝑤𝑎𝑝: We use an exchange scheme involving two routes.
The procedure randomly selects two routes 𝑟1 and 𝑟2 belonging
to two different depots 𝑖 and 𝑗, respectively. A new solution
𝑠 is obtained by considering the following move: remove the
route 𝑟1 from the depot 𝑖 and assign it to the depot 𝑗; remove
route 𝑟2 from the depot 𝑗 and assign it to the depot 𝑖. Since the
new routes may not generate good solutions, an intra-route local
search procedure (𝐼𝑛𝑡𝑟𝑎𝐿𝑆) is applied to 𝑟1 and 𝑟2. The 𝐼𝑛𝑡𝑟𝑎𝐿𝑆
procedure sequentially explores each 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝, and 2 − 𝑜𝑝𝑡
neighborhood for the considered route until no improvement is
found for the considered neighborhood.

• 𝑅𝑜𝑢𝑡𝑒 −𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛: This perturbation procedure randomly selects
a depot 𝑖 with more than one route assigned. Then, the procedure
randomly selects a route 𝑟1 belonging to the depot 𝑖. A new
solution 𝑠 is obtained by considering the following move: remove
the route 𝑟1 from the depot 𝑖 and assign it to a different depot 𝑗,
which is randomly selected from all the remaining used depots.
Then, the 𝐼𝑛𝑡𝑟𝑎𝐿𝑆 procedure is applied to the route 𝑟1.

• 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑤𝑎𝑝: This perturbation procedure swaps the
current depot configuration (called 𝐶1) with the first one in the
list of promising configurations (called 𝐶2). The list is sorted
according to the number of times each configuration has been
selected for the initial solution. Each time a configuration is
evaluated, it is removed from the list. After picking 𝐶2, Steps 7 -
8 of the constructive procedure are applied to construct the new
solution. It is to note that, before applying the swapping, the LKH-
3 heuristic and the LS procedure are applied to the best solution
found during the exploration of the configuration 𝐶1.

For the exceptional cases in which the depot configuration considers
nly one available depot (with assigned routes), the perturbations
𝑜𝑢𝑡𝑒 − 𝑆𝑤𝑎𝑝 and 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 are replaced by random moves
pplied under a simulated annealing framework described in Sec-
ion 2.2.3. These random moves are applied to the current solution. If
here are no more promising configurations to evaluate, 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−
𝑤𝑎𝑝 is skipped, and 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is applied to the best feasible

olution. In this case, the perturbation procedure is not applied to the
urrent solution. Note that 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 cannot be applied when
ll the available depots in the current configuration have only one
ssociated route.

The idea of applying different levels of aggressiveness in the per-
urbations is based on the fact that if only the ‘‘less-aggressive’’ pertur-
ations are applied, the algorithm stacks into local-optimum solutions.
fter the application of 𝑅𝑜𝑢𝑡𝑒−𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 or 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑤𝑎𝑝, the
roposed local search operators cannot find the same local-optimum so-
ution found previously. Indeed, these perturbation procedures change
he allocation of routes to depots.

.2.3. The SA-VND search procedure
The SA-VND procedure is presented in Algorithm 2.
This procedure starts by applying a simulated annealing frame-

ork (see Steps 1 to 11 of Algorithm 2). RandomMove(𝑠𝑐) denotes
he solution obtained by generating random moves with the same
robability using the following neighborhoods: 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝, and

2 − 𝑜𝑝𝑡. The current temperature 𝑡𝑒𝑚𝑝 is set to an initial temperature
0. The SA procedure is applied until the minimum temperature 𝑡𝑓
s reached (𝑡𝑒𝑚𝑝 ≤ 𝑡𝑓 ). A new solution 𝑠𝑝 is generated by applying
o the current solution 𝑠𝑐 one of the mentioned random moves, and
t is accepted as the new 𝑠𝑐 if one of the following conditions holds
i.e., 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝑡𝑒𝑚𝑝, 𝑠𝑝, 𝑠𝑐) is true): (𝑖) 𝛥𝑓 = 𝑓 (𝑠𝑐 ) − 𝑓 (𝑠𝑝) > 0,
here 𝑓 (𝑠𝑐 ) and 𝑓 (𝑠𝑝) are the objective function values of the solutions
𝑐 and 𝑠𝑝, respectively; or (𝑖𝑖) if 𝛥𝑓 ≤ 0 and 𝑟 < exp(𝛥𝑓∕𝑡𝑒𝑚𝑝) where 𝑟 is a
niform random number in the interval [0, 1]. If 𝑓 (𝑠𝑐 ) < 𝑓 (𝑠𝑏𝑓 ), and 𝑠𝑐
s feasible (i.e., 𝐼𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑠𝑐 ) is 𝑡𝑟𝑢𝑒), the current solution is updated
s the best feasible solution 𝑠𝑏𝑓 found so far. Then, the value of 𝑡𝑒𝑚𝑝 is
6

educed according to a cooling factor 𝛼.
After the SA framework, a variable neighborhood descent (VND)
rocedure is applied to the current solution 𝑠𝑐 (see Steps 12 to 30 of
lgorithm 2). Denote by 𝑁𝑒𝑖𝑔ℎ = {𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑠𝑤𝑎𝑝, 2 − 𝑜𝑝𝑡, 𝑎𝑟𝑐 −
𝑤𝑎𝑝, 𝑠ℎ𝑖𝑓 𝑡2−1} the set of the five previously described neighbor-
oods, and consider 𝑛𝑔 ∈ 𝑁𝑒𝑖𝑔ℎ as the 𝑛𝑔th neighborhood of the
urrent solution 𝑠𝑐 . In addition, 𝑠𝑜𝑙(𝑛𝑔, 𝑠𝑐 ) denotes the solution obtained
y exploring the neighborhood 𝑛𝑔 starting from the solution 𝑠𝑐 . The

neighborhoods are explored according to the order in which they are
listed in the set 𝑁𝑒𝑖𝑔ℎ. In the VND procedure, the exploration starts
from the first neighborhood, which is explored until no improvement
is found. Then, the search moves to the next neighborhood, and the
process is repeated until the last neighborhood does not improve the
current solution 𝑠𝑐 . Otherwise, the search is restarted from the first
neighborhood. If no improvement is found for all the neighborhoods,
the VND procedure ends. Each time that a move is applied to the
current solution 𝑠𝑐 , if 𝑓 (𝑠𝑐 ) < 𝑓 (𝑠𝑏𝑓 ), and 𝑠𝑐 is feasible, the current
solution 𝑠𝑐 is updated as the best feasible solution 𝑠𝑏𝑓 found so far.

Algorithm 2: The SA-VND search procedure.
Input: 𝑡0, 𝑡𝑓 , 𝛼, 𝑠𝑐 , 𝑠𝑏𝑓 , 𝑁𝑒𝑖𝑔ℎ
Output: 𝑠𝑐 (𝑁𝑒𝑤 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), 𝑠𝑏𝑓 (𝑁𝑒𝑤 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
/* simulated annealing procedure */

1 𝑡𝑒𝑚𝑝 = 𝑡0
2 while (𝑡𝑒𝑚𝑝 > 𝑡𝑓 ) do
3 𝑠𝑝 = RandomMove(𝑠𝑐)
4 if (𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝑡𝑒𝑚𝑝, 𝑠𝑝, 𝑠𝑐 )) then
5 𝑠𝑐 = 𝑠𝑝
6 if (𝑓 (𝑠𝑐 ) < 𝑓 (𝑠𝑏𝑓 ) 𝑎𝑛𝑑 𝐼𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑠𝑐 )) then
7 𝑠𝑏𝑓 = 𝑠𝑐
8 end
9 end
10 𝑡𝑒𝑚𝑝 = 𝛼 ∗ 𝑡𝑒𝑚𝑝
11 end

/* variable neighborhood descent procedure */
12 𝑓𝑙𝑎𝑔𝑣𝑛𝑑 = 𝑡𝑟𝑢𝑒
13 while (𝑓𝑙𝑎𝑔𝑣𝑛𝑑 = 𝑡𝑟𝑢𝑒) do
14 𝑓𝑙𝑎𝑔𝑣𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒
15 for (𝑒𝑎𝑐ℎ 𝑛𝑔 ∈ 𝑁𝑒𝑖𝑔ℎ) do
16 𝑓𝑙𝑎𝑔𝑛𝑒𝑖𝑔ℎ = 𝑡𝑟𝑢𝑒
17 while (𝑓𝑙𝑎𝑔𝑛𝑒𝑖𝑔ℎ = 𝑡𝑟𝑢𝑒) do
18 𝑠𝑣𝑛𝑑 = 𝑠𝑜𝑙(𝑛𝑔, 𝑠𝑐 )
19 if (𝑓 (𝑠𝑣𝑛𝑑 ) < 𝑓 (𝑠𝑐 )) then
20 𝑠𝑐 = 𝑠𝑣𝑛𝑑
21 𝑓𝑙𝑎𝑔𝑣𝑛𝑑 = 𝑡𝑟𝑢𝑒
22 if (𝑓 (𝑠𝑐 ) < 𝑓 (𝑠𝑏𝑓 ) 𝑎𝑛𝑑 𝐼𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑠𝑐 )) then
23 𝑠𝑏𝑓 = 𝑠𝑐
24 end
25 else
26 𝑓𝑙𝑎𝑔𝑛𝑒𝑖𝑔ℎ = 𝑓𝑎𝑙𝑠𝑒
27 end
28 end
29 end
30 end
return: 𝑠𝑐 , 𝑠𝑏𝑓

2.3. Lower bounds

This section describes two lower bounds, 𝐿𝐵1 and 𝐿𝐵2, proposed
or both the MDCCVRP and the MD𝑘-TRP. Note that lower bounds

for the LLRP have been already proposed in Moshref-Javadi and Lee
(2016). The lower bounds for the MDCCVRP and the MD𝑘-TRP gener-

alize those proposed in Ngueveu et al. (2010) for the CCVRP.
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Lower bound LB1: The first lower bound does not restrict the vehicle
fleet size and considers one vehicle (i.e., one route) for each customer.
The optimal solution for the unrestricted fleet problem is to assign each
customer to its closest depot. The value of this solution is a valid lower
bound for the considered problem:

𝐿𝐵1 =
∑

𝑖∈𝑉 ′
min
𝑗∈𝐷

{𝑐𝑖𝑗} (10)

Lower bound LB2: The second lower bound assumes a cardinality
alanced solution, i.e., a solution where the routes visit an equal
umber of edges (i.e. of customers) or at most one edge of difference
etween the route with the largest number of edges and that with the
mallest number of edges. Let us define 𝑁𝐸𝑘 as the number of edges
ssociated with route 𝑘,∀𝑘 ∈ 𝐾. The first (𝑁𝑐 𝑚𝑜𝑑 𝑁𝑣) routes are
omposed of ⌈

𝑁𝑐
𝑁𝑣

⌉ edges, while the last 𝑁𝑣 − (𝑁𝑐 𝑚𝑜𝑑 𝑁𝑣) routes are

omposed by ⌊

𝑁𝑐
𝑁𝑣

⌋ edges.
For the cumulative (latency) routing problems, the edges from the

ast customer of a given route to the associated depot do not affect the
bjective function. Therefore, it is unnecessary to consider them in the
olution. Thus, as the total number of edges of a given solution equals
he number of customers, 𝐿𝐵2 considers 𝑁𝑐 edges. The first 𝑁𝑣 edges

must correspond to the shortest edges between depots and customers,
while the last (𝑁𝑐 − 𝑁𝑣) edges must correspond to the shortest edges
between customers. Let us also define the sets 𝐸𝐷𝐶 ⊂ 𝐸 and 𝐸𝐶𝐶 ⊂ 𝐸
as the sets of the edges between depots and customers and between
two different customers, respectively. The vectors 𝐶𝐸𝐷𝐶 and 𝐶𝐸𝐶𝐶
contain the travel time associated with each edge in 𝐸𝐷𝐶 and 𝐸𝐶𝐶,
respectively. The edges in the sets 𝐸𝐷𝐶 and 𝐸𝐶𝐶 are sorted according
to ascending values of 𝐶𝐸𝐷𝐶 and 𝐶𝐸𝐶𝐶, respectively.

The proposed lower bound can be computed as described in Al-
orithm 3. 𝐿𝐵2 corresponds to the sum of the estimated latencies

associated with each route. Due to the nature of the latency functions,
the edges at the initial positions of the routes have the largest impact
on the value of 𝐿𝐵2. The procedure for the computation of this lower
bound sorts the edges of the graph to include the shortest edges at the
first positions of each route. Note that the routes must be sorted in
descending order according to the value of 𝑁𝐸𝑘. The shortest edges
are included within the routes with the largest 𝑁𝐸𝑘 values (i.e., those
having the largest impact on the value of the objective function). 𝐿𝐵2
is divided into two parts: 𝐿𝐵2𝑎, associated with the edges from the
depots to the customers, and 𝐿𝐵2𝑏, associated with the edges between
two different customers.

It is important to remark that 𝐿𝐵2 has been previously proposed
in Ngueveu et al. (2010) and then generalized in Moshref-Javadi and
Lee (2016). The definition of 𝐿𝐵2 presented in Ngueveu et al. (2010)
and Moshref-Javadi and Lee (2016) is given by Eq. (11), where 𝑊𝑒
and 𝑊 ′

𝑒 represent the travel time of the 𝑒th shortest edge of the graph
between depots and customers, and between two different customers,
respectively.

𝐿𝐵2 =
𝑁𝑣
∑

𝑒=1
⌈∗⌉

𝑁𝑐 +𝑁𝑣 − 𝑒 − (𝑁𝑐 𝑚𝑜𝑑 𝑁𝑣)
𝑁𝑣

𝑊𝑒

+
𝑁𝑐−𝑁𝑣
∑

𝑒=1
⌈∗⌉

𝑁𝑐 − 𝑒 − (𝑁𝑐 𝑚𝑜𝑑 𝑁𝑣)
𝑁𝑣

𝑊 ′
𝑒 (11)

Considering an instance with 𝑁𝑐 = 𝑁𝑣 = 5, it is possible to show
hat Eq. (11) does not define a valid lower bound for this instance.
he optimal solution is to visit each customer on a different route.
ence, each edge connecting the depots to the customers impacts

he objective function value once, while the edges connecting two
ustomers (corresponding to the second summation of (11)) give no
ontribution; nevertheless, according to the first summation of (11),
he first 4 (i.e., 𝑁𝑣 − 1) shortest edges connecting the depots to the
ustomers impact two times on the objective function value.
7

Algorithm 3: LB2
Input: 𝐸𝐷𝐶, 𝐸𝐶𝐶, 𝐶𝐸𝐷𝐶, 𝐶𝐸𝐶𝐶, 𝑁𝐸, 𝑁𝑣, 𝑁𝑐
Output: 𝐿𝐵2

1 𝐿𝐵2𝑎 = 0, 𝐿𝐵2𝑏 = 0
/* Computation of LB2a */

2 for (𝑖 = 1 𝑡𝑜 𝑁𝑣) do
3 𝑘 = 𝑖
4 𝑅𝐸𝑘 = 𝑁𝐸𝑘
5 𝐿𝐵2𝑎 = 𝐿𝐵2𝑎 + 𝐶𝐸𝐷𝐶𝑖𝑅𝐸𝑘
6 𝑅𝐸𝑘 = 𝑅𝐸𝑘 − 1
7 end
/* Computation of LB2b */

8 𝑘 = 1
9 𝑖 = 1
10 for (𝑖 = 1 𝑡𝑜 (𝑁𝑐 −𝑁𝑣)) do
11 if (𝑘 > 𝑁𝑣) then
12 k=1
13 end
14 𝐿𝐵2𝑏 = 𝐿𝐵2𝑏 + 𝐶𝐸𝐶𝐶𝑖𝑅𝐸𝑘
15 𝑅𝐸𝑘 = 𝑅𝐸𝑘 − 1
16 𝑘 = 𝑘 + 1
17 end
18 𝐿𝐵2 = 𝐿𝐵2𝑎 + 𝐿𝐵2𝑏
return: 𝐿𝐵2

3. Computational results

The overall algorithm (M-ILS) has been implemented in C++, and
the computational experiments have been performed on an Intel(R)
Core(TM) i7-8700K CPU @ 3.70 GHz with 32 GB RAM, under Linux
Ubuntu 18.04 operative system (single thread). The travel time matrix
for all the considered instances was calculated with double precision.
The ILP model (3)–(8) has been optimally solved using the ILP solver
CPLEX 20.1 (IBM, 2021) under the default parameters configuration
(one thread).

Since the previously published papers used different computers, the
corresponding computing times are scaled using a ‘‘scaling factor’’,
which approximates the original computing times reported in each
published paper to the expected computing time of the processor used
in our experiments. The ‘‘scaling factor’’ is based on the PassMark per-
formance test (https://www.cpubenchmark.net/), which is focused on
evaluating the CPU and memory performance. Higher ‘‘Single Thread
Rating’’ values indicate that the corresponding CPU is faster (consid-
ering one thread). The value of each ‘‘scaling factor’’ is calculated as
the ratio between the ‘‘Single Thread Rating’’ value of each computer
and the ‘‘Single Thread Rating’’ value of the computer used in our
experiments. The details are presented in Table 3.

The tables showing the computational results obtained by the pro-
posed algorithm (M-ILS) and by the state-of-the-art methods for the
solution of the MDCCVRP, the MD𝑘-TRP, and of the LLRP are presented
in Sections 3.3–3.5, respectively.

For each instance, the following values are given:

• Instance: Name of the instance.
• 𝑁𝑐 : Number of customers.
• 𝑁𝑑 : Number of depots.
• 𝑁𝑣: Number of vehicles.
• BKS: Best known solution value considering all the algorithms.

The underlined values have not been proved to be optimal.

For each algorithm and for each instance, the following values are
eported:

• Best: Best solution value found. When the value of Best is equal
to the corresponding BKS, it is presented in boldface.

https://www.cpubenchmark.net/
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Table 3
Details of the computers used in each published paper.

Author Wang et al. (2020) Damião et al. (2021) Bruni et al. (2022a), and
Nucamendi-Guillén et al.
(2022)

Us

Computer Intel Core i5-4210M @
2.60 GHz

Intel Core i7-3770 @
3.40 GHz

Intel Core i5-6300U @
2.40 GHz

Intel Core i7-8700K @
3.70 GHz

Single thread rating 1679 2071 1676 2750
Scaling factor 0.61 0.75 0.61 1
T
o
s
t

b

Table 4
Best configuration of parameters for each problem.

Problem 𝑖𝑡𝑚𝑎𝑥 𝑖𝑡𝑠𝑜𝑓𝑡 𝑖𝑡ℎ𝑎𝑟𝑑 𝑡0 𝑡𝑓 𝛼 𝑎

MDCCVRP 200 18 20 500 10 0.98 0.1
MD𝑘-TRP 200 18 30 500 5 0.98 –
LLRP 200 15 20 400 10 0.90 5

• 𝑔𝑎𝑝𝐵 : Percentage gap between Best and BKS, computed as 𝑔𝑎𝑝𝐵 =
100 (𝐵𝑒𝑠𝑡−𝐵𝐾𝑆)

𝐵𝐾𝑆 .
• Avg: Average solution value computed over 30 runs for the PLS

heuristic algorithm (see Wang et al. (2020)), and computed over
30, 10, and 5 runs for the M-ILS algorithm.

• 𝑡𝑖𝑚𝑒: Global computing time for finding the Best value (expressed
in seconds).

.1. Parameter tuning

For selecting the correct parameters of the M-ILS metaheuristic,
he iterated racing for automatic algorithm configuration IRACE software

has been used. IRACE is a well-known calibration tool that has been
used successfully for tuning the parameters of different metaheuristic
algorithms for several combinatorial optimization problems. Details
about the elitist procedures applied by the software can be found
in López-Ibáñez et al. (2016).

Because of the significant differences of the instances composing the
considered benchmark data sets, the parameter tuning was performed
separately for each of the three problems. For each problem, the
training set is a sample of 1∕3 of the corresponding instances of each
data set. The values analyzed for each parameter were the following:
𝑖𝑡𝑚𝑎𝑥:{50, 100, 150, 200}, 𝑖𝑡𝑠𝑜𝑓𝑡:{5, 10, 15, 18}, 𝑖𝑡ℎ𝑎𝑟𝑑 :{20, 25, 30, 40}
(both 𝑖𝑡𝑠𝑜𝑓𝑡 and 𝑖𝑡ℎ𝑎𝑟𝑑 as a percentage of 𝑖𝑡𝑚𝑎𝑥), 𝑡0:{100, 200, 300, 400,
500}, 𝑡𝑓 :{0.5, 1, 5, 10}, 𝛼:{0.90, 0.95, 0.98, 0.99}, and 𝑎:{0.1, 0.3,
0.5, 1, 3, 5} as a percentage of the value of the initial solution 𝑠0. The
elected configurations for each problem are presented in Table 4.

.2. An analysis of each ingredient of the M-ILS algorithm

This section presents an analysis regarding the quality of the solu-
ion obtained and the computing time required by each ingredient of
he proposed algorithm. Furthermore, the efficiency of the local search
rocedures and the importance of each neighborhood structure are
tudied. This analysis is performed to evaluate the main contribution
f each ingredient of the proposed approach to the quality of the
olution concerning the objective function value and the computing
ime. For each problem, we have considered a set of unique parameters
described in the previous section) for analyzing the behavior of each
ngredient of the proposed algorithm. It is to note that the global contri-
ution of each ingredient remains even if the values of the parameters
re changed.

Table 5 presents the global average results obtained by removing
he different ingredients of the M-ILS algorithm and by executing 5 runs
or each instance. The columns of the table correspond to the following
alues:

• M-ILS: The results obtained by the complete proposed algorithm.
• Initial Solution: The results obtained by the initial Constructive

procedure, removing the ILS procedure (see Section 2.1).
8

t

• M-ILS (wLS): The results obtained by the proposed algorithm
when the local search procedure (step 2 of the algorithm) is
removed.

• M-ILS (wSA-VND): The results obtained by the proposed algo-
rithm when the SA-VND procedure (step 3 of the algorithm) is
removed.

• M-ILS (wLKH-3): The results obtained by the proposed algorithm
when the LKH-3 procedure is removed from the first part of the
perturbation 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑤𝑎𝑝 and from the final part of the
Improvement phase.

In order to evaluate, for each problem and for each data set, the
quality of the initial solution and the effect of removing step 2, step 3,
and the LKH-3 procedure from the M-ILS algorithm, the following val-
ues (with the averages computed over all the corresponding instances)
are considered.

• 𝐴−𝐵𝑒𝑠𝑡: Average of the best solution values (𝐵𝑒𝑠𝑡) found by the
considered algorithm.

• 𝐴 − 𝐴𝑣𝑔: Average of the average solution values found for each
run by the considered algorithm.

• 𝐴 − 𝑡𝑖𝑚𝑒 (avg): Average of the average computing times required
for each run by the considered algorithm.

• 𝐴−𝑔𝑎𝑝𝐵0: Average of the percentage gaps 𝑔𝑎𝑝𝐵0 between the val-
ues of 𝐵𝑒𝑠𝑡 found by the considered algorithm and 𝐵𝐾𝑆0, where
𝐵𝐾𝑆0 represents the currently published best known solution
value for the respective instance, with 𝑔𝑎𝑝𝐵0 = 100 (𝐵𝑒𝑠𝑡−𝐵𝐾𝑆0)

𝐵𝐾𝑆0
.

• 𝑙𝑒𝑞 𝐵𝐾𝑆0: The number of instances for which the best solution
value 𝐵𝑒𝑠𝑡 found by the considered algorithm is better than or
equal to 𝐵𝐾𝑆0.

The results reported in Table 5 show that the largest reduction
of the computing time is achieved when the SA-VND procedure is
removed. However, this also implies a considerable reduction of the
solution quality. On the other hand, the results indicate that when the
local search procedure LS (step 2) is removed, the computing time
increases, generally without affecting considerably the quality of the
solutions. These results suggest that the LS procedure helps to avoid
extensive explorations during the execution of the SA-VND procedure.
The results obtained by removing the LKH-3 procedure are worse
than those obtained by the complete algorithm for all the data sets
but the MDCCVRP data set lr, for which the results obtained by the
two versions of the algorithm are similar. In all the cases, there is
a reduction of the computing times; nevertheless, by considering the
most complex data sets it is clear that by not considering the LKH-3
procedure the quality of the solution is negatively affected. Concerning
the initial Constructive procedure, it is possible to note that it can
provide reasonably good quality solutions in very short computing
times; indeed, it can find solution values that are better than or equal
to 𝐵𝐾𝑆0 for 5 instance for the MDCCVRP, for 10 instances for the MD𝑘-

RP, and for 13 instances for the LLRP. Globally, the best results are
btained when all the parts of the M-ILS algorithm are considered. This
hows that all the ingredients of the proposed algorithm contribute to
he final solution and must be considered.

Another interesting analysis regards the importance of each neigh-
orhood in the local search (LS) and VND procedures. Fig. 2 presents

he percentage average contribution of each neighborhood for each
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Table 5
Average results obtained, for each problem and data set, when different parts of the M-ILS algorithm are removed.

Data set # Instances M-ILS Initial Solution M-ILS (wLS) M-ILS (wSA-VND) M-ILS (wLKH-3)

A-Best A-Avg A-
time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time (avg) A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0

MDCCVRP data sets

p-pr 33 9705.07 9762.53 138.5 0.27 13 9913.22 10 052.91 15.7 2.61 2 9714.97 9789.11 154.9 0.43 11 9773.40 9861.13 74.0 0.89 9 9735.35 9808.55 113.8 0.59 9
p-pr with 𝑁𝑣 = 35 24 5536.41 5547.76 176.5 0.17 4 5564.21 5 588.54 11.9 0.66 2 5537.26 5549.31 184.0 0.20 5 5541.51 5555.14 61.7 0.26 2 5541.23 5553.11 138.4 0.24 3
lr 21 3830.01 3839.59 32.0 0.08 14 3869.47 3 875.47 4.1 1.66 1 3832.21 3837.97 31.7 0.11 11 3832.11 3844.69 18.1 0.10 10 3829.87 3839.45 17.5 0.08 16
All the MDCCVRP instances 78 6840.66 6871.04 121.5 0.19 31 6947.90 7 016.10 11.4 1.76 5 6845.70 6882.33 130.7 0.27 27 6871.70 6916.40 55.2 0.48 21 6854.91 6892.12 95.4 0.35 28

MDk-TRP data sets

p-pr with reduced fleet 24 7270.43 7300.35 141.8 −0.03 6 7342.18 7 418.98 10.8 1.27 2 7285.38 7316.95 156.3 0.14 8 7290.91 7330.29 55.1 0.30 4 7278.75 7314.82 121.1 0.08 6
p-pr with 𝑁𝑣 = 35 24 5529.99 5541.86 188.2 0.14 5 5564.08 5 584.10 17.1 0.69 2 5534.07 5547.23 202.3 0.20 5 5539.96 5553.43 78.0 0.27 3 5535.04 5547.80 151.7 0.20 7
lr 21 3830.41 3837.34 39.3 0.09 14 3868.50 3 875.37 6.8 1.65 1 3832.76 3840.14 40.3 0.13 12 3833.68 3845.40 26.6 0.14 12 3831.33 3838.80 21.3 0.10 13
lr with reduced fleet 18 6367.18 6394.93 21.4 0.24 10 6526.54 6 575.17 2.7 2.30 5 6359.69 6397.76 21.6 0.16 12 6405.57 6450.80 14.9 0.76 8 6363.67 6398.89 14.8 0.20 10
All the MDk-TRP instances 87 5773.08 5792.02 108.1 0.10 35 5844.44 5 882.87 9.9 1.41 10 5777.35 5799.34 113.1 0.16 37 5790.21 5816.98 46.2 0.35 27 5776.27 5798.83 83.5 0.14 36

LLRP data sets

Tuzun-Burke 36 3814.16 3840.57 123.4 −0.22 22 3855.89 3 902.73 17.3 0.85 7 3816.82 3840.98 131.0 −0.16 23 3823.51 3849.32 106.6 0.01 15 3824.81 3853.05 76.8 0.04 18
Prodhon 30 1497.73 1503.61 76.4 −0.08 22 1511.46 1 527.72 10.6 1.09 5 1497.29 1503.80 77.1 −0.08 23 1498.71 1507.14 64.0 0.00 16 1501.09 1508.11 43.0 0.11 15
Barreto 10 9639.26 9815.04 39.3 0.58 6 9872.22 10 432.01 4.0 3.54 1 9616.07 9774.02 32.5 0.74 5 9592.40 9845.78 29.1 0.87 4 9740.23 9916.49 20.9 1.07 6
All the LLRP instances 76 3666.24 3704.20 92.8 −0.06 50 3722.08 3 824.34 12.9 1.30 13 3664.28 3699.08 96.8 −0.01 51 3664.89 3713.79 79.6 0.12 35 3685.89 3725.24 56.1 0.20 39
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Fig. 2. Percentage average contribution of the neighborhoods. (a) LS. (b) VND.
problem. The contribution is measured in terms of the ratio of the
number of times a move was applied, improving the current solution,
over all the applied moves.

Regarding the LS procedure (see Fig. 2.a), the neighborhoods 2−𝑜𝑝𝑡
and 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 correspond to those which produce the largest impact
on the effectiveness of the proposed algorithm. On the other hand,
due to the descent design of the VND procedure, the neighborhoods
explored at the beginning give the largest contribution to the final
solution (see Fig. 2.b), with the neighborhood 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (which is the
first neighborhood executed in the VND exploration), being the most
applied move. As it is possible to note, all the neighborhoods contribute
to the final solution in both procedures, even if some of them are not
intensively applied.

The perturbations play a crucial role for the success of M-ILS.
In order to evaluate the importance of the criterion based on the
level of aggressiveness used in the perturbation step, three different
versions of the M-ILS algorithm are compared with the original one.
The considered versions are the following:
-P1: 𝑅𝑜𝑢𝑡𝑒 − 𝑆𝑤𝑎𝑝 is removed and replaced by 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.
-P2: 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is removed and replaced by 𝑅𝑜𝑢𝑡𝑒 − 𝑆𝑤𝑎𝑝.
-P3: 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑤𝑎𝑝 is removed and replaced by 𝑅𝑜𝑢𝑡𝑒 −
𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

The comparison presented in Table 6 considers the same values
defined at the beginning of this subsection. The results show that the
original algorithm leads to the best global results regarding solution
quality for the three problems. The version P1 leads to results similar
to those obtained by the original version of M-ILS; nevertheless, P1 is
10
clearly outperformed by the original M-ILS when the most complex
instances are analyzed. Furthermore, in general, P1 requires larger
computing times than the original version of the algorithm. The reason
for the similar results obtained by the two versions is that the solution
space does not change when the perturbation 𝑅𝑜𝑢𝑡𝑒−𝑆𝑤𝑎𝑝 is applied.
With respect to P2, it is possible to note that also this version obtains
results similar to those obtained by the original algorithm for the
three problems in similar computing times; nevertheless, for the three
problems, the original version is clearly more stable (see columns
Avg and 𝑔𝑎𝑝𝐵0). It is to note that the perturbation 𝑅𝑜𝑢𝑡𝑒 − 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
modifies the search space since the number of routes assigned to
each used depot is changed; nevertheless, this search space can be
potentially explored when new depot configurations are evaluated by
applying 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑤𝑎𝑝, since the allocation of routes to depots
is changed. Finally, the results show that P3 leads to the worst results in
terms of solution quality among all the analyzed versions. By removing
𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑆𝑤𝑎𝑝 it is possible to achieve a considerable reduction
in the computing times; however, by avoiding an important part of the
solution space associated with the used depots, worse-quality solutions
are obtained.

3.3. The multi-depot cumulative capacitated vehicle routing problem (MD-
CCVRP)

There are four papers in the literature for the solution of the
MDCCVRP: the POPMUSIC matheuristic (Lalla-Ruiz and Voß, 2020),
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Table 6
Average results obtained, for each problem and data set, when different perturbations of the M-ILS algorithm are removed.

Data set # Instances M-ILS P1 P2 P3

A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time
(avg)

A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0 A-Best A-Avg A-time (avg) A-𝑔𝑎𝑝𝐵0 #leq 𝐵𝐾𝑆0

MDCCVRP data sets

p-pr 33 9705.07 9762.53 138.5 0.27 13 9743.62 9832.10 205.0 0.48 11 9702.28 9770.17 137.9 0.25 10 9731.71 9802.57 123.3 0.69 11
p-pr with 𝑁𝑣 = 35 24 5536.41 5547.76 176.5 0.17 4 5534.92 5548.19 213.8 0.18 5 5536.53 5549.04 174.0 0.18 4 5540.44 5555.85 151.2 0.25 3
lr 21 3830.01 3839.59 32.0 0.08 14 3829.50 3835.28 31.0 0.06 14 3832.80 3839.30 31.6 0.15 11 3835.07 3844.56 20.3 0.19 10
All the MDCCVRP instances 78 6840.66 6871.04 121.5 0.19 31 6856.37 6899.45 160.9 0.27 30 6840.27 6874.59 120.4 0.20 25 6854.53 6891.81 104.2 0.42 24

MDk-TRP data sets

p-pr with reduced fleet 24 7270.43 7300.35 141.8 −0.03 6 7277.45 7309.53 182.8 0.08 6 7273.97 7300.96 142.0 0.02 8 7285.04 7313.76 129.7 0.19 7
p-pr with 𝑁𝑣 = 35 24 5529.99 5541.86 188.2 0.14 5 5532.96 5545.72 226.9 0.19 5 5535.82 5546.76 193.5 0.24 4 5531.51 5545.77 170.0 0.17 4
lr 21 3830.41 3837.34 39.3 0.09 14 3829.80 3838.10 38.8 0.06 14 3834.46 3840.50 43.3 0.19 9 3834.07 3842.76 25.6 0.16 9
lr with reduced fleet 18 6367.18 6394.93 21.4 0.24 10 6360.22 6377.35 24.1 0.17 11 6368.72 6398.71 21.7 0.28 11 6380.28 6419.18 13.8 0.43 9
All the MDk-TRP instances 87 5773.08 5792.02 108.1 0.10 35 5774.25 5792.17 127.4 0.12 36 5776.96 5795.09 107.5 0.17 32 5781.12 5803.13 91.7 0.22 29

LLRP data sets

Tuzun-Burke 36 3814.16 3840.57 123.4 −0.22 22 3818.79 3843.25 142.1 −0.13 19 3815.69 3842.29 121.6 −0.20 24 3826.03 3865.87 63.8 0.02 17
Prodhon 30 1497.73 1503.61 76.4 −0.08 22 1498.19 1504.66 84.0 −0.05 19 1499.70 1505.99 76.3 0.01 21 1501.77 1510.83 41.0 0.24 14
Barreto 10 9639.26 9815.04 39.3 0.58 6 9605.93 9695.45 34.3 0.61 5 9524.81 9846.84 32.0 0.56 7 9649.27 9809.65 12.9 2.05 3
All the LLRP instances 76 3666.24 3704.20 92.8 −0.06 50 3664.23 3690.15 105.0 0.00 43 3652.68 3710.14 91.9 −0.02 52 3674.77 3718.32 48.1 0.37 34
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the PLS heuristic algorithm (Wang et al., 2020), the branch-and-cut-
and-price algorithm (BCP) (Damião et al., 2021), and the two MILP
formulations presented in Nucamendi-Guillén et al. (2022). For the
MDCCVRP, the M-ILS algorithm is executed for each instance with a
number of runs equal to 30, 10 and 5.

Since in Wang et al. (2020) the heuristic algorithm PLS has been
shown to be more effective than the matheuristic POPMUSIC in terms of
both the solution values and the computing times, the latter algorithm
is not considered in the following.

In Damião et al. (2021), the authors presented computational results
for two configurations of the BCP, one obtained by fixing a small
value for the maximum number of customers that can be visited in the
same route (BCP𝑓𝑖𝑥), and the other without fixing this value (BCP𝑛𝑓 ).
According to the results reported in Damião et al. (2021), BCP𝑓𝑖𝑥
dominates the non-fixed version since it can find the optimal solution
for all the instances solved to proven optimality by BCP𝑛𝑓 , but within
shorter computing times. In addition, BCP𝑓𝑖𝑥 can find feasible solutions
for 14 instances for which BCP𝑛𝑓 runs out of memory without finding
a feasible solution. Of course, the solutions found by BCP 𝑓𝑖𝑥 for these
14 instances are not proved to be optimal.

In order to present a fair comparison, the global computing times
reported in Tables 7–9 for each instance correspond to: (𝑖) for PLS to
the average computing time reported in Wang et al. (2020) multiplied
by 30 (number of runs) and by the scaling factor (0.61); (𝑖𝑖) for BCP to
the scaled computing times (considering a scaling factor equal to 0.75)
reported for BCP𝑓𝑖𝑥 in Damião et al. (2021), and (𝑖𝑖𝑖) for the two formu-
lations to the scaled computing time (considering a scaling factor equal
to 0.61) of the fastest between the two MILP models, as the computing
time of each separate model was not reported in Nucamendi-Guillén
et al. (2022). The computing times reported for M-ILS correspond to the
average computing times multiplied by the respective number of runs.
Furthermore, for each number of runs of M-ILS the following values are
reported:

• 𝑔𝑎𝑝𝑃𝐿𝑆 : Percentage gap between the Best solution value found by
M-ILS (𝐵𝑒𝑠𝑡) and the Best solution value found by PLS (Best𝑃𝐿𝑆 ),
computed as 𝑔𝑎𝑝𝑃𝐿𝑆 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝑃𝐿𝑆 )

𝐵𝑒𝑠𝑡𝑃𝐿𝑆
.

• 𝑔𝑎𝑝𝐵𝐶𝑃 : Percentage gap between the Best solution value found
by M-ILS and the Best solution value found by BCP (Best𝐵𝐶𝑃 ),
computed as 𝑔𝑎𝑝𝐵𝐶𝑃 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝐵𝐶𝑃 )

𝐵𝑒𝑠𝑡𝐵𝐶𝑃
.

.3.1. The p-pr data set
The computational results corresponding to the 33 instances of

he data set p-pr are reported in Table 7. This data set contains the
ost challenging MDCCVRP instances due to the large number 𝑁𝑐

f customers and the small number 𝑁𝑣 of vehicles (generally, the
maller 𝑁𝑣, the more difficult is the instance Lalla-Ruiz and Voß, 2020;
amião et al., 2021). According to the results reported in Table 7, only

he metaheuristic algorithms, i.e., PLS and M-ILS, can find a feasible
olution for all the instances in this data set. BCP𝑓𝑖𝑥 can find the
roven optimal solution for 18 instances and the best-known feasible
olution for 6 instances (no feasible solution is found for the remaining
instances).

For the 9 instances for which BCP𝑓𝑖𝑥 runs out of memory with-
ut a feasible solution, M-ILS provides the new best-known solu-
ion value (outperforming the solution value provided by PLS), in-
ependently of the number of runs. The corresponding values of LB
nd 𝑔𝑎𝑝𝐿𝐵 (where 𝑔𝑎𝑝𝐿𝐵 is the percentage gap between 𝐵𝐾𝑆 and
𝐵, computed as 𝑔𝑎𝑝𝐿𝐵 = 100 (𝐵𝐾𝑆−𝐿𝐵)

𝐿𝐵 ) for these instances are the
ollowing: p08: 14 444.3 (19.58%), p09: 11 742.3 (27.045%), p11:
883.96 (43.27%), p21: 21 397.1 (19.18%), p22: 20 822.2 (16.85%),
23: 20 247.4 (16.67%), pr05: 6436.69 (52.34%), pr06: 7434.05
46.26%), and pr10: 7645.9 (48.25%). Furthermore, considering the
4 instances for which BCP𝑓𝑖𝑥 provides the best-known solution value,
-ILS (executed for 30 and 10 runs) finds the optimal solution value
12

c

for 7 instances, and the average percentage gap between the best
solution value provided by M-ILS and BKS is equal to 0.29% when
M-ILS is executed for 30 runs. The global average computing time
required by BCP𝑓𝑖𝑥 for solving these 24 instances is 1.6 times larger
than that required by M-ILS (executed for 30 runs). No computing
time has been reported in Damião et al. (2021) for the 9 instances for
which BCP𝑓𝑖𝑥 runs out of memory without finding a feasible solution.
Therefore, it is impossible to compute the global average computing
time (considering all the 33 instances) associated with this algorithm.
The corresponding values of LB and 𝑔𝑎𝑝𝐿𝐵 for the 6 instances for which
BCP provides the best known feasible solution value are the follow-
ing: p10: 10 478.5 (33.84%), p18: 13 535.5 (16.14%), p19: 13 097.9
(15.33%), p20: 12 672.8 (15.15%), pr04: 5559.22 (63.18%), and pr09:
5586.49 (61.60%). On the other hand, the MILP formulations can solve
optimally only two small-size instances (with up to 50 customers)
and provide, within the time limit, feasible solutions for 7 additional
instances with up to 100 customers, with an average percentage value
of 𝑔𝑎𝑝𝐵 equal to 2.48%. For the 9 instances for which the MILP
formulations are able to provide a solution, the average percentage
value of 𝑔𝑎𝑝𝐹 (where 𝑔𝑎𝑝𝐹 is the percentage gap between the Best
solution value found by M-ILS and the Best solution value found by
the formulations (𝐵𝑒𝑠𝑡𝐹 ), computed as 𝑔𝑎𝑝𝐹 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝐹 )

𝐵𝑒𝑠𝑡𝐹
) is equal

to −2.18%, −2.13%, and −1.99% when M-ILS is executed for 30, 10
and 5 runs, respectively. Since the MILP formulations are dominated
by BCP, the results associated with them are not reported in Table 7.

By comparing the best results provided by the heuristic algorithms
PLS and M-ILS (both executed for 30 runs) on the 33 instances of this
data set, it is possible to see that M-ILS provides better solutions than
PLS for 27 instances, the same solution value for 4 instances and worse
solution values only for 2 instances. The final average percentage value
of 𝑔𝑎𝑝𝑃𝐿𝑆 equals −0.92%. However, it is to note that, although M-
ILS provides better quality solutions than PLS, the computing times
required by PLS are clearly smaller than those required by M-ILS.

For all the instances but one, the Avg. solution value provided
by M-ILS is better than the Avg. solution value provided by PLS.
Furthermore, for 12 instances, the Avg. solution value provided by M-
ILS is better than the best solution value reported for PLS. The global
average percentage gap between the average solution value provided
by M-ILS and the best solution value provided by PLS is equal to
0.16%. This indicates that M-ILS is more stable than PLS, hence it
needs fewer runs to provide good-quality solutions. Indeed, reducing
the number of runs to 10 and 5, the number of instances for which M-
ILS provides better solution values than those found by PLS equals 27
and 24, respectively. For 4 (resp. 3) instances, both heuristic algorithms
found the same solution value when M-ILS is executed for 30 (resp.
10 and 5) runs. Globally, the 𝑔𝑎𝑝𝑃𝐿𝑆 value is equal to −0.72% and to
−0.57% by considering 10 and 5 runs, respectively; this means that
independently of the number of runs, M-ILS overcomes PLS in terms of
solution quality. For 11 and 13 instances, the average solution value
provided by M-ILS is better than the best value found by PLS when,
respectively, 10 and 5 runs are considered for M-ILS. In addition, when
M-ILS is executed for 5 runs, the average solution value provided by M-
ILS is equal to the best solution value found by PLS for two instances.
Thus, the reduction in the number of runs does not significantly affect
the quality of the solutions provided by the proposed algorithm. In
contrast, the global computing time of M-ILS is drastically reduced to
very competitive ones with respect to those of PLS.

3.3.2. The p-pr data set with 𝑁𝑣 = 35
The p-pr data set with 𝑁𝑣 = 35 is composed of 24 instances,

and the corresponding computational results are reported in Table 8.
BCP𝑓𝑖𝑥 can obtain a proven optimal solution for 16 instances and the
est-known feasible solution for the remaining 8 instances. The MILP
ormulations cannot find a feasible solution for 9 large-size instances,
nd the largest-size instance that can be solved optimally considers 192

ustomers. The columns gap𝐵𝐶𝑃 and gap𝐹 are not reported in Table 8,
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Table 7
Detailed results for the MDCCVRP p-pr data set.

Instance 𝑁𝑐 𝑁𝑑 𝑁𝑣 BKS PLS BCP M-ILS 30 runs M-ILS 10 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 𝑔𝑎𝑝𝐵𝐶𝑃 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 𝑔𝑎𝑝𝐵𝐶𝑃 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 𝑔𝑎𝑝𝐵𝐶𝑃

p01 50 4 11 1 055.35 1055.35 1 095.44 26.7 0.00 1055.35 2.1 0.00 1055.35 1 071.27 451.5 0.00 0.00 0.00 1055.35 1 070.70 153.9 0.00 0.00 0.00 1055.35 1071.85 77.3 0.00 0.00 0.00
p02 50 4 5 2 016.18 2 055.40 2 149.54 58.0 1.95 2016.18 44.9 0.00 2016.18 2 047.63 612.3 0.00 −1.91 0.00 2016.18 2 047.35 202.8 0.00 −1.91 0.00 2 020.17 2 046.77 103.9 0.20 −1.71 0.20
p03 75 5 11 1 749.29 1 758.70 1 809.51 59.7 0.54 1749.29 25.8 0.00 1 762.49 1 799.85 1 046.3 0.75 0.22 0.75 1 762.49 1 796.47 362.7 0.75 0.22 0.75 1 773.19 1 796.09 182.2 1.37 0.82 1.37
p04 100 2 15 2 537.59 2618.88 2 703.37 153.4 3.20 2537.59 748.5 0.00 2 552.67 2 635.03 2 503.9 0.59 −2.53 0.59 2 591.08 2 640.48 744.9 2.11 −1.06 2.11 2 591.08 2 644.37 335.9 2.11 −1.06 2.11
p05 100 2 8 3 749.92 3 766.20 3 824.49 181.9 0.43 3749.92 939.0 0.00 3 754.39 3 790.63 1 928.3 0.12 −0.31 0.12 3 754.39 3 783.05 672.8 0.12 −0.31 0.12 3 754.39 3 776.43 339.0 0.12 −0.31 0.12
p06 100 3 16 2 131.61 2 160.93 2 188.17 94.8 1.38 2131.61 80.3 0.00 2 132.97 2 164.93 2 402.3 0.06 −1.29 0.06 2 143.65 2 164.89 802.9 0.56 −0.80 0.56 2 143.65 2 166.16 391.6 0.56 −0.80 0.56
p07 100 4 16 2 108.89 2 142.11 2 181.18 109.4 1.58 2108.89 118.5 0.00 2 140.15 2 183.26 2 288.7 1.48 −0.09 1.48 2 141.06 2 180.23 780.4 1.53 −0.05 1.53 2 160.59 2 177.81 391.8 2.45 0.86 2.45
p08 249 2 25 17 272.00 17 393.46 17 862.13 644.2 0.70 – – – 17272.00 17 516.46 7 061.0 0.00 −0.70 – 17 302.20 17 495.97 2 411.7 0.17 −0.52 – 17 302.20 17 414.82 1219.9 0.17 −0.52 –
p09 249 3 26 14 918.00 15 041.69 15 448.98 492.8 0.83 – – – 14918.00 15 021.94 6719.0 0.00 −0.82 – 14918.00 14 997.55 2 416.8 0.00 −0.82 – 14918.00 14 976.50 1189.1 0.00 −0.82 –
p10 249 4 26 14 024.58 14 265.77 14 619.35 522.5 1.72 14024.58 13 887.8 0.00 14 089.20 14 322.70 6 787.8 0.46 −1.24 0.46 14 237.00 14 366.55 2194.2 1.51 −0.20 1.51 14 237.00 14 341.92 1 141.0 1.51 −0.20 1.51
p11 249 5 26 14 161.20 14 381.43 14 552.90 518.8 1.56 – – – 14161.20 14 404.70 6 523.5 0.00 −1.53 – 14 269.20 14 435.03 2 123.2 0.76 −0.78 – 14 289.70 14 409.52 1060.0 0.91 −0.64 –
p12 80 2 8 5 494.36 5494.36 5 536.40 71.4 0.00 5494.36 63.1 0.00 5494.36 5 495.85 1 129.8 0.00 0.00 0.00 5494.36 5 497.45 377.5 0.00 0.00 0.00 5494.36 5494.36 196.6 0.00 0.00 0.00
p13 80 2 9 4 914.66 4914.66 4926.54 74.1 0.00 4914.66 48.0 0.00 4914.66 4 914.83 970.1 0.00 0.00 0.00 4914.66 4 914.83 314.8 0.00 0.00 0.00 4914.66 4914.66 145.6 0.00 0.00 0.00
p14 80 2 10 4 491.64 4 510.12 4 512.28 71.0 0.41 4491.64 44.6 0.00 4491.64 4 492.13 894.3 0.00 −0.41 0.00 4491.64 4 492.59 299.3 0.00 −0.41 0.00 4491.64 4491.64 144.4 0.00 −0.41 0.00
p15 160 4 16 10 590.41 10 662.27 10 747.26 230.4 0.68 10590.41 534.0 0.00 10 629.80 10 676.81 2 653.0 0.37 −0.30 0.37 10 646.80 10 683.73 885.2 0.53 −0.15 0.53 10 668.00 10 683.38 435.3 0.73 0.05 0.73
p16 160 4 17 10 008.28 10 086.50 10 122.13 196.0 0.78 10008.28 624.8 0.00 10 016.10 10 070.56 2 548.3 0.08 −0.70 0.08 10 055.40 10 074.89 904.4 0.47 −0.31 0.47 10 055.40 10 073.96 456.8 0.47 −0.31 0.47
p17 160 4 18 9 493.84 9 538.69 9 573.86 194.0 0.47 9493.84 313.5 0.00 9 495.91 9 518.63 2 465.7 0.02 −0.45 0.02 9512.48 9 522.32 841.4 0.20 −0.27 0.20 9 512.48 9 523.62 420.8 0.20 −0.27 0.20
p18 240 6 24 15 720.73 15 912.27 16 072.75 376.2 1.22 15720.73 9 405.8 0.00 15 847.80 15 948.26 4 978.6 0.81 −0.41 0.81 15 847.80 15 940.73 1 670.6 0.81 −0.41 0.81 15 850.30 15 920.10 846.7 0.82 −0.39 0.82
p19 240 6 25 15 105.26 15 255.02 15 370.98 346.8 0.99 15105.26 1 598.3 0.00 15 224.80 15 301.79 4 749.4 0.79 −0.20 0.79 15 224.80 15 293.53 1 522.0 0.79 −0.20 0.79 15 268.80 15 318.90 766.6 1.08 0.09 1.08
p20 240 6 26 14 592.52 14 709.23 14 786.87 333.8 0.80 14592.52 1 582.5 0.00 14 635.70 14 708.73 4 736.2 0.30 −0.50 0.30 14 636.90 14 700.60 1 599.3 0.30 −0.49 0.30 14 649.00 14 699.60 802.0 0.39 −0.41 0.39
p21 360 9 34 25 500.80 25 770.35 26 102.29 725.0 1.06 – – – 25500.80 25 892.53 10 982.1 0.00 −1.05 – 25 632.20 25 943.27 3 724.9 0.52 −0.54 – 25 632.20 25 878.44 1795.3 0.52 −0.54 –
p22 360 9 35 24 330.70 24 451.01 24 816.85 674.5 0.49 – – – 24330.70 24 608.60 10 342.0 0.00 −0.49 – 24330.70 24 606.22 3 433.2 0.00 −0.49 – 24 448.70 24 531.56 1676.4 0.48 −0.01 –
p23 360 9 36 23 622.80 23 656.13 23 925.16 598.0 0.14 – – – 23622.80 23 784.41 9 638.3 0.00 −0.14 – 23622.80 23 750.51 3 255.1 0.00 −0.14 – 23 636.50 23 754.00 1609.1 0.06 −0.08 –
pr01 48 4 4 3 748.11 3748.11 3 773.27 61.7 0.00 3748.11 38.8 0.00 3 768.69 3 768.69 444.5 0.55 0.55 0.55 3 768.69 3 768.69 149.8 0.55 0.55 0.55 3 768.69 3768.69 73.0 0.55 0.55 0.55
pr02 96 4 8 4 834.46 4 973.36 5 000.74 169.8 2.87 4834.46 318.0 0.00 4834.46 4 854.38 983.3 0.00 −2.79 0.00 4834.46 4859.87 325.2 0.00 −2.79 0.00 4 846.47 4 864.04 168.2 0.25 −2.55 0.25
pr03 144 4 11 8 353.05 8 357.54 8 470.56 339.8 0.05 8353.05 1 401.8 0.00 8 357.54 8 424.14 1 955.7 0.05 0.00 0.05 8383.72 8426.87 657.1 0.37 0.31 0.37 8 401.06 8 422.54 322.9 0.57 0.52 0.57
pr04 192 4 14 9 071.44 9 274.00 9 585.47 728.2 2.23 9071.44 41 308.5 0.00 9156.38 9 324.65 4 431.6 0.94 −1.27 0.94 9 161.21 9 308.96 1 519.6 0.99 −1.22 0.99 9 161.21 9 256.52 717.8 0.99 −1.22 0.99
pr05 240 4 19 9 805.38 10 075.01 10 283.54 967.3 2.75 – – – 9805.38 10 025.37 7 502.8 0.00 −2.68 – 9 861.20 10 078.00 2 434.5 0.57 −2.12 – 9 861.20 10 051.80 1221.3 0.57 −2.12 –
pr06 288 4 23 10 873.00 11 071.00 11 234.57 1043.1 1.82 – – – 10873.00 10 996.31 8 934.9 0.00 −1.79 – 10873.00 10 971.04 3 052.6 0.00 −1.79 – 10873.00 10 993.04 1659.3 0.00 −1.79 –
pr07 72 6 6 4 760.65 4 877.86 4 906.62 120.4 2.46 4760.65 207.0 0.00 4760.65 4 787.68 731.8 0.00 −2.40 0.00 4760.65 4 790.07 240.3 0.00 −2.40 0.00 4 770.53 4 795.37 119.3 0.21 −2.20 0.21
pr08 144 6 12 6 997.11 7 141.88 7 265.17 343.1 2.07 6997.11 1 395.0 0.00 7 049.50 7 131.65 2 961.0 0.75 −1.29 0.75 7 049.50 7 116.86 971.2 0.75 −1.29 0.75 7 049.50 7 102.81 488.6 0.75 −1.29 0.75
pr09 216 6 17 9 027.82 9 219.95 9 350.34 675.8 2.13 9027.82 21 477.0 0.00 9 147.07 9 327.58 5 598.4 1.32 −0.79 1.32 9 191.35 9 305.49 1 837.2 1.81 −0.31 1.81 9 191.35 9 295.98 922.4 1.81 −0.31 1.81
pr10 288 6 24 11 335.10 11 693.45 11 811.29 989.1 3.16 – – – 11335.10 11 493.69 9 038.6 0.00 −3.06 – 11335.10 11 531.23 3 040.6 0.00 −3.06 – 11 476.80 11 506.30 1438.4 1.25 −1.85 –
Global avg 9 648.39 9 758.57 9 897.27 369.4 1.23 – – – 9671.13 9772.90 4151.4 0.29 −0.92 – 9 691.52 9 774.43 1391.6 0.49 −0.72 – 9 705.07 9762.53 692.7 0.64 −0.57 –
Global avg BCP 6 940.74 7 020.80 7 107.18 230.8 1.17 6940.74 4 008.6 0.00 6 972.02 7031.74 2 510.5 0.39 −0.76 0.39 6 986.48 7 031.13 834.6 0.59 −0.56 0.59 6 992.87 7 026.98 416.2 0.71 −0.44 0.71
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Table 8
Detailed results for the MDCCVRP p-pr data set with 𝑁𝑣 = 35.

Instance 𝑁𝑐 𝑁𝑑 BKS PLS BCP M-ILS 30 runs M-ILS 10 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆

p01 50 4 712.50 713.18 717.44 41.0 0.10 712.50 1.9 0.00 712.50 714.18 1 930.2 0.00 −0.10 712.50 713.73 640.6 0.00 −0.10 712.74 714.09 319.3 0.03 −0.06
p02 50 4 712.50 713.59 716.78 40.6 0.15 712.50 3.8 0.00 712.50 713.65 1 875.5 0.00 −0.15 712.74 713.75 578.5 0.03 −0.12 712.74 713.73 251.5 0.03 −0.12
p03 75 5 950.25 952.17 959.03 61.7 0.20 950.25 11.6 0.00 950.25 953.90 1 859.2 0.00 −0.20 950.25 953.76 591.9 0.00 −0.20 950.25 953.49 292.3 0.00 −0.20
p04 100 2 1 955.31 1 955.82 1 959.14 95.5 0.03 1955.31 38.0 0.00 1955.31 1 955.97 3 646.5 0.00 −0.03 1 955.48 1 955.88 1238.7 0.01 −0.02 1 955.48 1 956.07 623.0 0.01 −0.02
p05 100 2 1 982.33 1 985.03 1 988.46 93.7 0.14 1982.33 58.5 0.00 1 982.35 1 984.17 3 177.4 0.00 −0.14 1 982.35 1 983.94 1114.8 0.00 −0.14 1 982.35 1 983.57 600.1 0.00 −0.14
p06 100 3 1 552.13 1 553.88 1 563.22 83.6 0.11 1552.13 28.0 0.00 1552.13 1 553.88 3 164.8 0.00 −0.11 1552.13 1 554.15 1122.5 0.00 −0.11 1 553.64 1 555.39 550.8 0.10 −0.02
p07 100 4 1 520.46 1 522.68 1 528.43 97.0 0.15 1520.46 26.6 0.00 1 520.97 1 524.03 3 161.4 0.03 −0.11 1 520.97 1 522.96 1103.9 0.03 −0.11 1 520.97 1 521.73 523.4 0.03 −0.11
p08 249 2 15 372.60 15 410.92 15 458.51 374.4 0.25 15372.60 937.5 0.00 15372.60 15 400.51 7 956.0 0.00 −0.25 15372.60 15 394.63 2640.7 0.00 −0.25 15 372.80 15 397.68 1422.1 0.00 −0.25
p09 249 3 13 070.74 13 136.24 13 335.06 340.4 0.50 13070.74 812.3 0.00 13 071.60 13 105.79 7 521.8 0.01 −0.49 13 078.60 13 112.53 2446.3 0.06 −0.44 13 078.60 13 108.02 1172.1 0.06 −0.44
p10 249 4 12 052.56 12 096.90 12 432.72 341.1 0.37 12052.56 735.0 0.00 12 070.50 12 155.06 7 577.5 0.15 −0.22 12 071.50 12 186.16 2581.9 0.16 −0.21 12 180.00 12 211.26 1315.3 1.06 0.69
p11 249 5 11 955.58 12 033.48 12 228.64 317.3 0.65 11955.58 935.3 0.00 11 995.90 12 051.88 7 297.0 0.34 −0.31 12 007.20 12 052.14 2456.6 0.43 −0.22 12 007.20 12 057.88 1247.2 0.43 −0.22
p12 80 2 2 897.06 2897.06 2 897.06 37.0 0.00 2897.06 17.3 0.00 2897.06 2897.06 1 426.2 0.00 0.00 2897.06 2897.06 471.6 0.00 0.00 2897.06 2897.06 238.3 0.00 0.00
p15 160 4 5 794.11 5794.11 5 794.11 95.2 0.00 5794.11 171.8 0.00 5794.11 5794.11 2 987.3 0.00 0.00 5794.11 5794.11 990.4 0.00 0.00 5794.11 5794.11 484.8 0.00 0.00
p18 240 6 11 433.91 11 469.49 11 546.91 225.6 0.31 11433.91 895.5 0.00 11 453.50 11 476.90 5 023.9 0.17 −0.14 11 454.00 11 476.24 1674.0 0.18 −0.14 11 454.00 11 471.48 829.0 0.18 −0.14
pr01 48 4 1 261.53 1 261.81 1 264.74 37.5 0.02 1261.53 3.1 0.00 1 262.43 1 266.58 1 315.9 0.07 0.05 1 263.67 1 266.62 445.9 0.17 0.15 1 263.67 1 267.06 221.1 0.17 0.15
pr02 96 4 2 572.84 2572.84 2 580.94 88.2 0.00 2572.84 37.7 0.00 2572.84 2 574.88 2 739.4 0.00 0.00 2572.84 2 573.91 985.4 0.00 0.00 2572.84 2 574.64 443.8 0.00 0.00
pr03 144 4 4 462.50 4 466.10 4 511.37 137.6 0.08 4462.50 122.3 0.00 4 464.91 4 475.65 4 596.5 0.05 −0.03 4 464.91 4 473.63 1539.2 0.05 −0.03 4 464.91 4 474.82 765.4 0.05 −0.03
pr04 192 4 5 804.15 5 813.87 5 863.56 233.7 0.17 5804.15 405.8 0.00 5 813.33 5 825.20 7 706.8 0.16 −0.01 5 813.87 5 825.33 2618.1 0.17 0.00 5 813.87 5 826.20 1309.2 0.17 0.00
pr05 240 4 7 120.22 7 157.06 7 225.66 372.0 0.52 7120.22 946.5 0.00 7 122.06 7 146.94 11 480.7 0.03 −0.49 7 123.63 7 149.97 3848.5 0.05 −0.47 7 123.63 7 149.70 1954.0 0.05 −0.47
pr06 288 4 8 603.85 8 685.68 8 874.53 499.4 0.95 8603.85 1732.5 0.00 8 607.46 8 657.63 13 211.5 0.04 −0.90 8 616.21 8 666.15 4299.8 0.14 −0.80 8 659.23 8 674.06 2166.5 0.64 −0.30
pr07 72 6 1 723.63 1 727.25 1 736.14 65.1 0.21 1723.63 13.1 0.00 1 725.55 1 727.74 2 162.5 0.11 −0.10 1 725.55 1 728.32 746.6 0.11 −0.10 1 725.61 1 729.78 402.3 0.11 −0.09
pr08 144 6 4 004.11 4 023.21 4 046.68 150.1 0.48 4004.11 118.5 0.00 4004.11 4 015.78 4 411.3 0.00 −0.47 4004.11 4 015.01 1487.3 0.00 −0.47 4 008.65 4 015.09 760.2 0.11 −0.36
pr09 216 6 5 889.02 5 937.19 6 043.29 268.6 0.82 5889.02 512.3 0.00 5 899.64 5 932.25 8 134.3 0.18 −0.63 5 904.08 5 923.84 2741.1 0.26 −0.56 5 904.08 5 920.67 1352.2 0.26 −0.56
pr10 288 6 9 113.49 9 166.57 9 336.73 523.4 0.58 9113.49 1555.5 0.00 9 135.86 9 177.17 11 912.7 0.25 −0.34 9 162.80 9 183.27 4035.7 0.54 −0.04 9 165.34 9 178.64 1932.6 0.57 −0.01
Global avg 5 521.56 5 543.59 5 608.71 192.5 0.28 5521.56 421.7 0.00 5 527.06 5 545.04 5 261.5 0.07 −0.22 5 529.71 5 546.55 1766.7 0.10 −0.18 5 536.41 5 547.76 882.4 0.17 −0.11
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Table 9
Detailed results for the MDCCVRP lr data set.

Instance 𝑁𝑐 𝑁𝑑 𝑁𝑣 BKS PLS BCP Formulations M-ILS 30 runs M-ILS 10 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑃𝐿𝑆

lr1 10 4 5 545.69 545.69 554.97 2.7 0.00 545.69 0.0 0.00 545.69 0.0 0.00 545.69 546.13 13.4 0.00 0.00 545.69 545.69 3.4 0.00 0.00 545.69 545.69 2.0 0.00 0.00
lr2 10 4 5 832.69 832.69 847.80 2.6 0.00 832.69 0.0 0.00 832.69 0.0 0.00 832.69 832.69 38.2 0.00 0.00 832.69 832.69 12.8 0.00 0.00 832.69 832.69 6.4 0.00 0.00
lr3 10 4 5 832.78 832.78 841.47 2.6 0.00 832.78 0.0 0.00 832.78 0.0 0.00 832.78 832.78 21.8 0.00 0.00 832.78 832.78 7.5 0.00 0.00 832.78 832.78 3.3 0.00 0.00
lr4 25 4 10 2082.28 2082.28 2099.58 11.5 0.00 2082.28 0.8 0.00 2082.28 0.3 0.00 2082.28 2082.57 377.7 0.00 0.00 2082.28 2083.14 124.0 0.00 0.00 2082.28 2083.43 60.7 0.00 0.00
lr5 25 4 10 1827.41 1827.41 1870.90 11.9 0.00 1827.41 0.8 0.00 1827.41 0.3 0.00 1827.41 1837.30 335.0 0.00 0.00 1827.41 1836.14 111.3 0.00 0.00 1827.41 1834.39 57.9 0.00 0.00
lr6 25 4 10 1786.95 1786.95 1808.86 11.9 0.00 1786.95 0.7 0.00 1786.95 0.3 0.00 1786.95 1786.95 229.1 0.00 0.00 1786.95 1786.95 79.2 0.00 0.00 1786.95 1786.95 41.3 0.00 0.00
lr7 50 4 20 5424.57 5424.57 5440.37 49.8 0.00 5424.57 14.2 0.00 5424.57 3.0 0.00 5424.57 5424.57 1382.5 0.00 0.00 5424.57 5424.57 450.6 0.00 0.00 5424.57 5424.57 242.7 0.00 0.00
lr8 50 4 20 3737.38 3737.38 3759.67 45.6 0.00 3737.38 12.5 0.00 3737.38 4.1 0.00 3737.38 3743.96 713.0 0.00 0.00 3737.38 3741.14 196.9 0.00 0.00 3737.38 3742.68 96.6 0.00 0.00
lr9 50 4 20 3802.88 3802.88 3811.65 49.0 0.00 3802.88 11.3 0.00 3802.88 3.7 0.00 3802.88 3808.52 838.8 0.00 0.00 3802.88 3808.80 288.5 0.00 0.00 3802.88 3811.90 129.7 0.00 0.00
lr10-25V 50 6 25 2866.73 2868.39 2883.50 111.6 0.06 2866.73 8.9 0.00 2866.73 3.4 0.00 2867.28 2874.88 1009.5 0.02 −0.04 2869.43 2874.55 311.0 0.09 0.04 2870.00 2876.04 147.2 0.11 0.06
lr11-25V 50 6 25 2978.78 2987.75 3008.88 116.6 0.30 2978.78 10.1 0.00 2978.78 4.0 0.00 2979.46 2992.10 803.0 0.02 −0.28 2979.46 2993.20 281.9 0.02 −0.28 2985.06 2995.79 118.3 0.21 −0.09
lr12-25V 50 6 25 3090.38 3095.52 3112.60 112.5 0.17 3090.38 9.8 0.00 3090.38 3.8 0.00 3090.38 3095.64 896.8 0.00 −0.17 3090.38 3095.38 322.1 0.00 −0.17 3093.25 3096.55 161.4 0.09 −0.07
lr10-20V 50 6 20 2969.83 – – – – 2969.83 9.6 0.00 – – – 2969.83 2992.04 1000.9 0.00 – 2969.83 2993.71 337.6 0.00 – 2969.83 2993.19 167.8 0.00 –
lr11-20V 50 6 20 3095.22 – – – – 3095.22 14.9 0.00 – – – 3095.22 3120.25 545.4 0.00 – 3113.23 3126.52 170.8 0.58 – 3113.81 3129.93 88.4 0.60 –
lr12-20V 50 6 20 3171.75 – – – – 3171.75 11.0 0.00 – – – 3174.98 3192.62 814.4 0.10 – 3184.43 3194.44 271.1 0.40 – 3188.09 3193.38 132.3 0.52 –
lr13 100 4 25 8288.43 8293.42 8331.27 111.8 0.06 8288.43 155.3 0.00 8288.43 78.8 0.00 8288.43 8324.16 1892.3 0.00 −0.06 8288.43 8331.18 629.4 0.00 −0.06 8288.43 8332.12 343.5 0.00 −0.06
lr14 100 4 25 7257.31 7273.03 7353.68 100.7 0.22 7257.31 158.3 0.00 7257.31 71.3 0.00 7257.31 7272.96 1925.0 0.00 −0.22 7257.31 7272.84 708.8 0.00 −0.22 7257.31 7275.67 346.4 0.00 −0.22
lr15 100 4 25 8626.13 8626.13 8644.64 133.0 0.00 8626.13 204.0 0.00 8626.13 49.5 0.00 8626.13 8643.77 2584.7 0.00 0.00 8626.13 8643.36 873.4 0.00 0.00 8626.13 8640.30 447.1 0.00 0.00
lr16 100 6 25 5265.30 5306.50 5483.36 128.8 0.78 5265.30 115.5 0.00 5265.30 66.1 0.00 5265.30 5281.53 1407.9 0.00 −0.78 5265.30 5278.95 475.4 0.00 −0.78 5268.68 5289.54 241.4 0.06 −0.71
lr17 100 6 25 6107.32 6141.07 6265.57 138.2 0.55 6107.32 132.0 0.00 6107.32 57.8 0.00 6107.32 6112.13 1638.5 0.00 −0.55 6107.32 6107.32 562.7 0.00 −0.55 6107.32 6107.32 274.7 0.00 −0.55
lr18 100 6 25 5788.73 5804.19 5905.71 143.3 0.27 5788.73 140.3 0.00 5788.73 66.3 0.00 5788.73 5811.51 1562.1 0.00 −0.27 5789.77 5811.17 499.3 0.02 −0.25 5789.77 5806.50 252.0 0.02 −0.25
Global avg 3827.55 – – – – 3827.55 48.1 0.00 – – – 3827.76 3838.53 953.8 0.01 – 3829.22 3838.79 319.9 0.05 – 3830.01 3839.59 160.1 0.08 –
Global avg PLS/Formulations 3952.32 3959.37 4001.36 71.3 0.13 3952.32 54.1 0.00 3952.32 22.9 0.00 3952.39 3961.34 981.6 0.00 −0.13 3952.56 3961.10 329.9 0.01 −0.13 3953.25 3961.94 165.1 0.03 −0.11
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since for all the instances the solution values provided by BCP𝑓𝑖𝑥 are
qual to BKS (so the value of 𝑔𝑎𝑝𝐵𝐶𝑃 is always equal to 𝑔𝑎𝑝𝐵), and all
he instances solved by the MILP formulations were solved to proven
ptimally (so the value of 𝑔𝑎𝑝𝐹 is equal to 𝑔𝑎𝑝𝐵 for these instances).
urthermore, by considering only the 15 instances for which the MILP
ormulations can provide the optimal solution, the global computing
ime required by the formulations is larger than that required by BCP𝑓𝑖𝑥

(134.4 s > 70.5 s). Since the MILP formulations are dominated by BCP,
the results associated with them are not reported in Table 8.

The global average value of 𝑔𝑎𝑝𝐵 obtained by M-ILS (with 30
runs) is equal to 0.07%. M-ILS finds the optimal solution value for 10
instances and near-optimal solution values (the largest 𝑔𝑎𝑝𝐵 value is
equal to 0.34%) for all the remaining ones. Compared to PLS, M-ILS
(with 30 runs) provides a better solution value for 20 instances, the
same solution value for 3 instances, and a worse solution value for
one instance. The global value of 𝑔𝑎𝑝𝑃𝐿𝑆 for M-ILS (with 30 runs) is
equal to −0.22%, while the global average percentage gap between the
Avg value provided by M-ILS and the best solution value obtained by
PLS is equal to 0.04%. Regarding the global computing time, M-ILS
presents large computing times when 30 runs are considered. However,
when the number of runs is reduced to 10 or to 5, the quality of the
solutions is not affected significantly, and the computing times decrease
considerably. The global values of 𝑔𝑎𝑝𝐵 are equal to 0.10% and 0.17%
when the number of runs is reduced to 10 and 5, respectively. M-ILS
provides better solution values than those obtained by PLS for 19 and
18 instances when 10 and 5 runs are considered, respectively.

The average solution value provided by M-ILS is better than (for 21
instances) or equal to (for two instances) the average solution value
provided by PLS, independently of the number of runs. Furthermore,
for 8 and 7 instances, the average solution value provided by M-ILS
considering 30 (or 5) and 10 runs, respectively, is better than the
best value provided by PLS. For two instances, these values are equal,
independently of the number of runs. The global average percentage
gap between the value Avg provided by M-ILS and the best solution
value obtained by PLS equals 0.05% and 0.07% when 10 and 5 runs
are considered, respectively.

For two instances, the average solution value provided by M-ILS
is equal to the optimal solution value independently of the number
of runs. In addition, the global percentage gap between the average
solution value provided by M-ILS and BKS is equal to 0.33% and 0.35%,
when M-ILS is executed with 30 (or 10) and 5 runs, respectively. A
single run may provide solution values close to BKS, making M-ILS
competitive with respect to the global computing time.

3.3.3. The lr data set
The lr data set is composed of 21 instances and corresponds to

the simplest data set due to the small number of customers and the
relatively large size of the fleet. The corresponding computational
results are reported in Table 9. This data set was proposed in Lalla-Ruiz
and Voß (2020) as a small data set which allows the exact methods to
find optimal solutions. Indeed, all the instances of this data set were
solved to proven optimality in Damião et al. (2021). Besides, all the
instances but three were also solved optimally in Nucamendi-Guillén
et al. (2022). For the same reasons given in the previous Section (3.3.2),
the columns 𝑔𝑎𝑝𝐵𝐶𝑃 and 𝑔𝑎𝑝𝐹 are not reported in Table 9.

By comparing the best results provided by the metaheuristic al-
orithms, it is possible to note that M-ILS (with 30 runs) provides
olutions better than those found by PLS for 8 instances, and the same
olution value for 10 instances. The value of 𝑔𝑎𝑝𝑃𝐿𝑆 is equal to −0.13%.
egarding the computing times, PLS is globally much faster than M-

LS. For all the instances, the Avg. solution value provided by M-ILS is
etter than the Avg. solution value provided by PLS. Furthermore, for
instances, the Avg. solution value provided by M-ILS is better than

he best solution value reported for PLS. For 4 instances, these values
re the same. The global average percentage gap between the average
16
olution value provided by M-ILS and the best solution value provided
y PLS is equal to 0.06%.

Also for this data set, the results indicate that M-ILS is more stable
han PLS; hence, it needs fewer runs to provide good-quality solutions.
ndeed, the number of instances for which M-ILS provides better solu-
ion values than those obtained by PLS is equal to 7 when the number
f runs is reduced to 10 or to 5. Furthermore, for 10 instances, both
lgorithms found the same solution value independently of the number
f runs executed by M-ILS.

Globally, the 𝑔𝑎𝑝𝑃𝐿𝑆 value is equal to −0.13% and −0.11% by con-
idering 10 and 5 runs, respectively, which means that independently of
he number of runs, M-ILS overcomes PLS in terms of solution quality.
urthermore, when the number of runs is equal to 10 (resp. 5), the
umber of instances for which the average solution value provided by
-ILS is better than the best solution value found by PLS is equal to 4

resp. 2), and for 5 instances these values are equal when 10 or 5 runs
re considered.

Comparing the results obtained by M-ILS versus the optimal solution
alues, it is possible to see that M-ILS can find the optimal solution
alue for 18, 16, and 14 instances, with a global value of 𝑔𝑎𝑝𝐵 equal to
.01%, 0.05%, and 0.08%, when respectively, 30, 10, and 5 runs are
xecuted. Furthermore, for 4 and 6 instances the average solution value
btained by M-ILS is equal to the optimal solution value by considering
0, and 10 (or 5) runs, respectively. In addition, the global percentage
ap between the average solution value provided by M-ILS and the
ptimal solution value is equal to 0.27%, 0.28%, and 0.30% when the
lgorithm is executed with 30, 10, and 5 runs, respectively. A single run
ay provide near-optimal solution values, making M-ILS competitive in

erms of computing time.

.3.4. Overall results on the MDCCVRP
Analyzing the results, it is possible to state that the proposed

lgorithm M-ILS overcomes PLS in terms of solution quality for all the
tudied data sets by executing 30, 10, or 5 runs. The global average
ercentage 𝑔𝑎𝑝𝑃𝐿𝑆 value is equal to −0.51%, -0.41%, and −0.31%

when M-ILS is executed with 30, 10, and 5 runs, respectively. As it
is possible to note, the current MILP formulations (Nucamendi-Guillén
et al., 2022), and the BCP algorithm (Damião et al., 2021) can manage
small-size instances in reasonable computing times. Indeed, BCP𝑓𝑖𝑥 can
olve medium and large-size instances with large fleet sizes. Neverthe-
ess, for the most challenging instances, the proposed M-ILS proved to
e the most effective algorithm for what concerns the solution quality,
roviding the best results within competitive computing times with
espect to PLS, and much shorter computing times with respect to BCP.
s a consequence of the stability in the performance shown by M-ILS,

he number of runs needed for obtaining good quality solutions is not
arge.

Regarding the proposed lower bounds, we found that the average
alue of 𝑔𝑎𝑝𝐿𝐵 for the 23 instances not solved to proven optimally
s equal to 26.48%. Despite this value is large, it does not mean that
he BKS values for these instances correspond to bad quality solutions.
ndeed, the average value of 𝑔𝑎𝑝𝐿𝐵 obtained by considering only the
nstances solved to proven optimally is equal to 14.31%, which means
hat the proposed lower bounds are not tight. It is possible to note that
he proposed lower bounds provide reasonable good approximations of
he optimal solution value for instances with a relative large number of
ehicles. The average value of 𝑔𝑎𝑝𝐿𝐵 obtained by considering only the

instances in the data sets p-pr with 𝑁𝑣 = 35 and lr is equal to 6.40%.
In order to compare the efficiency of the algorithm M-ILS with that

of the algorithm PLS, new experiments were carried out to compare the
quality of the solutions obtained by both algorithms within the same
global computing time, and to determine the computing time required
by M-ILS to reach for each instance a given target value. Let us consider,
for each instance, a target value (TV) given by the best solution value
obtained by the algorithm PLS and a time limit (TL) given by the global

computing time required by PLS to find the target value.
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Table 10
Average results obtained by each metaheuristic considering time limits and target values for each MDCCVRP data set.

Data set # Instances PLS M-ILS

TV TL Best𝑇𝐿 𝑔𝑎𝑝𝑇𝐿 #TV time𝑇𝐿
p-pr 33 9758.57 369.4 9718.85 −0.32 21 205.5
p-pr with 𝑁𝑣 = 35 24 5543.59 192.5 5545.27 0.02 15 155.5
lr 18 3959.37 71.3 3960.42 0.00 12 39.1
All the instances 75 7017.97 241.3 7001.28 −0.13 48 149.6
a

The summary of the average results of this experiment is presented
n Table 10 for each data set and for the overall set of instances. The
eported columns correspond to: the averages of the target values (TV)
nd of the time limits (TL), the average of the best solution value found
y M-ILS within the time limit (Best𝑇𝐿), the average of the percentage
ap between Best𝑇𝐿 and TV (𝑔𝑎𝑝𝑇𝑉 ), the number of instances for which
he target value is found by M-ILS within the time limit (#TV), and the
verage of the computing times required by M-ILS to reach the target
alues (time𝑇𝑉 ). It is to note that, for the instances for which M-ILS
annot find the target value, time𝑇𝑉 is equal to the time limit.

The results show that M-ILS is able to find globally better results
han PLS by considering the same global computing time for both
lgorithms (considering all the instances). It can be noted that M-
LS can find the target value (for 11 instances) or improve it (for
7 instances) for 48 out of the 75 considered instances within the
ime limit, obtaining a global average value of 𝑔𝑎𝑝𝑇𝑉 equal to -0.13%.
his means that M-ILS can find better quality solutions than those
btained by PLS within computing times slightly larger than half of the
imes reported for PLS. It is to note that M-ILS clearly dominates PLS
or the p-pr data set, which contains the most challenging instances.
or the other two data sets, both algorithms provide similar results,
evertheless, for each of the three considered data sets, M-ILS is able
o find or improve the target value for more than 60% of the instances
ithin the time limit.

As we proved in the previous sections, running the proposed meta-
euristic for a longer time leads to better solutions than those obtained
y the PLS algorithm. Nevertheless, this experiment also proved that
n general the proposed M-ILS is superior to the current state-of-the-art
etaheuristic when both algorithms compete with the same conditions.

.4. The multi-depot 𝑘-traveling repairman problem

In this sections we compare the proposed M-ILS algorithm with
he two mathematical formulations and the two configurations of the
enetic algorithm (GA in the tables) presented in Bruni et al. (2022a),
he only work in the literature dealing with the multi-depot 𝑘-traveling
epairman problem. For the MD𝑘-TRP, the M-ILS algorithm is executed
or each instance with a number of runs equal to 10, 5 and 1. It is to
ote that both configurations of the algorithm GA are executed with
single run (the stopping criterion being defined by the maximum

umber of iterations, whose value is defined depending on the size of
he instance.)

In order to present a fair comparison between M-ILS and the so-
ution methods proposed in Bruni et al. (2022a), for each instance
he global computing times presented in Tables 11–14 for the latter
ethods correspond to the scaled values (using a scaling factor equal

o 0.61) of:
(𝑖) the sum of the computing times reported in Bruni et al. (2022a)

or each configuration of GA (since there is no dominance between the
wo configurations), and

(𝑖𝑖𝑎) the computing time reported in Bruni et al. (2022a) of the
ominant formulation (Model 2) when the time limit is not reached,
r (𝑖𝑖𝑏) the sum of the computing times of both formulations when the
ime limit is reached for Model 2. Furthermore, for each number of runs
17

f M-ILS and each instance, also the following values are reported: u
• 𝑔𝑎𝑝𝐺𝐴: Percentage gap between the Best solution value found by
M-ILS (𝐵𝑒𝑠𝑡) and the Best solution value found by GA (Best𝐺𝐴),
computed as gap𝐺𝐴 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝐺𝐴)

𝐵𝑒𝑠𝑡𝐺𝐴
.

• 𝑔𝑎𝑝𝐹 : Percentage gap between the Best solution value found by M-
ILS and the Best solution value found by the Formulations (Best𝐹 ),
computed as gap𝐹 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝐹 )

𝐵𝑒𝑠𝑡𝐹
.

3.4.1. The p-pr data set with reduced fleet
The computational results corresponding to the 24 instances of

the p-pr data set with reduced fleet are reported in Table 11. This
data set was proposed in Bruni et al. (2022a), and contains the most
challenging MD𝑘-TRP instances due to the large number of customers
(𝑁𝑐) and the small number of vehicles (𝑁𝑣). According to the results
presented in Table 11, M-ILS (executed with 10 and 5 runs) can find
globally better solutions than those obtained by the formulations (with
values of 𝑔𝑎𝑝𝐹 equal to −0.05 and −0.03, respectively) in shorter
computing times (almost three and six times smaller, respectively).
The maximum value of 𝑔𝑎𝑝𝐵 associated with M-ILS, executed with
10 or 5 runs, is equal to 2.15%, while the maximum value of 𝑔𝑎𝑝𝐵
associated with the formulations is equal to 8.52%. M-ILS, executed
with 10 runs, can find the proven optimal solution value for 5 instances
and provides new best-known solution values for 3 large instances.
The corresponding values of LB and 𝑔𝑎𝑝𝐿𝐵 for the 8 instances for
which the formulations have not been solved to proven optimally are
the following: p09: 11 742.3 (25.47%), p10: 10 478.5 (34.13%), p11:
9883.96 (41.61%), p15: 9048.53 (14.61%), p18: 13 535.5 (15.86%),
pr05: 6436.69 (26.73%), pr06: 7434.05 (25.99%), and pr10: 7645.9
(29.09%).

Compared to GA, M-ILS is superior in terms of solution quality,
improving the global best solution value of GA by over 7%, even when
a single run is executed. M-ILS can find a better best solution value than
that found by GA for all the instances but one, when 10 and 5 runs are
executed, and for all the instances but 2 when a single run is performed.
The average solution value obtained by M-ILS by executing 10 or 5
runs is better than the best solution value obtained by GA for all the
instances but three. The global computing time required for executing
M-ILS with 5 runs is slightly smaller than the global computing time
required by GA. Nevertheless, the quality of the solutions provided
by M-ILS is clearly better. In addition, when M-ILS is executed with
a single run, the global computing time is 5 times smaller than the
global computing time required by GA, and the quality of the solutions
provided by M-ILS is still considerably better than that of GA.

3.4.2. The p-pr data set with 𝑁𝑣 = 35
Table 12 presents the results for the p-pr data set with 𝑁𝑣 = 35,

obtained by the p-pr data set with the reduced fleet by setting 𝑁𝑣 = 35
for all 24 instances. We found that for 10 instances of this data set, the
values reported in Bruni et al. (2022a) as optimal/best solution values
found by the formulations were smaller than the corresponding LB
values.1 The 10 instances with the respective values reported in Bruni
et al. (2022a), and the corresponding LB values are the following: p01:

1 We have jointly checked the results of the considered instances with the
uthors of Bruni et al. (2022a), who acknowledged an error in the procedure
sed to read the input files.
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Table 11
Detailed results for the MD𝑘-TRP p-pr data set with reduced fleet.
Instance 𝑁𝑐 𝑁𝑑 𝑁𝑣 BKS Formulations GA M-ILS 10 runs M-ILS 5 runs M-ILS 1 run

Best Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐹 𝑔𝑎𝑝𝐺𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐹 𝑔𝑎𝑝𝐺𝐴 Best Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐹 𝑔𝑎𝑝𝐺𝐴

p01 50 4 5 1 958.95 1 958.95 77.9 0.00 2 852.25 1.0 45.60 1958.95 1970.08 196.3 0.00 0.00 −31.32 1959.16 1971.88 98.1 0.01 0.01 −31.31 1971.12 21.3 0.62 0.62 −30.89
p02 50 4 5 1 958.95 1 958.95 77.5 0.00 2 117.80 1.2 8.11 1958.95 1970.08 196.2 0.00 0.00 −7.50 1959.16 1971.88 98.1 0.01 0.01 −7.49 1971.12 21.2 0.62 0.62 −6.93
p03 75 5 8 2 271.22 2 271.22 1886.1 0.00 2 407.24 1864.3 5.99 2291.56 2301.25 454.5 0.90 0.90 −4.81 2291.56 2302.12 226.3 0.90 0.90 −4.81 2296.51 44.1 1.11 1.11 −4.60
p04 100 2 10 3 122.13 3 122.13 973.1 0.00 3 271.47 1090.9 4.78 3128.16 3138.33 578.8 0.19 0.19 −4.38 3128.16 3133.11 291.7 0.19 0.19 −4.38 3128.65 56.0 0.21 0.21 −4.37
p05 100 2 10 3 103.26 3 103.26 346.8 0.00 3 320.63 252.1 7.00 3110.70 3127.44 619.3 0.24 0.24 −6.32 3110.70 3126.47 316.1 0.24 0.24 −6.32 3113.37 55.9 0.33 0.33 −6.24
p06 100 3 10 2 870.05 2 870.05 501.0 0.00 3 126.83 602.8 8.95 2881.00 2895.27 639.4 0.38 0.38 −7.86 2881.00 2893.13 328.6 0.38 0.38 −7.86 2881.00 60.9 0.38 0.38 −7.86
p07 100 4 10 2 899.07 2 899.07 3833.4 0.00 3 087.86 2318.1 6.51 2927.51 2958.16 630.0 0.98 0.98 −5.19 2927.51 2956.66 313.7 0.98 0.98 −5.19 2972.98 69.6 2.55 2.55 −3.72
p08 249 2 25 16 620.90 16620.90 3145.0 0.00 16 648.23 226.1 0.16 16 623.10 16 669.80 2263.9 0.01 0.01 −0.15 16 623.10 16 651.60 1126.8 0.01 0.01 −0.15 16 623.10 207.4 0.01 0.01 −0.15
p09 249 3 25 14 732.70 14 809.50 8784.0 0.52 14 816.49 502.5 0.57 14732.70 14 786.37 2474.8 0.00 −0.52 −0.57 14 736.70 14 779.98 1277.9 0.03 −0.49 −0.54 14 793.40 225.1 0.41 −0.11 −0.16
p10 249 4 25 14 054.90 14 116.10 8784.0 0.44 14 255.40 538.2 1.43 14054.90 14 088.27 2342.1 0.00 −0.43 −1.41 14054.90 14 086.50 1217.8 0.00 −0.43 −1.41 14 177.50 275.2 0.87 0.43 −0.55
p11 249 5 25 13 996.20 15 189.20 8784.0 8.52 15 209.67 454.3 8.67 13996.20 14 084.56 2428.0 0.00 −7.85 −7.98 14 009.00 14 101.48 1191.6 0.09 −7.77 −7.89 14 192.80 227.9 1.40 −6.56 −6.69
p12 80 2 8 5 479.51 5 479.51 3406.8 0.00 5 739.15 1100.1 4.74 5479.51 5480.73 400.8 0.00 0.00 −4.52 5479.51 5480.73 195.6 0.00 0.00 −4.52 5479.51 40.1 0.00 0.00 −4.52
p15 160 4 16 10 370.70 10370.70 8784.0 0.00 15 834.43 1271.1 52.68 10 593.90 10 605.93 883.1 2.15 2.15 −33.10 10 593.90 10 605.72 455.1 2.15 2.15 −33.10 10 593.90 99.0 2.15 2.15 −33.10
p18 240 6 24 15 682.10 15682.10 8784.0 0.00 16 884.47 715.6 7.67 15 702.30 15 770.61 1794.0 0.13 0.13 −7.00 15 702.30 15 750.56 912.3 0.13 0.13 −7.00 15 702.30 172.3 0.13 0.13 −7.00
pr01 48 4 5 3 036.43 3 036.43 164.7 0.00 3 245.12 3.4 6.87 3036.43 3036.43 185.4 0.00 0.00 −6.43 3036.43 3036.43 92.9 0.00 0.00 −6.43 3036.43 18.0 0.00 0.00 −6.43
pr02 96 4 10 4 092.51 4 092.51 1110.7 0.00 4 367.49 596.5 6.72 4110.50 4120.43 463.2 0.44 0.44 −5.88 4112.54 4117.15 249.0 0.49 0.49 −5.84 4112.54 53.1 0.49 0.49 −5.84
pr03 144 4 15 6 474.18 6 474.18 4334.5 0.00 7 024.86 1180.4 8.51 6482.60 6524.29 877.6 0.13 0.13 −7.72 6501.53 6531.16 419.7 0.42 0.42 −7.45 6562.09 80.3 1.36 1.36 −6.59
pr04 192 4 20 7 102.26 7 102.26 4252.0 0.00 7 687.69 745.9 8.24 7114.70 7143.20 1863.6 0.18 0.18 −7.45 7114.70 7140.08 936.0 0.18 0.18 −7.45 7114.70 185.5 0.18 0.18 −7.45
pr05 240 4 24 8 157.22 8 157.22 8784.0 0.00 9 061.75 397.1 11.09 8208.90 8253.24 3134.3 0.63 0.63 −9.41 8208.90 8261.97 1551.8 0.63 0.63 −9.41 8241.27 312.1 1.03 1.03 −9.05
pr06 288 4 29 9 366.42 9 366.42 8784.0 0.00 9 385.54 439.7 0.20 9384.92 9418.05 4001.0 0.20 0.20 −0.01 9384.92 9427.40 1983.8 0.20 0.20 −0.01 9417.88 385.9 0.55 0.55 0.34
pr07 72 6 8 3 496.68 3 496.68 246.5 0.00 3 781.00 140.3 8.13 3496.68 3519.80 292.3 0.00 0.00 −7.52 3496.68 3515.14 141.5 0.00 0.00 −7.52 3496.68 30.0 0.00 0.00 −7.52
pr08 144 6 15 5 906.88 5 906.88 3695.0 0.00 6 319.81 2550.7 6.99 5931.75 5995.08 1108.5 0.42 0.42 −6.14 5931.75 5995.11 560.6 0.42 0.42 −6.14 5931.75 114.7 0.42 0.42 −6.14
pr09 216 6 22 7 309.01 7 309.01 1724.2 0.00 8 128.12 351.8 11.21 7311.92 7391.88 2140.3 0.04 0.04 −10.04 7311.92 7400.36 1105.2 0.04 0.04 −10.04 7401.46 201.9 1.26 1.26 −8.94
pr10 288 6 29 9 869.74 9 869.74 8784.0 0.00 9 876.42 425.7 0.07 9923.98 9964.28 3756.2 0.55 0.55 0.48 9934.39 9971.67 1924.7 0.66 0.66 0.59 9969.99 373.4 1.02 1.02 0.95
Global avg 7 247.17 7 302.62 4168.6 0.40 7 852.07 740.4 9.62 7268.4 7300.6 1405.2 0.32 −0.05 −7.59 7270.4 7300.3 708.9 0.34 −0.03 −7.57 7299.3 138.8 0.71 0.34 −7.23
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Table 12
Detailed results for the MD𝑘-TRP p-pr data set with 𝑁𝑣 = 35.
Instance 𝑁𝑐 𝑁𝑑 BKS Formulations GA M-ILS 10 runs M-ILS 5 runs M-ILS 1 run

Best Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴

p01 50 4 712.50 712.50 0.7 0.00 959.12 0.0 34.61 712.50 714.00 717.3 0.00 −25.71 712.52 713.76 317.4 0.00 −25.71 714.78 77.4 0.32 −25.48
p02 50 4 712.50 712.50 0.7 0.00 712.50 0.0 0.00 712.50 714.00 717.3 0.00 0.00 712.52 713.76 317.4 0.00 0.00 714.78 77.5 0.32 0.32
p03 75 5 950.25 950.25 6.0 0.00 958.69 6.9 0.89 950.25 954.02 722.9 0.00 −0.88 950.25 954.41 353.8 0.00 −0.88 957.51 51.9 0.76 −0.12
p04 100 2 1 955.31 1 955.31 17.5 0.00 1 970.90 31.1 0.80 1 955.31 1 955.94 1291.6 0.00 −0.79 1 955.31 1 955.82 649.0 0.00 −0.79 1 955.31 127.2 0.00 −0.79
p05 100 2 1 982.33 1 982.33 14.4 0.00 2 002.56 16.3 1.02 1 982.77 1 984.31 1230.6 0.02 −0.99 1 982.77 1 984.12 651.0 0.02 −0.99 1 984.80 136.6 0.12 −0.89
p06 100 3 1 551.64 1 551.64 17.8 0.00 1 587.70 28.5 2.32 1 552.15 1 554.31 1041.8 0.03 −2.24 1 552.15 1 554.40 524.8 0.03 −2.24 1 553.88 127.8 0.14 −2.13
p07 100 4 1 520.46 1 520.46 16.0 0.00 1 546.16 29.6 1.69 1 521.19 1 522.41 1281.5 0.05 −1.61 1 521.19 1 522.28 662.6 0.05 −1.61 1 521.60 135.9 0.07 −1.59
p08 249 2 15 368.20 15368.20 1815.9 0.00 16 220.42 268.9 5.55 15 378.70 15 394.01 3210.7 0.07 −5.19 15 387.70 15 393.34 1651.1 0.13 −5.13 15 392.80 340.4 0.16 −5.10
p09 249 3 13 047.60 13047.60 1446.3 0.00 14 129.02 459.9 8.29 13 073.60 13 082.89 2895.6 0.20 −7.47 13 077.50 13 085.88 1457.8 0.23 −7.44 13 081.60 256.6 0.26 −7.41
p10 249 4 12 037.50 12037.50 1661.5 0.00 13 087.11 427.7 8.72 12037.50 12 145.70 2789.5 0.00 −8.02 12 067.50 12 152.66 1406.6 0.25 −7.79 12 211.10 266.3 1.44 −6.69
p11 249 5 11 932.70 11932.70 1315.8 0.00 13 282.14 372.2 11.31 11 967.10 12 014.93 2720.4 0.29 −9.90 11 967.10 12 014.54 1359.1 0.29 −9.90 12 053.50 271.1 1.01 −9.25
p12 80 2 2 897.06 2 897.06 3.8 0.00 2 897.06 5.3 0.00 2 897.06 2 897.06 574.4 0.00 0.00 2 897.06 2 897.06 288.4 0.00 0.00 2 897.06 59.5 0.00 0.00
p15 160 4 5 794.11 5 794.11 61.5 0.00 8 563.86 325.0 47.80 5 794.11 5 794.11 1237.5 0.00 −32.34 5 794.11 5 794.11 617.4 0.00 −32.34 5 794.11 122.9 0.00 −32.34
p18 240 6 11 433.90 11433.90 8784.0 0.00 12 033.14 622.6 5.24 11 457.10 11 479.31 1921.9 0.20 −4.79 11 457.10 11 473.96 976.9 0.20 −4.79 11 478.90 182.3 0.39 −4.61
pr01 48 4 1 261.53 1 261.53 0.8 0.00 – – – 1 262.43 1 267.78 452.4 0.07 – 1 262.43 1 266.64 203.0 0.07 – 1 275.76 20.8 1.13 –
pr02 96 4 2 572.84 2 572.84 12.8 0.00 2 576.27 36.9 0.13 2 572.84 2 574.36 998.2 0.00 −0.13 2 572.84 2 574.35 529.0 0.00 −0.13 2 572.84 102.9 0.00 −0.13
pr03 144 4 4 462.50 4 462.50 76.2 0.00 4 636.24 80.1 3.89 4 473.50 4 478.26 1541.4 0.25 −3.51 4 473.50 4 478.61 749.3 0.25 −3.51 4 477.15 141.2 0.33 −3.43
pr04 192 4 5 804.15 5 804.15 258.1 0.00 6 026.25 310.6 3.83 5 810.69 5 824.67 2725.3 0.11 −3.58 5 810.69 5 822.00 1379.0 0.11 −3.58 5 821.34 256.8 0.30 −3.40
pr05 240 4 7 119.35 7 119.35 1160.8 0.00 7 527.32 296.1 5.73 7 121.18 7 147.74 4076.8 0.03 −5.40 7 135.82 7 159.51 2015.1 0.23 −5.20 7 163.66 390.6 0.62 −4.83
pr06 288 4 8 595.64 8 595.64 1852.9 0.00 9 492.53 405.8 10.43 8 638.02 8 661.39 4718.7 0.49 −9.00 8 646.44 8 672.22 2376.9 0.59 −8.91 8 722.22 522.8 1.47 −8.11
pr07 72 6 1 723.63 1 723.63 3.9 0.00 – – – 1 725.61 1 729.03 917.7 0.11 – 1 725.61 1 729.79 457.7 0.11 – 1 729.09 100.4 0.32 –
pr08 144 6 4 004.11 4 004.11 70.4 0.00 4 077.16 145.9 1.82 4 007.90 4 015.10 1684.2 0.09 −1.70 4 015.45 4 018.61 857.9 0.28 −1.51 4 016.36 201.8 0.31 −1.49
pr09 216 6 5 889.02 5 889.02 432.4 0.00 6 291.82 297.9 6.84 5 891.65 5 923.69 2991.7 0.04 −6.36 5 891.65 5 913.58 1484.1 0.04 −6.36 5 906.75 284.3 0.30 −6.12
pr10 288 6 9 108.08 9 108.08 8784.0 0.00 17 574.79 399.8 92.96 9 150.65 9 167.29 4656.6 0.47 −47.93 9 150.65 9 159.22 2336.6 0.47 −47.93 9 158.48 465.9 0.55 −47.89
Global avg 5 518.20 5 518.20 1158.9 0.00 – – – 5 526.93 5 541.51 1963.18 0.11 – 5 529.99 5 541.86 984.24 0.14 – 5 548.14 196.70 0.43 –
Global avg GA 5 884.17 5 884.17 1264.1 0.00 6 734.22 207.60 11.54 5 893.56 5 909.07 2079.38 0.11 −8.07 5 896.90 5 909.46 1043.69 0.14 −8.03 5 915.93 209.08 0.40 −7.80
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Table 13
Detailed results for the MD𝑘-TRP lr data set.
Instance 𝑁𝑐 𝑁𝑑 𝑁𝑣 BKS Formulations GA M-ILS 10 runs M-ILS 5 runs M-ILS 1 run

Best Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴

lr1 10 4 5 545.69 545.69 0.6 0.00 545.69 0.0 0.00 545.69 545.69 10.6 0.00 0.00 545.69 545.69 5.3 0.00 0.00 545.69 0.7 0.00 0.00
lr2 10 4 5 832.69 832.69 0.1 0.00 832.69 0.0 0.00 832.69 832.69 29.8 0.00 0.00 832.69 832.69 14.6 0.00 0.00 832.69 3.0 0.00 0.00
lr3 10 4 5 832.78 832.78 0.3 0.00 832.78 0.0 0.00 832.78 832.78 16.5 0.00 0.00 832.78 832.78 8.2 0.00 0.00 832.78 1.6 0.00 0.00
lr4 25 4 10 2082.28 2082.28 0.1 0.00 2082.28 0.0 0.00 2082.28 2089.09 206.8 0.00 0.00 2082.28 2091.49 103.1 0.00 0.00 2109.15 23.2 1.29 1.29
lr5 25 4 10 1827.41 1827.41 0.1 0.00 1827.41 0.0 0.00 1827.41 1841.37 236.3 0.00 0.00 1827.41 1837.88 115.9 0.00 0.00 1844.86 22.3 0.95 0.95
lr6 25 4 10 1786.95 1786.95 0.1 0.00 1786.95 0.0 0.00 1786.95 1786.95 138.3 0.00 0.00 1786.95 1786.95 70.6 0.00 0.00 1786.95 14.5 0.00 0.00
lr7 50 4 20 5424.57 5424.57 1.9 0.00 5444.57 0.0 0.37 5424.57 5424.57 536.5 0.00 −0.37 5424.57 5424.57 259.1 0.00 −0.37 5424.57 40.7 0.00 −0.37
lr8 50 4 20 3737.38 3737.38 2.5 0.00 3760.03 0.0 0.61 3737.38 3745.99 299.8 0.00 −0.60 3737.38 3743.70 152.7 0.00 −0.60 3737.38 27.1 0.00 −0.60
lr9 50 4 20 3802.88 3802.88 2.5 0.00 3812.65 0.0 0.26 3802.88 3807.09 393.6 0.00 −0.26 3803.00 3810.07 214.8 0.00 −0.25 3803.00 44.1 0.00 −0.25
lr10-25V 50 6 25 2866.73 2866.73 1.5 0.00 – – – 2870.57 2875.00 415.9 0.13 – 2870.57 2876.24 176.2 0.13 – 2872.77 33.8 0.21 –
lr11-25V 50 6 25 2978.78 2978.78 1.3 0.00 – – – 2980.63 2989.29 428.8 0.06 – 2981.31 2990.45 199.8 0.08 – 2989.62 30.9 0.36 –
lr12-25V 50 6 25 3090.38 3090.38 1.5 0.00 – – – 3090.38 3094.37 420.1 0.00 – 3090.38 3093.64 206.8 0.00 – 3092.76 41.7 0.08 –
lr10-20V 50 6 20 2969.83 2969.83 1.3 0.00 2986.69 0.0 0.57 2972.04 2991.55 551.5 0.07 −0.49 2989.60 2996.12 275.4 0.67 0.10 2999.53 46.5 1.00 0.43
lr11-20V 50 6 20 3095.22 3095.22 2.1 0.00 3107.61 0.0 0.40 3103.22 3116.61 286.4 0.26 −0.14 3103.22 3108.71 164.9 0.26 −0.14 3113.81 33.1 0.60 0.20
lr12-20V 50 6 20 3171.75 3171.75 2.0 0.00 3186.67 0.0 0.47 3189.57 3194.18 419.4 0.56 0.09 3189.57 3191.56 210.8 0.56 0.09 3192.75 38.1 0.66 0.19
lr13 100 4 25 8288.43 8288.43 37.8 0.00 8563.04 21.4 3.31 8297.34 8310.99 774.3 0.11 −3.10 8297.34 8309.47 351.5 0.11 −3.10 8324.77 69.3 0.44 −2.78
lr14 100 4 25 7257.31 7257.31 30.5 0.00 7519.98 23.7 3.62 7257.31 7270.42 759.2 0.00 −3.49 7257.31 7265.17 366.6 0.00 −3.49 7257.31 82.6 0.00 −3.49
lr15 100 4 25 8625.13 8625.13 26.8 0.00 8803.73 23.2 2.07 8625.13 8643.69 956.7 0.00 −2.03 8625.13 8645.55 467.7 0.00 −2.03 8670.41 82.8 0.52 −1.51
lr16 100 6 25 5265.30 5265.30 28.9 0.00 5399.68 26.4 2.55 5265.30 5278.97 620.9 0.00 −2.49 5265.30 5288.72 326.7 0.00 −2.49 5268.68 77.9 0.06 −2.43
lr17 100 6 25 6107.32 6107.32 28.7 0.00 6353.43 24.3 4.03 6107.32 6107.32 676.8 0.00 −3.87 6107.32 6107.32 323.8 0.00 −3.87 6107.32 82.3 0.00 −3.87
lr18 100 6 25 5788.73 5788.73 30.5 0.00 6017.02 21.0 3.94 5788.73 5811.32 756.8 0.00 −3.79 5788.73 5805.32 391.3 0.00 −3.79 5788.73 70.8 0.00 −3.79
Global avg 3827.50 3827.50 9.6 0.00 – – – 3829.53 3837.61 425.48 0.06 – 3830.41 3837.34 209.80 0.09 – 3837.88 41.27 0.29 –
Global avg GA 3968.98 3968.98 10.9 0.00 4047.94 7.77 1.23 3971.03 3979.51 426.12 0.06 −1.14 3972.01 3979.10 212.39 0.09 −1.11 3980.02 42.24 0.31 −0.89
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Table 14
Detailed results for the MD𝑘-TRP lr data set with reduced fleet.
Instance 𝑁𝑐 𝑁𝑑 𝑁𝑣 BKS Formulations GA M-ILS 10 runs M-ILS 5 runs M-ILS 1 run

Best Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴 Best Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝐺𝐴

lr1 10 4 4 592.27 592.27 0.0 0.00 592.27 0.0 0.00 592.27 592.27 19.9 0.00 0.00 592.27 592.27 10.0 0.00 0.00 592.27 1.5 0.00 0.00
lr2 10 4 4 885.89 885.89 0.0 0.00 885.89 0.0 0.00 885.89 885.89 23.8 0.00 0.00 885.89 885.89 12.0 0.00 0.00 885.89 2.4 0.00 0.00
lr3 10 4 4 846.91 846.91 0.1 0.00 846.91 0.0 0.00 846.91 846.91 24.2 0.00 0.00 846.91 846.91 12.2 0.00 0.00 846.91 2.4 0.00 0.00
lr4 25 4 4 3 267.66 3 267.66 2.9 0.00 – – – 3 300.74 3 300.74 70.9 1.01 – 3 300.74 3 300.74 36.0 1.01 – 3 300.74 7.3 1.01 –
lr5 25 4 4 3 206.83 3 206.83 1.5 0.00 3 267.66 0.0 1.90 3 206.83 3 206.83 79.1 0.00 −1.86 3 206.83 3 206.83 39.4 0.00 −1.86 3206.83 8.6 0.00 −1.86
lr6 25 4 4 2 965.13 2 965.13 3.3 0.00 2 965.14 0.0 0.00 2 965.13 2 975.84 52.9 0.00 0.00 2 965.13 2 965.13 27.3 0.00 0.00 2965.13 5.0 0.00 0.00
lr7 50 4 5 8 325.97 8 325.97 332.4 0.00 8 371.32 3.9 0.54 8 325.97 8 325.97 195.2 0.00 −0.54 8 325.97 8 325.97 95.5 0.00 −0.54 8325.97 17.9 0.00 −0.54
lr8 50 4 5 7 089.64 7 089.64 4099.1 0.00 7 143.59 21.5 0.76 7 089.64 7 089.64 151.6 0.00 −0.76 7 089.64 7 089.64 76.9 0.00 −0.76 7089.64 16.4 0.00 −0.76
lr9 50 4 5 7 390.97 7 390.97 732.4 0.00 7 417.23 2.3 0.36 7 390.97 7 434.33 167.8 0.00 −0.35 7 390.97 7 446.88 85.1 0.00 −0.35 7 516.49 18.4 1.70 1.34
lr10 50 6 6 6 143.47 6 143.47 427.1 0.00 6 598.34 0.3 7.40 6 143.47 6 154.12 190.4 0.00 −6.89 6 151.12 6 157.07 97.9 0.12 −6.78 6 151.12 19.3 0.12 −6.78
lr11 50 6 6 5 756.81 5 756.81 214.9 0.00 6 168.67 4.7 7.15 5 785.93 5 817.54 171.8 0.51 −6.20 5 785.93 5 809.85 87.6 0.51 −6.20 5 849.86 18.5 1.62 −5.17
lr12 50 6 6 5 699.16 5 699.16 85.3 0.00 5 730.72 1.9 0.55 5 699.16 5 706.05 147.2 0.00 −0.55 5 699.16 5 705.44 74.1 0.00 −0.55 5699.16 14.0 0.00 −0.55
lr13 100 4 10 11 744.60 11744.60 3279.2 0.00 12 161.63 1563.5 3.55 11 777.50 11 890.21 341.5 0.28 −3.16 11 812.50 11 896.26 162.8 0.58 −2.87 11 963.00 29.5 1.86 −1.63
lr14 100 4 10 10 742.60 10742.60 654.6 0.00 11 160.95 355.4 3.89 10742.60 10 827.05 522.8 0.00 −3.75 10 760.00 10 821.74 257.8 0.16 −3.59 10 799.50 52.3 0.53 −3.24
lr15 100 4 10 11 035.60 11035.60 159.7 0.00 12 033.57 2261.5 9.04 11035.60 11 049.89 478.1 0.00 −8.29 11035.60 11 064.18 232.6 0.00 −8.29 11035.60 46.9 0.00 −8.29
lr16 100 6 10 9 442.62 9 442.62 3537.5 0.00 9 685.37 1657.4 2.57 9 574.04 9 657.29 350.0 1.39 −1.15 9 574.04 9 636.79 186.5 1.39 −1.15 9 680.04 31.8 2.51 −0.06
lr17 100 6 10 9 917.56 9 917.56 1303.2 0.00 10 343.79 859.9 4.30 9 942.78 10 048.18 554.4 0.25 −3.88 9 945.93 10 052.49 271.9 0.29 −3.85 10 069.60 64.4 1.53 −2.65
lr18 100 6 10 9 220.77 9 220.77 3074.7 0.00 9 604.71 1251.3 4.16 9 240.67 9 361.50 435.8 0.22 −3.79 9 240.67 9 304.71 215.7 0.22 −3.79 9 277.06 48.8 0.61 −3.41
Global avg 6 348.58 6 348.58 994.9 0.00 – – – 6 363.67 6 398.35 220.96 0.20 – 6 367.18 6 394.93 110.07 0.24 – 6 403.05 22.53 0.64 –
Global avg GA 6 529.81 6 529.81 1053.2 0.00 6763.40 469.6 2.72 6 543.85 6 580.56 229.78 0.16 −2.42 6 547.56 6 576.94 114.43 0.19 −2.39 6 585.53 23.43 0.62 −1.98
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660.34 < 707.68, p02: 660.34 < 707.68, p04: 1881.48 < 1926.16, p05:
1871.62 < 1956.75, p06: 1460.6 < 1500.48, p12: 2769.07 < 2897.06,
p15: 5618.84 < 5794.11, pr01: 1167.74 < 1260.41, pr02: 2422.94 <
2527.15, and pr07: 1594.15 < 1691.14.

In order to determine the right solution values found by the two
MILP formulations proposed in Bruni et al. (2022a) for the instances
of this data set, we implemented both MILP formulations and solved
all the instances on our computer using the MILP solver Gurobi 9.1.2
(Gurobi Optimization, 2021) with a time limit of 4392 s, which is the
scaled value of the time limit of 7200 s imposed in Bruni et al. (2022a).
First, we solved Model 2; only in case the time limit is reached we
solved Model 1, and the best solution value found is reported in column
Best. All the values presented in Table 12 for the MILP formulations
correspond to those found by our implementation and should be used
in future research. It is to note that all the instances but p18 and pr10
were solved to proven optimality within the time limit. For the instance
p18 the best lower bound found was equal to 11 364.06, implying an
optimality gap equal to 0.61%, while for the instance pr10, the best
lower bound found was equal to 9082.66, implying an optimality gap
equal to 0.28%. These lower bounds are tighter than LB (11 364.06
> 9934.63, and 9082.66 > 7645.90, for the instances p18 and pr10,
respectively), and should be used in future research as best lower
bounds for these instances. In the Appendix the optimal solutions
for two instances are presented. In the results reported in Bruni et al.
(2022a), the solution values obtained by algorithm GA for the instances
pr01 and pr07 are smaller than the corresponding optimal solution
values, hence these values are not considered in Table 12. It is to note
that Table 12 does not include the values of 𝑔𝑎𝑝𝐹 since the formulations
always provide the best-known solution values, which implies that 𝑔𝑎𝑝𝐹
is equal to 𝑔𝑎𝑝𝐵 for all the instances of this data set.

According to the results shown in Table 12, M-ILS can find the
optimal solution values for 8, 5, and 4 instances by performing 10 run, 5
runs, and 1 run, respectively. For all the other instances, it can provide
near-optimal solutions independently of the number of runs. The global
average value of 𝑔𝑎𝑝𝐵 is equal to 0.11% by executing M-ILS with 10
runs, 0.14% when it is executed with 5 runs and 0.43% considering
a single run. Although, by executing 10 runs for each instance, M-ILS
is more time-consuming than the formulations, by considering 5 runs,
the global computing time is slightly smaller than that required by the
formulations, and by considering a single run, M-ILS is six times faster
than the formulations.

Compared to GA, M-ILS is superior in the solution quality since the
global value of 𝑔𝑎𝑝𝐺𝐴 is around -8%, independently of the number of
runs. For all the instances but two, the best solution value provided
by M-ILS is better than that provided by GA (independently of the
number of runs). For the two remaining instances, when 10 runs are
considered, M-ILS and GA find the same best (optimal) solution value
for both instances, while when 5 runs are considered, each algorithm
finds a solution better than that of the competitor for one instance.
Furthermore, the Avg. solution value provided by M-ILS, by considering
10 and 5 runs, is smaller than (for 20 instances) or equal to (for one
instance) the best solution value obtained by GA for all the instances
but one. Regarding the computing times of the two metaheuristics, M-
ILS is more time-consuming than GA when it is executed with 10 and 5
runs, while it is almost the same when it is executed with a single run.

3.4.3. The lr data set
The computational results corresponding to the 21 instances of the

lr data set are reported in Table 13. Since the instances lr10, lr11,
and lr12 with 25 vehicles were not considered in Bruni et al. (2022a),
we solved them optimally under the same conditions mentioned in
Section 3.4.2. The values reported in Bruni et al. (2022a) for both GA
and the formulations are presented for all the other instances. This
is the easiest of the considered data sets since all its instances have
been solved to proven optimality by the formulations within very short
22

computing times (at most 37.8 s).
The results presented in Table 13 show that M-ILS can find the
optimal solution value for 15, 14, and 9 instances by performing 10
runs, 5 runs, and 1 run, respectively. For all the other instances, M-
ILS can provide near-optimal solution values independently of the
number of runs. The average value of 𝑔𝑎𝑝𝐵 is equal to 0.06% by
performing 10 runs, 0.09% for 5 runs and 0.29% considering a single
run. M-ILS is more time-consuming than both the formulations and GA,
independently of the number of runs. Nevertheless, by executing only
one run, M-ILS provides good quality solutions in reasonable computing
times (on average around 40 s). For what concerns the values of the
solutions provided by M-ILS compared to those obtained by GA, it is
possible to conclude that M-ILS outperforms GA independently of the
number of runs. By executing M-ILS with 10 runs, the best solution
value found by M-ILS is better than (for 12 instances) or equal to (for 5
instances) the best solution value provided by GA for all the instances
but one. Similarly, by executing M-ILS with 5 runs, the best solution
value found by M-ILS is better than (for 11 instances) or equal to (for 5
instances) the best solution value provided by GA for all the instances
but two. By executing a single run, the best solution value provided by
M-ILS is better than (for 10 instances) or equal to (for 3 instances) the
best solution value provided by GA for all the instances but 5. The good
performance of M-ILS is more evident for the large size instances of this
data set (𝑁𝐶 = 100) for which the average value of 𝑔𝑎𝑝𝐺𝐴 is equal to
–2.98% (considering a single run for M-ILS).

3.4.4. The lr data set with reduced fleet
The computational results corresponding to the 18 instances of the

lr data set with reduced fleet are reported in Table 14. Since for the
instances lr5 and lr15 the best solution values of the feasible solutions
found by M-ILS are smaller than the optimal solution values reported
in Bruni et al. (2022a), we solved these two instances optimally under
the same conditions mentioned in Section 3.4.2. The optimal solution
values presented in Table 14 are the correct ones, and should be used
in future research. For what concerns the results reported in Bruni
et al. (2022a) regarding GA, the best solution value presented for the
instance lr4 is smaller than the optimal solution value, so this value is
not considered in Table 14. The original values reported in Bruni et al.
(2022a) are presented for all the other instances. It is to note that all
the instances of this data set have been solved to proven optimality
with the formulations.

The results presented in Table 14 show that M-ILS can find the
optimal solution value for 12, 10, and 9 instances by performing 10
runs, 5 runs, and 1 run, respectively. The proposed algorithm can find
near-optimal solution values for all the remaining instances, obtaining
an average value of 𝑔𝑎𝑝𝐵 equal to 0.20%, 0.24%, and 0.64% when the
number of runs executed for each instance is 10, 5, and 1, respectively.
Regarding the global computing times, M-ILS is more than four times
faster than the formulations and two times faster than GA when 10
runs are performed. M-ILS outperforms GA for what concerns both the
computing time and the solution quality. When the number of runs
executed is equal to 10 or 5 for each instance, M-ILS finds better
solution values than those obtained by GA for 14 instances and the
same solution value for the remaining 3 instances. When a single run
is considered for M-ILS, it finds solution values better than (for 13
instances) or equal to (for 3 instances) those obtained by GA for all
the instances but one. In addition, the average solution value obtained
by M-ILS by performing 10 runs is better than (for 12 instances) or
equal to (for 3 instances) the best solution value obtained by GA for all
the instances but two. Similarly, the average solution value obtained by
M-ILS by performing 5 runs is better than (for 13 instances) or equal
to (for 3 instances) the best solution value obtained by GA for all the
instances but one. M-ILS obtained an average value of 𝑔𝑎𝑝𝐺𝐴 equal to
–2.42%, −2.39%, and −1.98% when the number of runs executed for
each instance is 10, 5, and 1, respectively. It is to note also that for 6
(7) instances, the average solution value found by M-ILS corresponds

to the optimal solution value when 10 (5) runs are performed.
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3.4.5. Overall results on the MD𝑘-TRP
After analyzing the results, it is possible to conclude that the pro-

osed algorithm M-ILS overcomes GA in terms of solution quality for
ll the considered data sets by executing a number of runs equal to 10,
, or 1 for each instance. The global average value of 𝑔𝑎𝑝𝐺𝐴 is equal to
5.20%, −5.17%, and −4.87% when M-ILS is executed with 10, 5, and
runs, respectively. By considering a single run, M-ILS is globally faster

han GA for 2 of the 4 data sets, while the average global computing
ime is similar and competitive (less than 60 s) for the remaining two
ata sets. By considering the global average computing time (computed
ver all the instances), M-ILS (executed with 1 run) is three times faster
han GA (112.21 s vs. 376.05 s, respectively). For the two data sets
ith reduced fleets (which contain the most challenging instances),
-ILS is faster than GA when 5 runs are executed. Compared to the

ormulations, M-ILS finds optimal or near-optimal solution values in
lobally shorter computing times for most of the considered instances.
he global average value of 𝑔𝑎𝑝𝐵 (computed over all the instances) is
qual to 0.11% for the formulations, and 0.17% for M-ILS (when 10
uns are executed), while the average global computing time is 1677.82
for the formulations and 1077.61 s for M-ILS (when 10 runs are

xecuted).
Regarding the proposed lower bounds, we found that the average

alue of 𝑔𝑎𝑝𝐿𝐵 for the 10 instances not solved to proven optimality is
qual to 24.77%. Also for this problem, despite this value is large, it
oes not mean that the BKS values for these instances correspond to
ad quality solutions. Indeed, the average value of 𝑔𝑎𝑝𝐿𝐵 obtained by
onsidering only the instances solved to proven optimality is equal to
0.52%, which means that the proposed lower bounds are not tight. It
s possible to note that the proposed lower bounds provide reasonable
ood approximations of the optimal solution value for instances with a
elative large number of vehicles. The average value of 𝑔𝑎𝑝𝐿𝐵 obtained
y considering only the instances in the data sets p-pr with 𝑁𝑣 = 35 and
r is equal to 6.38%, while when only the instances in the data sets p-pr
nd lr with reduced fleet are considered, the value obtained is equal to
6.68%.

In order to compare the efficiency of the algorithm M-ILS with that
f the algorithm GA, new experiments were carried out to compare the
uality of the solutions obtained by both algorithms within the same
lobal computing time, and to determine the computing time required
y M-ILS to reach for each instance a given target value. Let us consider,
or each instance, a target value (TV) given by the best solution value
btained by the algorithm GA and a time limit (TL) given by the global
omputing time required by GA to find the target value.

The summary of the average results of this experiment is presented
n Table 15 for each data set and for the overall set of instances. The
eported columns correspond to: the averages of the target values (TV)
nd of the time limits (TL), the average of the best solution value found
y M-ILS within the time limit (Best𝑇𝐿), the average of the percentage
ap between Best𝑇𝐿 and TV (𝑔𝑎𝑝𝑇𝑉 ), the number of instances for which
he target value is found by M-ILS within the time limit (#TV), and the
verage of the computing times required by M-ILS to find the target
alues (time𝑇𝑉 ). It is to note that, for the instances for which M-ILS
annot find the target value, time𝑇𝑉 is equal to the time limit. For
he instances for which TL is equal to 0.0 we allow M-ILS to perform
nly the Constructive phase, which generally requires small computing
imes, and for small instances requires less than 1 s.

The results show that the M-ILS algorithm can find (for 7 instances)
r improve (for 58 instances) the target value for 65 out of 81 instances
ithin the time limit, obtaining a global average value of 𝑔𝑎𝑝𝑇𝑉 equal

o −4.50%. Considering all the instances, M-ILS requires considerably
ess computing time than that required by GA for finding solutions with
imilar quality, and when M-ILS is executed for the same global time
eported for GA it is able to largely outperform GA in terms of solution
uality. The only data set for which M-ILS does not totally dominate GA
s the lr data set. For these instances M-ILS is generally able to perform
23

nly the Constructive procedure. Although the results of both heuristics a
are competitive in terms of solution quality and computing time, M-ILS
performs slightly better than GA, being able to find the target value
for half of the instances within the time limit. On the other hand, the
average computing times required by GA for finding the target values
are 17, 12, and 44 times larger than those required by M-ILS for the
p-pr with reduced fleet, p-pr with 𝑁𝑣 = 35, and lr with reduced fleet
data sets, respectively.

The computational experiments presented in this Section show that
M-ILS clearly outperforms GA both in terms of solution quality and
computing time.

3.5. The latency location routing problem

The algorithms proposed in the literature for the solution of the
LLRP are the following: the memetic algorithm (MA) and the recursive
granular algorithm (RGA) proposed in Moshref-Javadi and Lee (2016),
the exact methods and the GRASP-based iterated local search algorithm
(GBILS) presented in Nucamendi-Guillén et al. (2022), and the three
simulated annealing-variable neighborhood descent based metaheuris-
tics SA-VND0, SA-VND1, and SA-VND2 presented in Osorio-Mora et al.
(2023). For the LLRP, the M-ILS algorithm is executed for each instance
with a number of runs equal to 30 and 5.

The results reported in Moshref-Javadi and Lee (2016) indicate that
the algorithm MA dominates the RGA approach. Besides, the exact
methods proposed in Nucamendi-Guillén et al. (2022) are able to solve
to optimality only instances with up to 50 customers. In particular, they
solve the instances with 20 customers, from 21 to 36 customers, and
with 50 customers, with average scaled computing times equal to 28,
465, and 5312 s, respectively. For all the instances with more than 50
customers, the exact methods are able to find, within a time limit of
21 960 s, feasible solutions with an average value of 𝑔𝑎𝑝𝐵 (considering
the values of BKS reported in Tables 17 and 18) equal to 5.05%. For
large-size instances, the metaheuristic algorithms GBILS, SA-VND0, SA-
VND1, and SA-VND2 perform globally better than the other methods
for what concerns both the solution quality and the computing times.
According to the results presented in Osorio-Mora et al. (2023), the
algorithms SA-VND0, SA-VND1, and SA-VND2 are also more effective
than RGA for all the considered instances. Therefore, we have excluded
the algorithm RGA (Moshref-Javadi and Lee, 2016) and the exact
methods (Nucamendi-Guillén et al., 2022) for comparison purposes. On
the other hand, despite the algorithms SA-VND0, SA-VND1, and SA-
VND2 have been proved to outperform the GBILS approach, the latter
is included in the comparison since it presents relatively good solution
quality and short computing times. Note that no average solution values
have been reported in Nucamendi-Guillén et al. (2022) for GBILS.

In order to present a fair comparison, the global computing times
reported in Tables 16–18 for each instance correspond to:

(𝑖) for MA to the times reported in Moshref-Javadi and Lee (2016),
hich correspond to the execution of 30 runs. The experiments in
oshref-Javadi and Lee (2016) were performed on a 3.1 GHz computer
ith 4 GB RAM. The above is the only information available about

his computer, and it does not allow us to determine a scaling factor.
evertheless, considering the ratio between the corresponding values
f GHz, it is possible to estimate that our computer is about 1.2 times
aster than that used in Moshref-Javadi and Lee (2016).

(𝑖𝑖) for GBILS to the scaled computing time (considering a scaling
actor equal to 0.61) of the times reported in Nucamendi-Guillén et al.
2022), which correspond to the execution of 5 runs;

(𝑖𝑖𝑖) for SA-VND0, SA-VND1, and SA-VND2 to the computing time
eported in Osorio-Mora et al. (2023), corresponding to the global
omputing time associated with 30 runs for each algorithm. It is to note
hat the computing times of the mentioned algorithms do not need to
e scaled since these algorithms were executed on the same computer
n which the M-ILS has been executed;

The computing times reported for M-ILS correspond to the average
omputing times multiplied by the respective number of runs.

Furthermore, for each number of runs of M-ILS, the following values

re reported:
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Table 15
Average results obtained by each metaheuristic considering time limits and target values for each MD𝑘-TRP data set.

Data set # Instances GA M-ILS

TV TL Best𝑇𝐿 𝑔𝑎𝑝𝑇𝐿 #TV time𝑇𝐿
p-pr with reduced fleet 24 7852.07 740.4 7293.30 −7.08 22 43.7
p-pr with 𝑁𝑣 = 35 22 6734.22 207.6 5910.76 −7.75 19 18.0
lr 18 4047.94 7.8 4001.30 −0.15 9 6.1
lr with reduced fleet 17 6763.40 469.6 6573.52 −2.02 15 10.6
All the instances 81 6474.61 376.1 6035.17 −4.66 65 21.4
• 𝑔𝑎𝑝𝑀𝐴: Percentage gap between the Best solution value found by
M-ILS (𝐵𝑒𝑠𝑡) and the Best solution value found by MA (Best𝑀𝐴),
computed as 𝑔𝑎𝑝𝑀𝐴 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝑀𝐴)

𝐵𝑒𝑠𝑡𝑀𝐴
.

• 𝑔𝑎𝑝𝑆𝐴: Percentage gap between the Best solution value found
by M-ILS (𝐵𝑒𝑠𝑡) and the Best solution value found by the best
among SA-VND0, SA-VND1, and SA-VND2 (Best𝑆𝐴), computed as
𝑔𝑎𝑝𝑆𝐴 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝑆𝐴)

𝐵𝑒𝑠𝑡𝑆𝐴
.

• 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 : Percentage gap between the Best solution value found
by M-ILS and the Best solution value found by GBILS (Best𝐺𝐵𝐼𝐿𝑆 ),
computed as 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 = 100 (𝐵𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝐺𝐵𝐼𝐿𝑆 )

𝐵𝑒𝑠𝑡𝐺𝐵𝐼𝐿𝑆
.

3.5.1. The Tuzun–Burke data set
This data set contains the most challenging benchmark instances for

the LLRP. Table 16 gives the corresponding results. Since no results
for GBILS are reported on this data set in Nucamendi-Guillén et al.
(2022), M-ILS is compared only with the MA algorithm presented
in Moshref-Javadi and Lee (2016), and the three metaheuristics pre-
sented in Osorio-Mora et al. (2023). As the table indicates, M-ILS
outperforms MA, SA-VND0, SA-VND1, and SA-VND2 regarding both the
solution quality and the computing time.

The proposed M-ILS improves the best-known solution value for 32
out of the 36 instances of this data set. The average values of 𝑔𝑎𝑝𝐵
are 5.56%, 0.77%, 0.84%, and 0.86% for MA, SA-VND0, SA-VND1,
and SA-VND2, respectively, while this value is equal to 0.04% for M-
ILS. Regarding the computing times, M-ILS is more than two times
faster than SA-VND1 and SA-VND2 and 1.5 times faster than SA-VND0
(considering 30 runs for each algorithm). On the other hand, when 30
runs are considered for M-ILS, its computing times are larger than those
of MA; nevertheless, when the number of runs is reduced to 5, M-ILS is
three times faster than MA, being able to provide a better solution value
than MA for all the instances. Furthermore, when 5 runs are considered,
M-ILS provides a better solution value than the best found by SA-VND0,
SA-VND1, and SA-VND2 for 22 instances, in global computing times
more than 9 times shorter than those required by SA-VND0, which is
the fastest among the three mentioned algorithms.

The average solution value obtained by M-ILS is better than that ob-
tained by MA, SA-VND0, SA-VND1, and SA-VND2 for 36, 33, 34, and 32
instances, respectively. Furthermore, for seven instances, the average
solution value obtained by M-ILS is better than the best solution value
obtained by the best among the four competitors. Note that the average
solution value provided by M-ILS is better than the best solution value
reported for MA for all the instances but one (considering 30 runs).
In the same direction, the average 𝑔𝑎𝑝𝑆𝐴 value equals −0.51%, and
−0.22%, and the average 𝑔𝑎𝑝𝑀𝐴 value equals −5.17%, −4.90%, when
30 and 5 runs are considered for M-ILS, respectively.

3.5.2. The Prodhon data set
The results of this data set are presented in Table 17. Over the

30 instances of this data set, M-ILS, executed with 30 runs, can find
the proved optimal solution value for 11 instances, provides new
best-known solution values for 16 instances, and finds the current
best-known solution value for one instance. The average values of
𝑔𝑎𝑝𝐵 obtained by M-ILS are equal to 0.05% and 0.19% considering 30
and 5 runs, respectively. These values of 𝑔𝑎𝑝 are better than those
24

𝐵

associated with all the competitors. It is to note that instance 50-5-
3 was not solved to proven optimality in Nucamendi-Guillén et al.
(2022). Nevertheless, we implemented the MILP formulation ‘‘Model 2’’
presented in Nucamendi-Guillén et al. (2022) and solved this instance
without considering a time limit, proving that the best solution value
reported in Table 17 corresponds to the optimal one.

Comparing M-ILS with the current state-of-the-art metaheuristics
proposed in Osorio-Mora et al. (2023), it is possible to conclude that
M-ILS outperforms the three algorithms SA-VND0, SA-VND1, and SA-
VND2, obtaining an average value of 𝑔𝑎𝑝𝑆𝐴 equal to −0.24%, and
−0.09% when 30, and 5 runs are considered, respectively. Regarding
the computing time, M-ILS is 1.7, 2.7, and 2.5 times faster than SA-
VND0, SA-VND1, and SA-VND2, respectively (considering 30 runs for
each algorithm). When 5 runs are considered, M-ILS can find solution
values better than (for 13 instances) or equal to (for 9 instances) the
best found by SA-VND0, SA-VND1, and SA-VND2 for 22 instances,
in global computing times more than ten times smaller than those
required by SA-VND0, which is the fastest among the three mentioned
algorithms. Although GBILS is faster than M-ILS (independently of the
number of runs), the values of the solutions obtained by M-ILS are
considerably better than those found by GBILS. The average value
of 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 equals −2.40% and −2.26% considering 30 and 5 runs,
respectively. Furthermore, the average solution value obtained by M-
ILS (considering 30 runs) is better than or equal to the best solution
value obtained by GBILS for all the instances but 3. Also, considering
5 runs, M-ILS provides a solution value better than (for 25 instances)
or equal to (for 4 instances) the best solution value reported for GBILS
for all the instances but one. Finally, M-ILS is able to provide a solution
value better than (for 28 instances) or equal to (for one instance) that
reported for MA for all the instances but one, independently of the
number of runs. When 30 runs are considered, M-ILS is more time-
consuming than MA, obtaining an average 𝑔𝑎𝑝𝑀𝐴 equal to −3.77%;
nevertheless, considering 5 runs, M-ILS is 3.3 times faster than MA,
providing an average value of 𝑔𝑎𝑝𝑀𝐴 equal to −3.63%.

3.5.3. The Barreto data set
This data set considers the less complex instances for the LLRP.

Indeed, 6 out of 10 instances of this data set (those for which 𝑁𝑐 ≤ 50)
have been solved to proven optimality with the MILP models presented
in Nucamendi-Guillén et al. (2022). The results of this data set are
presented in Table 18. For the instances Min-134-8 and Or-117-14,
no results are reported for GBILS in Nucamendi-Guillén et al. (2022),
while for the instances Christ-50-5 and Christ-75-10 the results pro-
vided in Nucamendi-Guillén et al. (2022) for GBILS were neglected (as
done in Osorio-Mora et al. (2023)), since they correspond to different
instances. The last line of Table 18 gives the average values (Global
avg GBILS) computed by considering only the 6 instances whose values
are correctly reported in Nucamendi-Guillén et al. (2022). Since GBILS
obtains the optimal solution value for all the instances reported but for
Christ-100-10, the column 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 is not included in the table. Ac-
cording to the results, M-ILS is able to find the proven optimal solution
value for 6 instances and, for two instances, new best-known solution
values. There are no significant differences concerning the solution

quality and the computing times between M-ILS and the three heuristic
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Table 16
Detailed results for the LLRP Tuzun-Burke data set.
Instance N_c N_d 𝑁𝑣 BKS MA SA-VND0 SA-VND1 SA-VND2 M-ILS 30 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝑆𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝑆𝐴
111112 100 10 11 3834.91 4017.90 4270.10 1200.0 4.77 3862.86 3971.50 1 912.8 0.73 3892.97 3972.93 2 390.6 1.51 3882.76 3964.12 2 801.2 1.25 3834.91 3890.13 2149.2 0.00 −4.55 −0.72 3849.10 3895.17 342.0 0.37 −4.20 −0.36
111122 100 20 11 3612.36 3719.10 4087.50 1200.0 2.95 3612.36 3694.70 1 934.6 0.00 3633.60 3712.64 2 419.2 0.59 3623.69 3687.85 2 860.6 0.31 3659.46 3695.69 2130.6 1.30 −1.60 1.30 3683.58 3692.65 342.1 1.97 −0.96 1.97
111212 100 10 10 3919.74 4264.40 4563.50 1245.0 8.79 3960.24 4038.24 1 805.4 1.03 3988.11 4067.91 2 335.5 1.74 3938.88 4066.13 2 692.0 0.49 3919.74 4000.94 2455.1 0.00 −8.08 −0.49 3919.74 3993.54 394.9 0.00 −8.08 −0.49
111222 100 20 11 4065.04 4278.30 4557.30 1242.0 5.25 4086.74 4140.33 1 909.6 0.53 4077.87 4147.90 2 376.2 0.32 4068.34 4138.78 2 785.2 0.08 4065.04 4139.64 2312.7 0.00 −4.98 −0.08 4065.04 4125.54 379.0 0.00 −4.98 −0.08
112112 100 10 11 2726.41 2795.60 3049.70 1242.0 2.54 2739.16 2755.53 2 281.4 0.47 2740.21 2759.43 2 908.3 0.51 2741.82 2756.07 3 271.1 0.57 2726.41 2749.56 1649.9 0.00 −2.47 −0.47 2747.04 2751.00 265.7 0.76 −1.74 0.29
112122 100 20 11 2057.30 2097.90 2702.60 1329.0 1.97 2060.29 2072.57 2 211.6 0.15 2057.45 2078.03 2 797.4 0.01 2060.80 2071.85 3 205.3 0.17 2057.30 2063.89 1193.4 0.00 −1.94 −0.01 2059.08 2059.28 169.6 0.09 −1.85 0.08
112212 100 10 12 1394.65 1442.20 1604.90 1455.0 3.41 1402.97 1416.20 2 349.9 0.60 1403.57 1416.72 3 050.0 0.64 1397.39 1414.98 3 335.3 0.20 1394.65 1411.85 1490.7 0.00 −3.30 −0.20 1394.65 1411.25 240.1 0.00 −3.30 −0.20
112222 100 20 11 1621.40 1659.00 2084.10 1314.0 2.32 1623.69 1633.00 2 522.2 0.14 1621.40 1633.94 3 137.8 0.00 1626.86 1633.89 3 562.2 0.34 1623.39 1630.36 1652.2 0.12 −2.15 0.12 1623.39 1636.93 337.6 0.12 −2.15 0.12
113112 100 10 11 2828.24 2897.70 3162.60 1170.0 2.46 2837.51 2852.63 2 043.2 0.33 2835.76 2853.57 2 735.6 0.27 2839.50 2857.50 3 014.0 0.40 2828.24 2841.93 2091.6 0.00 −2.40 −0.27 2837.82 2843.77 377.9 0.34 −2.07 0.07
113122 100 20 11 2772.98 2912.00 3330.00 1248.0 5.01 2776.38 2782.52 2 063.4 0.12 2774.36 2784.42 2 762.2 0.05 2776.38 2782.07 2 998.4 0.12 2772.98 2797.08 2753.4 0.00 −4.77 −0.05 2772.98 2799.46 445.6 0.00 −4.77 −0.05
113212 100 10 12 1815.62 1832.10 1901.00 1458.0 0.91 1817.00 1823.15 2 326.4 0.08 1815.62 1822.81 2 922.2 0.00 1815.62 1822.76 3 326.7 0.00 1817.00 1835.80 2023.4 0.08 −0.82 0.08 1817.33 1832.76 382.7 0.09 −0.81 0.09
113222 100 20 11 1876.14 2037.50 2360.60 1239.0 8.60 1876.14 1888.46 2 117.2 0.00 1879.63 1890.96 2 816.5 0.19 1876.93 1888.90 3 063.5 0.04 1876.58 1885.31 1940.0 0.02 −7.90 0.02 1882.30 1888.46 323.2 0.33 −7.62 0.33
131112 150 10 16 5410.96 5863.80 6160.70 1797.0 8.37 5473.17 5582.94 4 060.2 1.15 5464.21 5570.12 6 108.7 0.98 5448.86 5576.01 6 409.4 0.70 5410.96 5478.43 3854.6 0.00 −7.72 −0.70 5434.61 5490.75 653.7 0.44 −7.32 −0.26
131122 150 20 16 4926.87 5310.30 5649.30 1746.0 7.78 4993.36 5142.06 4 462.0 1.35 5009.26 5143.19 6 549.2 1.67 4974.28 5105.72 6 876.6 0.96 4926.87 5053.13 3970.3 0.00 −7.22 −0.95 5003.55 5060.78 663.0 1.56 −5.78 0.59
131212 150 10 16 5528.85 5967.60 6234.20 1746.0 7.94 5679.70 5787.34 4 588.6 2.73 5606.31 5785.18 6 765.0 1.40 5653.20 5771.63 7 051.5 2.25 5528.85 5639.90 4007.7 0.00 −7.35 −1.38 5528.85 5615.26 693.1 0.00 −7.35 −1.38
131222 150 20 16 5060.71 5261.00 5610.40 1767.0 3.96 5141.89 5284.45 4 580.2 1.60 5126.95 5277.65 6 627.3 1.31 5134.39 5296.62 7 093.9 1.46 5060.71 5107.53 4093.6 0.00 −3.81 −1.29 5060.71 5090.48 685.6 0.00 −3.81 −1.29
132112 150 10 16 3850.90 4026.70 4246.20 1746.0 4.57 3868.88 3895.91 5 963.0 0.47 3883.40 3899.41 8 542.7 0.84 3874.44 3894.29 8 771.5 0.61 3850.90 3881.70 4034.9 0.00 −4.37 −0.46 3856.34 3874.13 573.8 0.14 −4.23 −0.32
132122 150 20 16 3734.83 3874.00 4185.50 1785.0 3.73 3740.10 3795.93 5 155.0 0.14 3752.76 3787.72 7 796.2 0.48 3755.51 3797.33 7 768.9 0.55 3734.83 3762.41 3762.9 0.00 −3.59 −0.14 3744.44 3760.24 590.9 0.26 −3.34 0.12
132212 150 10 17 2835.66 2906.00 3129.90 1779.0 2.48 2842.10 2857.43 5 839.7 0.23 2837.84 2860.70 8 792.6 0.08 2843.18 2857.02 8 714.5 0.27 2835.66 2850.38 3345.7 0.00 −2.42 −0.08 2844.11 2853.48 580.1 0.30 −2.13 0.22
132222 150 20 17 1651.91 1784.80 2152.30 1773.0 8.04 1660.89 1691.97 6 340.4 0.54 1672.86 1697.45 9 145.6 1.27 1677.95 1695.15 9 288.8 1.58 1651.91 1676.40 2824.2 0.00 −7.45 −0.54 1664.08 1678.64 485.9 0.74 −6.76 0.19
133112 150 10 16 4578.87 5034.00 5465.90 1737.0 9.94 4588.37 4619.91 4 670.1 0.21 4598.23 4630.69 7 313.4 0.42 4596.35 4625.72 7 130.4 0.38 4578.87 4612.46 3339.0 0.00 −9.04 −0.21 4590.97 4614.54 532.7 0.26 −8.80 0.06
133122 150 20 16 3211.98 3474.00 3849.10 1767.0 8.16 3223.44 3259.45 5 317.0 0.36 3225.56 3271.04 8 052.6 0.42 3223.40 3248.42 8 012.0 0.36 3211.98 3236.27 3813.4 0.00 −7.54 −0.35 3211.98 3222.46 677.2 0.00 −7.54 −0.35
133212 150 10 17 2903.36 3008.00 3284.50 1770.0 3.60 2911.58 2938.05 5 887.3 0.28 2911.35 2938.01 8 572.0 0.28 2906.96 2935.00 8 754.9 0.12 2903.36 2918.06 3116.3 0.00 −3.48 −0.12 2908.51 2917.75 516.9 0.18 −3.31 0.05
133222 150 20 17 2485.07 2617.40 3016.90 1755.0 5.33 2502.97 2550.01 5 692.6 0.72 2502.68 2558.34 8 274.9 0.71 2501.03 2531.56 8 664.8 0.64 2485.07 2496.12 3020.2 0.00 −5.06 −0.64 2485.07 2497.99 555.3 0.00 −5.06 −0.64
121112 200 10 21 6572.43 7008.70 7371.10 2502.0 6.64 6608.45 6821.20 8 392.7 0.55 6621.55 6881.38 13 919.9 0.75 6683.24 6848.60 14 006.4 1.69 6572.43 6632.64 6096.4 0.00 −6.22 −0.55 6572.43 6630.65 1038.2 0.00 −6.22 −0.55
121122 200 20 22 5612.03 6039.60 6501.60 2490.0 7.62 5730.53 5954.23 9 991.8 2.11 5788.72 5966.38 15 672.5 3.15 5784.71 5952.63 16 313.2 3.08 5612.03 5668.75 5948.1 0.00 −7.08 −2.07 5631.62 5648.04 997.3 0.35 −6.76 −1.73
121212 200 10 21 6409.74 6744.30 7318.60 2559.0 5.22 6503.36 6613.84 8 391.2 1.46 6429.62 6608.92 13 778.5 0.31 6502.73 6610.46 13 910.1 1.45 6409.74 6449.92 5906.0 0.00 −4.96 −0.31 6421.16 6446.48 911.5 0.18 −4.79 −0.13
121222 200 20 21 6383.30 6828.50 7567.20 2553.0 6.97 6551.73 6759.22 8 391.4 2.64 6562.11 6796.71 14 023.1 2.80 6648.20 6776.44 13 851.2 4.15 6383.30 6526.13 6610.6 0.00 −6.52 −2.57 6480.12 6537.58 1158.5 1.52 −5.10 −1.09
122112 200 10 21 6111.52 6643.80 7106.90 2571.0 8.71 6154.64 6255.10 9 463.2 0.71 6184.70 6280.31 18 340.7 1.20 6168.32 6268.36 14 679.6 0.93 6111.52 6208.87 9151.9 0.00 −8.01 −0.70 6167.63 6206.17 1486.9 0.92 −7.17 0.21
122122 200 20 21 3725.07 4012.90 4915.70 2547.0 7.73 3757.37 3782.47 10 555.0 0.87 3757.27 3792.68 17 314.9 0.86 3744.74 3785.46 16 701.0 0.53 3725.07 3756.16 4976.8 0.00 −7.17 −0.53 3728.34 3768.28 748.8 0.09 −7.09 −0.44
122212 200 10 21 4025.13 4227.50 4448.10 2535.0 5.03 4046.81 4075.78 9 845.3 0.54 4046.42 4078.60 17 116.3 0.53 4043.53 4077.42 15 490.2 0.46 4025.13 4042.78 3871.8 0.00 −4.79 −0.46 4040.88 4045.36 584.4 0.39 −4.41 −0.07
122222 200 20 22 2049.68 2127.90 2345.50 2511.0 3.82 2054.31 2083.56 11 266.8 0.23 2052.22 2084.10 18 533.2 0.12 2052.16 2079.68 17 652.2 0.12 2049.68 2056.08 3826.1 0.00 −3.68 −0.12 2049.68 2052.86 720.0 0.00 −3.68 −0.12
123112 200 10 22 4868.90 5099.00 5527.40 2559.0 4.73 4916.97 5024.07 10 869.1 0.99 4967.11 5047.87 17 275.1 2.02 4940.81 5029.64 17 259.7 1.48 4868.90 4921.23 6253.2 0.00 −4.51 −0.98 4880.27 4917.27 1102.4 0.23 −4.29 −0.75
123122 200 20 22 4675.19 5188.70 5862.90 2544.0 10.98 4725.91 4771.90 10 590.0 1.08 4707.61 4785.89 16 689.1 0.69 4719.90 4777.07 17 021.6 0.96 4675.19 4703.17 6099.4 0.00 −9.90 −0.69 4682.46 4690.47 988.0 0.16 −9.76 −0.53
123212 200 10 22 5135.21 5363.00 5678.50 2544.0 4.44 5170.77 5218.43 10 206.0 0.69 5178.03 5225.04 17 737.1 0.83 5195.48 5247.18 16 205.9 1.17 5135.21 5174.74 4033.7 0.00 −4.25 −0.69 5143.39 5166.96 619.7 0.16 −4.09 −0.53
123222 200 20 22 2522.89 2657.50 3917.60 2577.0 5.34 2567.20 2629.46 10 676.9 1.76 2555.18 2633.86 18 065.4 1.28 2553.21 2606.54 17 096.2 1.20 2522.89 2551.90 3961.3 0.00 −5.07 −1.19 2526.68 2544.00 640.0 0.15 −4.92 −1.04
Global avg. 3799.88 4028.41 4422.78 1861.2 5.56 3835.27 3901.77 5 740.9 0.77 3837.85 3909.51 8 990.5 0.84 3840.99 3902.19 8 934.4 0.86 3801.30 3842.98 3715.6 0.04 −5.17 −0.51 3814.16 3840.57 616.8 0.34 −4.90 −0.22
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Table 17
Detailed results for the LLRP Prodhon data set.
Instance 𝑁𝑣 BKS MA GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS 30 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 𝑔𝑎𝑝𝑆𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 𝑔𝑎𝑝𝑆𝐴

20-5-1 5 330.00 337.30 378.00 387.0 2.21 330.00 1.0 0.00 330.00 330.00 125.2 0.00 330.00 330.00 117.8 0.00 330.00 330.00 166.4 0.00 330.00 330.00 167.8 0.00 −2.16 0.00 0.00 330.00 330.00 30.2 0.00 −2.16 0.00 0.00
20-5-1b 3 608.06 608.06 636.80 375.0 0.00 608.06 0.5 0.00 608.06 608.06 145.7 0.00 608.06 608.06 122.3 0.00 608.06 608.06 244.9 0.00 615.66 615.66 113.6 1.25 1.25 1.25 1.25 615.66 615.66 19.7 1.25 1.25 1.25 1.25
20-5-2 5 301.97 304.80 354.40 381.0 0.94 301.97 0.7 0.00 301.97 301.97 106.3 0.00 301.97 301.97 98.5 0.00 301.97 301.97 150.5 0.00 301.97 301.97 161.8 0.00 −0.93 0.00 0.00 301.97 301.97 27.2 0.00 −0.93 0.00 0.00
20-5-2b 3 486.55 486.55 511.20 381.0 0.00 486.55 0.8 0.00 486.55 486.55 158.7 0.00 486.55 486.55 132.8 0.00 486.55 486.55 266.6 0.00 486.55 486.55 114.3 0.00 0.00 0.00 0.00 486.55 486.55 18.7 0.00 0.00 0.00 0.00
50-5-1 12 843.94 859.90 917.30 546.0 1.89 846.88 153.5 0.35 846.17 849.77 709.2 0.27 846.52 850.10 815.3 0.31 843.94 850.40 859.5 0.00 843.94 845.80 589.0 0.00 −1.86 −0.35 0.00 843.94 845.19 92.3 0.00 −1.86 −0.35 0.00
50-5-1b 6 1293.46 1330.20 1379.80 522.0 2.84 1293.93 65.5 0.04 1293.46 1293.71 619.7 0.00 1293.46 1293.54 602.2 0.00 1293.46 1293.55 933.8 0.00 1293.46 1293.95 682.8 0.00 −2.76 −0.04 0.00 1293.46 1293.46 107.5 0.00 −2.76 −0.04 0.00
50-5-2 12 684.13 723.40 786.20 552.0 5.74 691.67 117.4 1.10 684.13 694.42 624.0 0.00 684.13 692.43 756.3 0.00 684.13 694.69 752.8 0.00 684.13 690.41 930.0 0.00 −5.43 −1.09 0.00 684.13 689.20 164.4 0.00 −5.43 −1.09 0.00
50-5-2b 6 953.25 965.70 1009.40 573.0 1.31 954.88 68.4 0.17 953.25 953.50 534.8 0.00 953.25 953.35 534.2 0.00 953.25 953.33 799.3 0.00 953.25 953.67 563.9 0.00 −1.29 −0.17 0.00 953.25 953.27 94.9 0.00 −1.29 −0.17 0.00
50-5-2BIS 12 945.45 955.20 981.50 537.0 1.03 952.55 120.7 0.75 949.13 950.77 883.4 0.39 949.57 951.13 1 081.1 0.44 950.12 950.93 1 024.7 0.49 945.45 945.77 1493.0 0.00 −1.02 −0.75 −0.39 945.45 946.31 230.3 0.00 −1.02 −0.75 −0.39
50-5-2bBIS 6 803.90 811.80 884.90 534.0 0.98 803.90 96.6 0.00 803.90 803.90 626.9 0.00 803.90 803.90 649.9 0.00 803.90 803.90 883.7 0.00 803.90 803.90 708.2 0.00 −0.97 0.00 0.00 803.90 803.90 123.5 0.00 −0.97 0.00 0.00
50-5-3 12 831.57 848.10 928.90 612.0 1.99 832.15 119.2 0.07 831.97 835.10 712.3 0.05 833.01 834.91 810.3 0.17 833.59 835.17 863.8 0.24 831.57 834.22 1084.5 0.00 −1.95 −0.07 −0.05 831.57 833.95 179.3 0.00 −1.95 −0.07 −0.05
50-5-3b 6 1101.57 1163.90 1198.80 531.0 5.66 1106.57 69.4 0.45 1101.57 1103.15 538.4 0.00 1101.57 1103.95 541.3 0.00 1101.57 1103.53 794.5 0.00 1101.57 1102.76 467.3 0.00 −5.36 −0.45 0.00 1101.57 1101.57 80.0 0.00 −5.36 −0.45 0.00
100-5-1 24 2000.80 2030.90 2044.30 891.0 1.50 2035.60 64.8 1.74 2004.33 2023.35 3 039.4 0.18 2010.49 2023.78 4 791.3 0.48 2008.95 2026.45 3 777.3 0.41 2000.80 2012.93 2474.4 0.00 −1.48 −1.71 −0.18 2005.30 2013.23 496.7 0.22 −1.26 −1.49 0.05
100-5-1b 12 2311.21 2374.90 2507.80 744.0 2.76 2357.87 102.8 2.02 2311.84 2336.64 2 221.6 0.03 2312.53 2337.27 2 871.7 0.06 2313.70 2342.80 3 126.5 0.11 2311.21 2346.56 2164.6 0.00 −2.68 −1.98 −0.03 2316.20 2343.44 383.1 0.22 −2.47 −1.77 0.19
100-5-2 24 1128.43 1226.10 1500.90 852.0 8.66 1144.70 81.1 1.44 1132.36 1135.99 2 760.8 0.35 1129.83 1135.49 3 976.1 0.12 1131.28 1135.70 3 582.7 0.25 1128.43 1133.53 2718.1 0.00 −7.97 −1.42 −0.12 1131.17 1133.01 441.3 0.24 −7.74 −1.18 0.12
100-5-2b 11 1507.88 1622.90 1701.00 855.0 7.63 1567.44 96.8 3.95 1507.88 1517.11 2 530.4 0.00 1510.57 1519.04 3 141.3 0.18 1510.57 1519.56 3 448.8 0.18 1507.88 1512.55 1540.1 0.00 −7.09 −3.80 0.00 1511.06 1514.17 215.0 0.21 −6.89 −3.60 0.21
100-5-3 24 1572.61 1710.40 1726.20 903.0 8.76 1596.77 49.2 1.54 1581.93 1587.20 2 784.3 0.59 1581.93 1586.49 4 072.3 0.59 1581.93 1587.20 3 595.7 0.59 1572.61 1581.49 2943.9 0.00 −8.06 −1.51 −0.59 1572.61 1581.17 483.5 0.00 −8.06 −1.51 −0.59
100-5-3b 11 1933.00 2054.80 2190.50 870.0 6.30 2032.13 114.9 5.13 1933.70 1950.89 2 315.8 0.04 1935.70 1953.85 2 932.6 0.14 1933.00 1954.97 3 247.9 0.00 1934.93 1954.27 2140.7 0.10 −5.83 −4.78 0.10 1934.93 1946.68 374.3 0.10 −5.83 −4.78 0.10
100-10-1 26 1458.80 1524.10 1589.90 1215.0 4.48 1481.56 80.3 1.56 1472.85 1511.00 2 994.7 0.96 1470.71 1503.92 4 143.4 0.82 1478.01 1510.98 3 908.8 1.32 1458.80 1465.01 2593.2 0.00 −4.28 −1.54 −0.81 1460.55 1465.33 455.5 0.12 −4.17 −1.42 −0.69
100-10-1b 12 1894.92 1960.70 2138.60 1185.0 3.47 1984.91 100.8 4.75 1901.27 1953.96 2 120.3 0.34 1915.77 1972.26 2 723.1 1.10 1908.63 1963.53 2 999.3 0.72 1894.92 1916.90 2211.6 0.00 −3.35 −4.53 −0.33 1911.89 1928.24 372.8 0.90 −2.49 −3.68 0.56
100-10-2 24 1137.59 1175.00 1236.30 1326.0 3.29 1287.50 75.8 13.18 1143.30 1152.81 2 899.7 0.50 1142.31 1155.47 4 132.2 0.41 1145.93 1155.29 3 739.8 0.73 1137.59 1145.91 3167.4 0.00 −3.18 −11.64 −0.41 1142.28 1145.11 483.9 0.41 −2.78 −11.28 0.00
100-10-2b 11 1561.40 1625.80 1724.20 1230.0 4.12 1645.07 139.1 5.36 1566.48 1585.67 2 208.4 0.33 1566.48 1588.24 2 889.5 0.33 1563.99 1578.90 3 115.3 0.17 1561.40 1570.81 2425.8 0.00 −3.96 −5.09 −0.17 1561.40 1565.77 410.8 0.00 −3.96 −5.09 −0.17
100-10-3 25 1204.64 1246.80 1288.30 1332.0 3.50 1216.20 57.2 0.96 1209.20 1221.52 3 145.2 0.38 1209.86 1225.98 4 290.2 0.43 1211.49 1224.72 4 060.6 0.57 1204.64 1209.10 1919.8 0.00 −3.38 −0.95 −0.38 1204.95 1208.05 360.6 0.03 −3.36 −0.93 −0.35
100-10-3b 11 1653.83 1799.00 1890.20 1287.0 8.78 1745.05 70.1 5.52 1662.43 1705.63 2 146.0 0.52 1665.69 1706.68 2 831.1 0.72 1670.17 1707.11 3 058.5 0.99 1653.83 1673.19 2334.1 0.00 −8.07 −5.23 −0.52 1653.83 1669.64 426.0 0.00 −8.07 −5.23 −0.52
200-10-1 49 2780.03 2920.70 3092.40 3414.0 5.06 2861.85 278.2 2.94 2798.58 2854.10 16 846.7 0.67 2797.86 2863.27 26 673.1 0.64 2803.57 2860.64 23 819.4 0.85 2780.03 2788.66 6664.8 0.00 −4.82 −2.86 −0.64 2785.75 2790.28 1125.8 0.21 −4.62 −2.66 −0.43
200-10-1b 22 3290.73 3532.20 3809.30 3240.0 7.34 3557.96 304.1 8.12 3368.71 3477.07 11 341.6 2.37 3355.70 3478.91 17 983.6 1.97 3327.08 3452.84 17 334.9 1.10 3290.73 3334.98 6272.8 0.00 −6.84 −7.51 −1.09 3290.73 3312.41 1090.0 0.00 −6.84 −7.51 −1.09
200-10-2 49 1972.33 2064.20 2153.30 3411.0 4.66 1997.01 342.5 1.25 1984.96 2001.97 17 482.5 0.64 1986.55 2004.51 29 590.3 0.72 1988.31 2002.48 24 959.6 0.81 1972.33 1981.41 5560.2 0.00 −4.45 −1.24 −0.64 1979.99 1982.13 954.4 0.39 −4.08 −0.85 −0.25
200-10-2b 23 2325.43 2516.40 2684.50 3141.0 8.21 2473.24 273.7 6.36 2336.11 2379.01 12 347.0 0.46 2355.15 2378.21 19 720.6 1.28 2368.88 2380.09 18 699.6 1.87 2325.43 2358.02 5160.5 0.00 −7.59 −5.98 −0.46 2341.77 2353.46 827.8 0.70 −6.94 −5.32 0.24
200-10-3 48 2727.15 2805.90 3066.1 3084.0 2.89 2783.20 323.8 2.06 2741.16 2758.09 14 786.4 0.51 2744.67 2757.42 27 900.5 0.64 2751.23 2763.79 21 623.8 0.88 2727.15 2736.49 5479.3 0.00 −2.81 −2.01 −0.51 2727.15 2736.07 789.2 0.00 −2.81 −2.01 −0.51
200-10-3b 22 3190.34 3347.00 3454.60 3267.0 4.91 3413.34 281.4 6.99 3242.18 3274.58 9 511.1 1.62 3233.89 3267.81 16 534.2 1.37 3225.75 3273.68 14 933.5 1.11 3190.34 3218.10 3924.1 0.00 −4.68 −6.53 −1.10 3208.88 3219.06 604.2 0.58 −4.13 −5.99 −0.52
Global avg. 1494.50 1564.42 1610.33 1272.6 4.03 1546.35 121.7 2.59 1502.98 1521.25 3 975.5 0.37 1503.92 1522.28 6 248.6 0.43 1503.77 1521.76 5 692.4 0.45 1494.82 1504.82 2292.4 0.05 −3.77 −2.40 −0.24 1497.73 1503.61 382.1 0.19 −3.63 −2.26 −0.09
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Table 18
Detailed results for the LLRP Barreto data set.
Instance 𝑁𝑣 BKS MA GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS 30 runs M-ILS 5 runs

Best Avg Time 𝑔𝑎𝑝𝐵 Best Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝑆𝐴 Best Avg Time 𝑔𝑎𝑝𝐵 𝑔𝑎𝑝𝑀𝐴 𝑔𝑎𝑝𝑆𝐴

Christ-50-5 6 1 661.64 1 690.80 1 782.40 591.0 1.75 – – – 1 661.64 1 662.07 541.5 0.00 1 661.64 1 662.13 528.7 0.00 1 661.64 1 662.35 813.7 0.00 1 661.64 1 669.05 614.2 0.00 −1.72 0.00 1 661.64 1 663.39 107.1 0.00 −1.72 0.00
Christ-75-10 9 2 370.73 2 590.30 2 689.80 873.0 9.26 – – – 2 403.79 2 459.03 1159.1 1.39 2 383.04 2 457.45 1384.4 0.52 2 408.92 2 454.95 1588.4 1.61 2 370.73 2 409.75 1612.4 0.00 −8.48 −0.52 2 391.95 2 406.42 284.5 0.90 −7.66 0.37
Christ-100-10 8 3 791.98 4 058.20 4 194.90 1023.0 7.02 3984.05 451.9 5.07 3 791.98 3 831.18 1958.7 0.00 3 806.39 3 838.89 2293.6 0.38 3 795.15 3 825.37 2876.3 0.08 3 803.50 3 845.85 2110.8 0.30 −6.28 0.30 3 825.29 3 842.92 360.7 0.88 −5.74 0.88
Gaskell-21-5 4 653.48 658.40 741.10 441.0 0.75 653.48 0.9 0.00 653.48 653.48 116.4 0.00 653.48 653.48 102.2 0.00 653.48 653.48 169.5 0.00 653.48 653.48 143.0 0.00 −0.75 0.00 653.48 653.48 23.1 0.00 −0.75 0.00
Gaskell-29-5 4 1 199.33 1 224.50 1 296.30 468.0 2.10 1199.33 5.2 0.00 1 199.33 1 199.33 311.0 0.00 1 199.33 1 199.33 255.4 0.00 1 199.33 1 199.33 485.9 0.00 1 199.33 1 199.33 283.2 0.00 −2.06 0.00 1 199.33 1 199.33 46.7 0.00 −2.06 0.00
Gaskell-32-5b 3 1 552.84 1 571.00 1 668.40 483.0 1.17 1552.84 4.9 0.00 1 552.84 1 553.29 417.8 0.00 1 552.84 1 553.29 337.6 0.00 1 552.84 1 553.29 650.7 0.00 1 552.84 1 556.58 284.4 0.00 −1.16 0.00 1 552.84 1 555.52 43.7 0.00 −1.16 0.00
Gaskell-36-5 4 1 627.17 1 642.40 1 647.00 522.0 0.94 1627.17 3.2 0.00 1 627.17 1 627.17 308.3 0.00 1 627.17 1 627.17 274.0 0.00 1 627.17 1 627.17 465.8 0.00 1 627.17 1 628.12 369.1 0.00 −0.93 0.00 1 627.17 1 627.17 61.0 0.00 −0.93 0.00
Min-27-5 4 5 387.55 5 387.55 5 697.00 834.0 0.00 5387.55 84.0 0.00 5 387.55 5 387.55 176.3 0.00 5 387.55 5 387.55 147.4 0.00 5 387.55 5 387.55 267.0 0.00 5 387.55 5 387.55 134.0 0.00 0.00 0.00 5 387.55 5 387.55 23.8 0.00 0.00 0.00
Min-134-8 11 21 752.00 23 387.00 26 012.50 2220.0 7.52 – – – 21 852.40 22 307.28 2225.7 0.46 21 910.50 22 309.20 2624.0 0.73 21 881.80 22 278.05 3250.7 0.60 21752.00 22 442.41 2127.0 0.00 −6.99 −0.46 21 865.00 22 297.08 355.4 0.52 −6.51 0.06
Or-117-14 7 53 798.50 56 209.00 61 396.20 1545.0 4.48 – – – 53798.50 54 866.72 1263.1 0.00 53 859.10 54 805.88 1265.5 0.11 53798.50 54 905.77 1958.4 0.00 54 413.90 56 794.12 1598.2 1.14 −3.19 1.14 56 228.40 57 517.50 273.0 4.52 0.03 4.52
Global avg. 9 379.52 9 841.92 10 712.56 900.0 3.50 – – – 9 392.87 9 554.71 847.8 0.19 9 404.10 9 549.44 921.3 0.17 9 396.64 9 554.73 1252.6 0.23 9 442.21 9 758.62 927.6 0.14 −4.06 0.05 9 639.26 9 815.04 157.9 0.68 −2.06 0.58
Global avg GBILS 2 368.72 2 423.68 2 540.78 628.5 2.00 2400.74 91.7 0.84 2 368.72 2 375.33 548.1 0.00 2 371.13 2 376.62 568.4 0.06 2 369.25 2 374.36 819.2 0.01 2 370.64 2 378.48 554.1 0.05 −3.24 0.05 2 374.28 2 377.66 93.1 0.15 −2.59 0.15
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algorithms presented in Osorio-Mora et al. (2023). Nevertheless, M-
ILS presents the smaller global value for 𝑔𝑎𝑝𝐵 (0.14%) among all the
algorithms.

Although the global computing time required by M-ILS, considering
30 runs, is larger than the one required by GBILS, the average com-
puting times of both algorithms (considering a single run) are similar.
Thus, by comparing M-ILS and GBILS, both considering 5 runs, the
computing times are equivalent, and both algorithms find the proved
optimal solution for 5 instances. Nevertheless, for the instance Christ-
100-10 M-ILS provides a better solution value than GBILS with a
𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 equal to −3.98%. Finally, regarding MA, M-ILS outperforms
it regarding the solution quality in similar computing times. M-ILS
provides a better solution value than MA for all the instances but one
in which both algorithms provide the same optimal solution value.
Furthermore, the average solution value provided by M-ILS is better
than the one provided by MA for all the instances. The average value
of 𝑔𝑎𝑝𝑀𝐴 equals −3.24% and −2.59% when 30 and 5 runs are con-
sidered for M-ILS, respectively. Indeed, M-ILS outperforms MA, even
considering 5 runs, in global computing times almost 6 times smaller.

3.5.4. Overall results on the LLRP
After analyzing the results, we can state that the proposed algo-

rithm M-ILS outperforms the state-of-the-art algorithms regarding the
solution quality for all the considered data sets. The global average
value of 𝑔𝑎𝑝𝐵 (computed over all the instances) is equal to 0.06%
and 0.32% when M-ILS is executed with 30 and 5 runs, respectively.
This value is better than the best among all the competitors (0.53%
for SA-VND0). Comparing M-ILS to the algorithms proposed in Osorio-
Mora et al. (2023), the global average value of 𝑔𝑎𝑝𝑆𝐴 equals −0.33%
and −0.07% when M-ILS is executed with 30 and 5 runs, respectively.
Considering 30 runs, M-ILS is globally faster than the algorithms SA-
VND0, SA-VND1, and SA-VND2 for the two more complex data sets.
In contrast, all the algorithms require similar computing times in the
third data set (Barreto data set). The average global computing time is
2786.95 s for M-ILS and 4400.23 s for SA-VND0 (the fastest among
the state-of-the-art algorithms) when 30 runs are executed for both
algorithms. On the other hand, comparing M-ILS to GBILS, the global
average value of 𝑔𝑎𝑝𝐺𝐵𝐼𝐿𝑆 (computed over all the instances reported
for GBILS) is equal to −2.13% and −2.00% when M-ILS is executed with
30, and 5 runs, respectively. Finally, comparing M-ILS to MA, the global
average value of 𝑔𝑎𝑝𝑀𝐴 (computed over all the instances reported for
MA) equals −4.35% and −4.07% when M-ILS is executed with 30 and
5 runs, respectively.

It is to note that for this problem we do not present the computa-
tional experiments regarding the comparison of the computing times
required by the considering algorithms to reach the target values.
The reason is that most of the values 𝐵𝐾𝑆0 were provided for one
of the three metaheuristics presented in Osorio-Mora et al. (2023),
and since M-ILS outperforms these algorithms, finding better solution
values within shorter computing times, considering a time limit larger
than the computing time reported for M-ILS would lead to redundant
conclusions. The same situation applies if a target value worse than the
best solution value obtained by M-ILS is considered. Furthermore, for
the instances in the Barreto data set, M-ILS (considering 5 runs) was
able to find the same solution values as those obtained by GBILS (the
fastest among the heuristics) in equivalent computing times for all the
instances but one, in which M-ILS finds a better solution.

4. Conclusions and future research

An effective metaheuristic (M-ILS) is proposed for solving the MD-
CCVRP, the MD𝑘-TRP, and the LLRP. The algorithm was tested on
several benchmark data sets, with a total of 78 instances for the MD-
CCVRP, 87 instances for the MD𝑘-TRP, and 76 instances for the LLRP.
Extensive computational experiments show that M-ILS outperforms in
terms of solution quality the state-of-the-art metaheuristic algorithms
28
PLS (proposed in Wang et al. (2020) for the MDCCVRP), GA (proposed
in Bruni et al. (2022a) for the MD𝑘-TRP), and SA-VND0, SA-VND1, and
SA-VND2 (proposed in Osorio-Mora et al. (2023) for the LLRP), with
competitive computing times.

The experiments also show that the stability of the proposed meta-
heuristic allows for a reduction of the number of runs necessary to pro-
vide good-quality solutions, implying global computing times shorter
than those required by the currently published heuristic methods.
Indeed, when M-ILS is executed with a time limit equal to that required
by PLS and GA for the MDCCVRP and the MD𝑘-TRP, respectively, M-
ILS is able to find solution values better than those obtained by the
mentioned competitors. For the LLRP, M-ILS requires shorter comput-
ing times and finds better quality solutions than those corresponding
to the algorithms SA-VND0, SA-VND1, and SA-VND2, considering the
same number of runs (30). Indeed, M-ILS outperforms the mentioned
algorithms even when the number of runs considered is much smaller
(5).

According to the results reported in Section 3, the proposed meta-
heuristic is globally the most effective algorithm for the considered
problems when challenging instances, in which the number of cus-
tomers is large, and the number of vehicles is relatively small, must
be solved. In addition, the proposed algorithm provides optimal or
near-optimal solution values for the easiest instances.

Based on the obtained results, it is possible to suggest the applica-
tion of the proposed methodology to other related problems as future
research directions. Some examples could be extensions of single-
depot latency vehicle routing problems studied in the literature, for
example, including time windows (generalizing the problem studied
in Kyriakakis et al. (2022)), considering priorities for the customers
(generalizing the problem studied in Bruni et al. (2020)), or combining
truck and drones in last-mile delivery operations (generalizing the
problem studied in Bruni et al. (2022b)). Also, since M-ILS can provide
good quality solutions for large-size instances within short computing
times compared to those required by the exact methods, M-ILS could
be useful to solve real-life problems related to humanitarian logistics
(Bruni et al., 2020; Ajam et al., 2022) or other applications. Another
interesting variant of the problem (especially suitable for post-disaster
management) could consider pickup and delivery decisions, where
some vital products, such as water and food, must be delivered, while
injured people must be picked-up.
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Appendix. Optimal solution for the MD𝒌-TRP instances with 𝑵𝒗 =
𝟑𝟓

Optimal Solution Instance p01 (see Table A.19).
Optimal Solution Instance p12 (see Table A.20).
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Table A.19

Route 1 Route 6 Route 11 Route 16 Route 21 Route 26 Route 31
D1 - 13 D3 - 38 D3 - 16 D1 - 15 D3 - 30 D1 - 41 D1 - 17 - 37
Route 2 Route 7 Route 12 Route 17 Route 22 Route 27 Route 32
D4 - 21 D2 - 1 D2 - 23 - 43 D1 - 4 - 18 D4 - 22 D1 - 42 D3 - 49 - 33
Route 3 Route 8 Route 13 Route 18 Route 23 Route 28 Route 33
D4 - 35 - 36 D1 - 25 D3 - 10 D3 - 39 D2 - 48 - 7 D2 - 6 - 24 D2 - 46 - 11
Route 4 Route 9 Route 14 Route 19 Route 24 Route 29 Route 34
D2 - 14 D2 - 26 D2 - 12 D2 - 32 D3 - 5 D1 - 44 - 45 D3 - 34
Route 5 Route 10 Route 15 Route 20 Route 25 Route 30 Route 35
D4 - 29 - 2 D4 - 20 - 3 D2 - 27 - 8 D2 - 47 D3 - 9 - 50 D4 - 28 - 31 D1 - 19 - 40
Table A.20

Route 1 Route 8 Route 15 Route 22 Route 29
D1 - 26 D1 - 5 - 13 D1 - 28 - 36 D2 - 42 - 50 - 58 - 66 - 74 D1 - 14
Route 2 Route 9 Route 16 Route 23 Route 30
D1 - 2 - 18 D2 - 44 - 52 - 60 - 68 - 76 D1 - 6 - 22 - 30 D2 - 45 - 53 - 61 - 69 - 77 D1 - 38
Route 3 Route 10 Route 17 Route 24 Route 31
D1 - 10 D1 - 9 D1 - 34 D1 - 39 D1 - 27
Route 4 Route 11 Route 18 Route 25 Route 32
D1 - 4 - 12 - 20 D2 - 46 - 54 - 62 - 70 - 78 D1 - 3 D2 - 51 - 67 D2 - 47
Route 5 Route 12 Route 19 Route 26 Route 33
D2 - 65 D1 - 7 - 15 - 23 - 31 D2 - 41 - 49 - 57 - 73 D1 - 11 - 19 - 35 D2 - 71 - 79
Route 6 Route 13 Route 20 Route 27 Route 34
D2 - 48 - 56 - 64 - 72 - 80 D1 - 40 D1 - 8 - 16 - 24 - 32 D2 - 59 - 75 D2 - 55 - 63
Route 7 Route 14 Route 21 Route 28 Route 35
D1 - 1 D1 - 17 - 33 D1 - 25 D1 - 21 - 29 - 37 D2 - 43
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