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A B S T R A C T

Recently, a non-linear model of viscoelasticity based on Rational Extended Thermodynamics was proposed
in Ruggeri (2024). This theory extends the evolution of the viscous stress beyond the linear framework of
the Maxwell model to the non-linear realm, provided that the viscous energy function is given. This work
aims at establishing a possible constitutive law for the viscous energy such that the relaxation modulus of
the fractional Maxwell model with order 𝛼 ∈ (1∕2, 1] is contained within the solutions of the (non-linear)
relaxation experiment. Necessary and sufficient conditions for the existence of this coincident solution are
discussed, together with a numerical evaluation of the viscous energy associated with the nonlinear model.
1. Introduction

Viscoelasticity is an intriguing research topic at the crossroad be-
tween applied mathematics and engineering, with many practical appli-
cations in material science [1,2]. The Maxwell model is the prototypical
example of a linear viscoelastic model with exponential relaxation [1].
However, with the aim of describing anomalous materials, while pre-
serving the linearity of the constitutive laws, many generalization of
standard models of linear viscoelasticity involving fractional deriva-
tives have been proposed over the past few decades (see, e.g., [3]
and references therein). These non-local modifications lead to memory
functions displaying a power-law decay, rather than an exponential
one, thus entailing the emergence of long-memory effects [3].

In [4], T. Ruggeri introduced a local non-linear viscoelastic model
within the framework of Rational Extended Thermodynamics (RET) [5–
7]. This model is uni-axial (thus effectively one-dimensional in space)
and assumes that the considered process is isothermal. The resulting
differential system, obtained by means of the universal principles of
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RET, reads [4]:

𝜌∗ 𝜕𝑣
𝜕𝑡

− 𝜕
𝜕𝑋

(𝑇 (𝐹 ) + 𝜎) = 𝜌∗𝑏,

𝜕𝐹
𝜕𝑡

− 𝜕𝑣
𝜕𝑋

= 0,

𝜕
𝜕𝑡
(𝑍(𝜎) − 𝐹 ) = − 𝜎

𝜇(𝐹 )
,

(1)

where

𝑇 (𝐹 ) = 𝜌∗𝑒(𝐸)
𝐹 (𝐹 ), 𝑍(𝜎) = ∫ 𝜌∗

𝑒(𝑉 )
𝜎 (𝜎)
𝜎

𝑑𝜎 ,

adopting the notation according to which a subscript variable denotes
differentiation with respect to the corresponding variable. Note that 𝜌∗

denotes the mass density in the reference frame, 𝑣 is the velocity, 𝑇
denotes the first Piola–Kirchhoff elastic stress tensor, 𝜎 represents the
viscous stress, 𝐹 denotes the deformation gradient, 𝑏 is the external
body force, and, lastly, 𝜇 represents the viscous coefficient. Further-
more, 𝑒(𝐹 , 𝜎) is the internal energy, which splits into the sum of an
elastic part 𝑒(𝐸)(𝐹 ) and a viscous part 𝑒(𝑉 )(𝜎).
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Fig. 1. Non-dimensional non-linear relaxation time 𝜏(𝜎) = 𝜏∕𝜏0 (left panel) and non-dimensional viscous energy 𝑒(𝑉 ) (𝜎) =
[

𝜌∗𝜇
(

𝜀0
)

∕
(

𝜏0𝑘20
)]

𝑒(𝑉 )(𝜎) (right panel).
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Any solution of (1) satisfies also the supplementary energy balance
equation

𝜌∗ 𝜕
𝜕𝑡

(

𝑣2

2
+ 𝑒(𝐹 , 𝜎)

)

− 𝜕
𝜕𝑋

(

(𝑇 (𝐹 ) + 𝜎)𝑣
)

− 𝜌∗𝑏 𝑣 =  = − 𝜎2

𝜇(𝐹 )
≤ 0 ,

that in the isothermal case corresponds to the entropy principle.
The system in Eq. (1) is symmetric hyperbolic provided that the

ollowing inequalities are satisfied [4]:

(𝐸)
𝐹𝐹 (𝐹 ) > 0 ,

𝑒(𝑉 )
𝜎 (𝜎)
𝜎

> 0 , 𝜇(𝐹 ) ≥ 0 . (2)

In one spatial dimension all quantities are scalars and the deformation
gradient reduces to

𝐹 =
√

1 + 2𝜀 ,

here 𝜀 is the deformation, as detailed in [4]. The last line in Eq. (1)
an therefore be rewritten, for classical solutions, as

𝜎
𝜇(𝜀)

+ 𝜌∗
𝑒(𝑉 )
𝜎 (𝜎)
𝜎

𝜎̇ = 𝜀̇
√

1 + 2𝜀
, (3)

here the dot denotes the derivative with respect to time. Notably,
q. (3) looks like a non-linear modification of the standard Maxwell
odel, equipped with a ‘‘non-linear relaxation time’’

(𝜀, 𝜎) ∶= 𝜌∗𝜇(𝜀)
𝑒(𝑉 )
𝜎 (𝜎)
𝜎

(4)

which is entirely determined, except for the viscous coefficient 𝜇(𝜀),
pon identification of the viscous energy 𝑒(𝑉 )(𝜎).

As pointed out in [4], it is now crucial to compare the properties of
he model given in (1), with particular regard for Eq. (3), with other
ell-established models in the literature as well as against experimental
ata. This procedure will allow one to classify the set of viscoelastic
odels compatible with the proposed local non-linear theory in (3)

nd, consequently, determine the associated viscous energy within this
eneral scheme.

In this work, we investigate for which viscous energy constitutive
quation 𝑒(𝑉 )(𝜎) the relaxation modulus, i.e., the solution of the stress
elaxation experiment, for a given constant strain 𝜀(𝑡) = 𝜀0 of (3), of
he proposed non-linear model is also a solution of the linear fractional
axwell model, as defined by the relation [8]:

+ 𝜏𝛼0 𝐷𝛼𝜎 = 𝑏𝐷𝛼𝜀 , 𝛼 ∈ (0, 1) , (5)

here 𝜏0 and 𝑏 are real dimensional constants and 𝐷𝛼 denotes the
aputo fractional derivative with respect to time.
2

G

2. Relaxation modulus and viscous energy

The relaxation modulus for the local non-linear model in Eq. (3) is
the solution of

𝜎 + 𝜌∗𝜇(𝜀0)
𝑒(𝑉 )
𝜎 (𝜎)
𝜎

𝜎̇ = 0 . (6)

For the linear fractional Maxwell model of order 𝛼 ∈ (0, 1), the
elaxation modulus is a solution of

+ 𝜏𝛼0 𝐷𝛼𝜎 = 0 , 𝛼 ∈ (0, 1) , (7)

with initial condition 𝜎(0) = 𝜎0, which is given by

𝜎(𝑡) = 𝜎0 𝐸𝛼
[

−(𝑡∕𝜏0)𝛼
]

, (8)

where

𝐸𝛽 (𝑧) ∶=
∞
∑

𝑘=0

𝑧𝑘

𝛤 (𝛽 𝑘 + 1)
, 𝛽 > 0 , 𝑧 ∈ C ,

denotes the Mittag-Leffler function [9], and 𝛤 (𝑧) represents Euler’s
Gamma function.

Recalling that the function 𝐸𝛼(−𝑡𝛼) is positive on R+, completely
onotonic (see [9]), and such that
d
d𝑡
(

𝐸𝛼(−𝑡𝛼)
)

= −𝑡𝛼−1 𝐸𝛼,𝛼(−𝑡𝛼) ,

here

𝛽,𝛿(𝑧) ∶=
∞
∑

𝑘=0

𝑧𝑘

𝛤 (𝛽 𝑘 + 𝛿)
, Re(𝛽) > 0 , 𝛿 ∈ C , 𝑧 ∈ C ,

enotes the two-parameter Mittag-Leffler function,1 we can prove the
following:

Theorem 1. Consider the family of constitutive equations 𝑒(𝑉 )(𝜎) depend-
ng on 𝛼 and expressed in the following parametric form:

(𝑉 )(𝑠) = 𝑒0 −
𝑘20

𝜌∗𝜇(𝜀0) ∫

𝑠

0

(

𝐸𝛼
[

−(𝑠̄∕𝜏0)𝛼
]

)2
𝑑𝑠̄ ,

𝜎(𝑠) = 𝑘0 𝐸𝛼
[

−(𝑠∕𝜏0)𝛼
]

,
(9)

with 𝑠 ≥ 0, 𝑒0 being a real inessential constant, and 𝑘0 a structural constant
of the material. Then, there exists a solution 𝜎(𝑡) = 𝑘0 𝐸𝛼

[

−(𝑡∕𝜏0)𝛼
]

of
both Eqs. (6) and (7) if we choose as initial condition 𝜎(0) = 𝑘0. The

1 For a comprehensive literature review on Mittag-Leffler functions and
heir role in fractional caluclus we refer the reader to the monograph by R.
orenflo, A. A. Kilbas, et al. [10].
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viscous energy 𝑒(𝑉 )(𝜎) is bounded ∀𝜎 ∈ [0, 𝑘0] if and only if 𝐸𝛼[−(𝑠∕𝜏0)𝛼] ∈
𝐿2([0,∞)

)

, namely, if and only if 𝛼 ∈ (1∕2, 1). The non-linear relaxation
time defined in Eq. (4), computed assuming 𝜀(𝑡) = 𝜀0, is positive for all
𝜎 ∈ (0, 𝑘0), diverges at 𝜎 = 0, and vanishes at 𝜎 = 𝑘0. The constant 𝑒0 can
be chosen to be equal to

𝑒0 =
𝑘20

𝜌∗𝜇(𝜀0) ∫

∞

0

(

𝐸𝛼
[

−(𝑠̄∕𝜏0)𝛼
]

)2
𝑑𝑠̄, (10)

o that

lim
→0

𝑒(𝑉 )(𝜎) = 0 .

roof. First, for (9) we observe that for 𝑒(𝑉 )(𝑠) to be finite for all 𝑠 ∈
0,+∞) one needs 𝐸𝛼[−(𝑠∕𝜏0)𝛼] ∈ 𝐿2([0,∞)

)

. Recalling the asymptotic
ehavior of the Mittag-Leffler function [9], i.e.,

𝛼(−𝑥𝛼) ∼

{

exp
[

−𝑥𝛼∕𝛤 (𝛼 + 1)
]

, as 𝑥 → 0+ ,

𝑥−𝛼∕𝛤 (1 − 𝛼) , as 𝑥 → +∞ ,

∼

{

1 − 𝑥𝛼∕𝛤 (𝛼 + 1) , as 𝑥 → 0+ ,

𝑥−𝛼∕𝛤 (1 − 𝛼) , as 𝑥 → +∞ ,

(11)

one can easily conclude that 𝐸𝛼[−(𝑠∕𝜏0)𝛼] ∈ 𝐿2([0,∞)
)

if and only if
𝛼 ∈ (1∕2, 1).

Then, fixing 𝛼 ∈ (1∕2, 1), from Eq. (9) we have that

𝑒(𝑉 )
𝑠 (𝑠) = −

𝜎2(𝑠)
𝜌∗𝜇(𝜀0)

,

nd hence, by means of the chain rule, we find

(𝑉 )
𝜎 (𝜎(𝑠)) = −

𝜎2(𝑠)
𝜌∗𝜇(𝜀0) 𝜎𝑠(𝑠)

,

hich implies

𝑒(𝑉 )
𝜎 (𝜎(𝑠))
𝜎(𝑠)

= −
𝜎(𝑠)

𝜌∗𝜇(𝜀0) 𝜎𝑠(𝑠)
. (12)

nserting (12) into Eq. (6) we get
𝜎𝑠(𝑠)
𝜎(𝑠)

=
𝜎̇(𝑡)
𝜎(𝑡)

,

thus implying that 𝑠 = 𝑡+𝑐, with 𝑐 ∈ R. Therefore from (9)2, the solution
f (6) with initial data 𝜎(0) = 𝜎0 is

(𝑡) = 𝑘0 𝐸𝛼

[

−
(

𝑡 + 𝑐
𝜏0

)𝛼]

with 𝑐 solution of 𝐸𝛼

[

−
(

𝑐
𝜏0

)𝛼]

=
𝜎0
𝑘0

.

(13)

If we then compare the latter with (8) we conclude that the two
solutions coincide if and only if 𝑐 = 0 and therefore only if we choose
the initial condition 𝜎0 = 𝑘0.

Second, since 𝐸𝛼(−𝑡𝛼) is positive and strictly decreasing on R+ we
can conclude that
𝜏(𝜀0, 𝜎(𝑠))
𝜌∗𝜇(𝜀0)

=
𝑒(𝑉 )
𝜎 (𝜎(𝑠))
𝜎(𝑠)

=
𝜏0

𝜌∗ 𝜇(𝜀0)
𝐸𝛼

[

−(𝑠∕𝜏0)𝛼
]

(𝑠∕𝜏0)𝛼−1 𝐸𝛼,𝛼
[

−(𝑠∕𝜏0)𝛼
]

is positive and finite for any 𝑠 ∈ (0,+∞), while it vanishes at 𝑠 = 0.
Equivalently from (9)2, we have shown that 𝜏(𝜀0, 𝜎) is positive and
finite for any 𝜎 ∈ (0, 𝑘0) and that it vanishes at 𝜎 = 𝑘0.

Lastly, if one recalls that [9]

𝑥𝛼−1 𝐸𝛼,𝛼
(

−𝑥𝛼
)

∼
sin(𝛼𝜋)𝛤 (𝛼 + 1)

𝜋
𝑥−𝛼−1 , as 𝑥 → +∞ ,

hen
𝜏(𝜀0, 𝜎(𝑠))
𝜌∗𝜇(𝜀0)

=
𝑒(𝑉 )
𝜎 (𝜎(𝑠))
𝜎(𝑠)

∼ 1
𝛼

𝑠
𝜌∗𝜇(𝜀0)

as 𝑠 → +∞ ,

r, equivalently,

lim
→0

𝜏(𝜀0, 𝜎)
𝜌∗𝜇(𝜀0)

= lim
𝜎→0

𝑒(𝑉 )
𝜎 (𝜎)
𝜎

= +∞

and the proof is completed. □
3

Remark 1. It is important to observe that the convexity condition (2)2,
corresponding to 𝜏(𝜀0, 𝜎) > 0, is valid on a finite interval 𝜎 ∈ (0, 𝑘0). This
s not surprising since in many physical scenarios convexity is known
o hold only for a subset of the values of the fields.

emark 2. Let us consider the case 𝛼 = 1, that corresponds to the
ordinary Maxwell model. By definition 𝐸1(𝑧) = e𝑧, hence from (9) we
find that

𝑒(𝑉 )(𝑠) =
𝜏0

2𝜌∗𝜇(𝜀0)
𝑘20 e

− 2𝑠
𝜏0 , 𝜎(𝑠) = 𝑘0 e

− 𝑠
𝜏0 ,

from which it follows that

𝑒(𝑉 )(𝜎) =
𝜏0

2𝜌∗𝜇(𝜀0)
𝜎2 .

hen we can easily compute the associated non-linear relaxation time
hat yields

(𝜀0, 𝜎) = 𝜌∗𝜇(𝜀0)
𝑒(𝑉 )
𝜎 (𝜎)
𝜎

= 𝜏0 > 0 ,

hat coincides with the standard relaxation constant time of the linear
odel, as expected, and both Eqs. (3) and (5) reduced with 𝑏 = 𝜇 to

the linear Maxwell model.

In Fig. 1 we plot the non-dimensional non-linear relaxation time and
the non-dimensional viscous energy as functions of 𝜎∕𝑘0 choosing the
constant 𝑒0 as in Eq. (10).

Note that Theorem 1 addresses the existence of a viscous energy (9)
that leads to a coincident solution of both RET-improved viscoelasticity
and the fractional Maxwell model. Then, it sets necessary and sufficient
conditions for the existence of such a solution, among which one finds
that the initial condition for the relaxation experiment of fractional
Maxwell model (8) must coincide with the structural constant of the
material, i.e., 𝜎(0) = 𝑘0.

However, this is not the only solution to the relaxation experiment
associated with the constitutive Eq. (9). In fact if 𝜎0 ≠ 𝑘0 we can show
that:

Theorem 2. Let 𝛼 ∈ (1∕2, 1) and 𝑐 > 0. There exist solutions of the
non-linear local RET model Eq. (6) with initial data 𝜎(0) = 𝜎0 ∈ (0, 𝑘0) of
the form given in (13) that we rewrite as

𝜎𝑅(𝑡) = 𝑘0 𝐸𝛼

[

−
(

𝑡 + 𝑐
𝜏0

)𝛼]

with 𝑐 solution of 𝐸𝛼

[

−
(

𝑐
𝜏0

)𝛼]

=
𝜎0
𝑘0

.

(14)

While the solution of the fractional Eq. (7) is given in (8) that we rewrite
as:

𝜎𝐹 (𝑡) = 𝜎0 𝐸𝛼
[

−(𝑡∕𝜏0)𝛼
]

. (15)

The two solutions (14) and (15) are different (except at initial time) but the
solution of the non-linear local RET model has lower and upper bounds that
depends on the solution of the fractional equation according the following
inequalities:

𝜎F(𝑡) < 𝜎R(𝑡) <
𝑘0
𝜎0

𝜎F(𝑡) , ∀𝑡 > 0 . (16)

roof. Because of the monotonicity of the Mittag-Leffler function, the
equirement of 𝑐 > 0 implies 𝜎0 < 𝑘0. Furthermore, for any 𝑡 > 0 we
ave that 𝜎R(𝑡) and 𝜎F(𝑡) are monotonically decreasing, and taking into
ccount that for large 𝑡 are valid the (11), we have

lim
→∞

𝜎𝑅(𝑡)
𝜎𝐹 (𝑡)

= lim
𝑡→∞

𝑘0
𝜎0

(

1 + 𝑐
𝑡

)−𝛼
=

𝑘0
𝜎0

> 1.

and hence 𝜎F(𝑡) < 𝜎R(𝑡), ∀𝑡 > 0. Furthermore, again since 𝐸𝛼
(

−𝑥𝛼
)

is
ecreasing on R+ we have that

R(𝑡) = 𝑘0 𝐸𝛼

[

−
(

𝑡 + 𝑐
𝜏0

)𝛼]

< 𝑘0 𝐸𝛼

[

−
(

𝑡
𝜏0

)𝛼]

=
𝑘0
𝜎0

𝜎F(𝑡) ,
which concludes the proof. □
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Fig. 2. 𝜎̄ = 𝜎∕𝑘0 and the dimensionless upper bound 𝜎̄𝑢𝑏 =
(

𝑘0∕𝜎0
)

𝜎𝐹 ∕𝑘0 = 𝜎𝐹 ∕𝜎0 as a
function of 𝑡 = 𝑡∕𝜏0, for 𝛼 = 0.6, 𝑘0 = 1, 𝜎0 = 1∕2.

In Fig. 2 we plot the comparison between 𝜎𝑅(𝑡) and 𝜎𝐹 (𝑡), as well
the upper bound 𝜎𝑢𝑏 = 𝑘0 𝜎𝐹 ∕𝜎0 for 𝜎𝑅(𝑡) discussed in Theorem 2.

3. Discussion

We have determined the constitutive law for the viscous energy (1)
for the RET-improved theory of viscoelasticity, proposed in [4], such
that the relaxation modulus of the fractional Maxwell model with order
𝛼 ∈ (1∕2, 1], i.e. (8), is contained within the solutions of the (non-linear)
relaxation experiment (6).

In Theorem 1 we have shown that, given the viscous energy (9), the
solution of the non-linear relaxation experiment coincides with the one
of the fractional Maxwell model of order 𝛼 if and only if 𝛼 ∈ (1∕2, 1]
and the fractional model provided that we choose 𝜎(0) = 𝑘0. The viscous
energy associated to the non-linear model reproducing such a scenario
is finite for all values of 𝜎 ∈ [0, 𝑘0], while the non-linear relaxation time
𝜏(𝜀0, 𝜎) turns out to be positive and finite for all 𝜎 ∈ (0, 𝑘0), vanishing at
𝜎 = 𝑘0, and diverging at 𝜎 = 0. This implies that the convexity condition
is only satisfied for 𝜎 ∈ (0, 𝑘0).

The non-local relaxation experiment (6) also admits solutions other
than the one associated to the fractional Maxwell model, given the
same initial condition. Nonetheless, the relaxation modulus of the
fractional Maxwell model of order 𝛼 ∈ (1∕2, 1) determines upper and
lower bounds for the relaxation modulus of the RET-inspired model, as
discussed in Theorem 2.
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