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ABSTRACT
Acoustic Doppler current profilers (ADCP) were deployed to investigate the backscattering (BS) signal in three navigable rivers, in different bedload
transport conditions. This study aims to demonstrate that the BS strength, as an additional variable to the apparent bedload velocity, improves the
characterization of the bedload transport using ADCPs. The M9 –3 MHz and the vertical beam M9 – 0.5 MHz showed decline of the BS strength
as the bedload intensity increased, whereas the RDI –1.2 MHz was relatively insensitive. The correlation between the median grain size and the
BS strength for the 0.5 MHz was linear, for the 3 MHz the BS strength was attenuated in the active layer, and for 1.2 MHz, it revealed a parabolic
distribution. Moreover, the analyses of the ADCP measured variables, using wavelet transformations and unsupervised machine learning, highlighted
the importance of the spatial and temporal variance and transient nature of the bedload transport.

Keywords: Acoustic Doppler current profiler; backscattering strength; bedload apparent velocity; bedload transport; river morphology

1 Introduction

Sediment particles transported in flowing water, rolling or saltat-
ing, along a river bottom, are denoted as bedload (Bagnold,
1956). The riverbed surface consists of the sediment particles
that are mobile, the bedload, as well as particles that are immo-
bile, which collectively form the rough surface (Conevski et al.,
2020b). The active bedload layer most often refers to the layer

of mobile sediment at the riverbed (Church & Haschenburger,
2017). Compared to the suspended sediment transport, sediment
particles transported in the water column, the bedload is charac-
terized by much slower dynamics, but is crucial for shaping the
river morphology. As such, a thorough understanding of bedload
transport is essential for effective and sustainable sediment man-
agement, especially in large and heavily exploited, navigable
rivers. Information about the bedload transport quantities and
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spatial distribution could significantly influence the dredging of
the rivers, the definition of shipping routes, and the operation of
hydraulic gates or any other man-made structures in the rivers.

The first step toward understanding bedload transport is data
collection. Traditionally, the bedload dataset consists of bed-
load samples that represent the grain sizes of the sediment
material present on the riverbed and bedload transport rates.
Collecting bed surface samples is a labour-intensive but rel-
atively simple routine. On the other hand, sampling bedload
transport rates can be a notoriously hard and repetitive proce-
dure (Bunte et al., 2007). The traditional direct methods for
measuring bedload transport are typically intrusive techniques
that collect the samples by direct contact with the riverbed. Dur-
ing the process, several issues contribute to large uncertainty in
the sampling (Gaweesh & Van Rijn, 1994). The most advanced
bedload samplers are the pressure difference samplers (Hubbell,
1964), which are placed on the riverbed manually and have a
box or bag with a mesh to catch the sediment. The most frequent
problems of these samplers are: (i) oversampling due to goug-
ing of the bed surface during deployment, (ii) under-sampling
due to perching on top of a large clast, such that transport
goes underneath the sampler, (iii) under-sampling due to loss of
material while raising the sampler, (iv) under-sampling due to
clogging, and (v) under-sampling due to flow diversion (Brand-
stetter et al., 2012; Bunte et al., 2007). These measurements are
non-continuous, often resulting in a statistically invalid estima-
tion of the total bedload transport in a certain river reach. To
reduce the uncertainty, a sufficient number of samples per posi-
tion area is required and several positions per cross section must
be conducted (Frings & Stefan, 2017; Gomez, 1991).

The above-mentioned difficulties have urged scientists and
engineers to find alternative, easier, continuous, and less dis-
ruptive techniques. Very often dune tracking is an alternative
method assuming that bedload transport rates can be estimated
based on bedform migration (Claude et al., 2012; Leary & Bus-
combe, 2020; Simons et al., 1965). However, performing dune
tracking requires frequent echo-sounding data as input to the
analysis and is limited to river reaches with bedforms. Dune
tracking provides estimates of the average bedload transport rate
for an entire reach and for the time interval between two con-
secutive measurements. Another promising technique similar to
dune tracking is acoustic mapping velocimetry (AMV), which is
a technique that estimates bedload rates in rivers developing bed
forms using multibeam scanning (Muste et al., 2016). However,
these techniques do not give the local transport characteristics
and fluctuations of transport over time.

On the other hand, the most promising surrogate techniques
for bedload transport measurements in rivers are the hydro-
acoustic techniques. The hydro-acoustic techniques are usually
divided into passive and active acoustic methods. The passive
acoustic techniques utilize geophones, hydrophones, or seismic
arrays (Barrière et al., 2015; Geay et al., 2017; Hsu et al., 2011;
Le Guern et al., 2021; Rickenmann et al., 2012, 2014; Roth
et al., 2016).

Active acoustics techniques use the information from a
returned echo signal (Urick, 1983). In riverine environments,
the acoustic Doppler current profilers (ADCPs) are the most
used monostatic active sonars. These are designed for measur-
ing the water velocity and water discharge (Brumley et al., 1991;
RDInstruments, 2011). However, in recent years many studies
proved their ability to measure the suspended sediment load
(Aleixo et al., 2020; Guerrero et al., 2013; Guerrero et al., 2016;
Moore et al., 2013; Szupiany et al., 2019) using single and mul-
tifrequency, also enabling determination of the mean grain size
(Guerrero et al., 2013; Moore et al., 2012). Besides the ADCPs,
the acoustic backscatter is very often used to determine the sus-
pended sediment concentration (SSC) at a point or short profiles,
using high-frequency sonars such as LISST-ABS or AquaSCAT
(Haun et al., 2015; Thorne & Hurther, 2014).

Bedload measurements using active acoustic systems work
on the same principle as with the suspended sediment load,
but the scattering process is more complex due to the multi-
phase scattering process (Conevski et al., 2020b; Darrell &
Richardson, 2007). The bottom tracking (BT) velocity mea-
sured by ADCPs has demonstrated a reasonable matching with
the bedload transport measured by traditional physical meth-
ods, both in stationary (Conevski et al., 2018; Conevski et al.,
2020a; Rennie et al., 2002; Rennie & Villard, 2004) and mov-
ing boat conditions (Jamieson et al., 2011; Rennie & Church,
2010). Besides the field campaigns, several laboratory exper-
iments have reported good correlations between the bedload
velocity measured by video processing techniques and the BT
velocity measured by different ADCPs (Conevski et al., 2019;
Conevski et al., 2020b; Jamieson et al., 2008). Laboratory tests
have also revealed a negative correlation between the corrected
backscattering (BS) strength from the BT signal and the bedload
concentration (Conevski et al., 2020b) measured by cameras, or
the number of mobile particles per image in the gravel experi-
ments, as well as different strengths of the vertical beam towards
the sand and gravel bedload material (Conevski et al., 2020b).
Another set of experiments advanced the bedload measurements
and proved the possibility to profile the velocity and concentra-
tion of the bedload active layer by using bi-static active acoustic
instruments (Blanckaert et al., 2017; Conevski et al., 2020c;
Guta et al., 2022; Hurther & Thorne, 2011).

Other interesting field studies have demonstrated the impact
of the BS strength on the apparent bedload velocity (Gaeuman &
Jacobson, 2006) and the possibility to use the BS strength from
the RDI 1.2 MHz slant beams to classify different bed materials
in lakes (Shields, 2010).

1.1 Motivation and objectives

The estimation of the bedload transport rate using the ADCP
apparent bedload velocity requires some assumptions related to
the bedload concentration, active layer and grain size (Conevski
et al., 2020a; Rennie & Villard, 2004). Often, the final deter-
mination of the transport rate relies on different empirical
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and semiempirical equations to calculate these variables (Le
Guern et al., 2021; Rennie & Villard, 2004). These assumptions
introduce uncertainty that additionally complicates the trans-
port rate calculation of the already highly variable motion of
the bedload particles in time and space. The recent series of
laboratory and field investigations have shown that the backscat-
tering strength and the apparent bedload velocity have different
behaviour toward different bedload materials (Conevski et al.,
2020b; Rennie et al., 2017) and towards different bedload
transport conditions (Conevski et al., 2020b). Consequently,
post-processing of the BS signal and BT velocity in various
locations could be rather complicated due to different bed-
load material, different roughness, biases, and ambient noise
(Brumley et al., 1991; Conevski et al., 2020a; Conevski et al.,
2020b). At the same time, the stationary ADCP measurements
assume averaging of the relatively long time series, which gen-
erates information loss related to the temporal variability of
the bedload (Parker, 2004). In an earlier field study (Conevski
et al., 2020a), it was demonstrated that the different acoustic
geometry and specific configuration of each ADCP influences
the measurements of the bedload apparent velocity in different
manners.

This field study is an extension of the work presented by
Conevski et al. (2020a) and has two main experimental objec-
tives: (i) to analyse the relations between the corrected BS
strength and the transport intensity for different bedload parti-
cle size distributions (PSD); and (ii) to observe the temporal
and spatial variations of both BT velocity and backscattering
signal, by using techniques for decomposing the raw signal
(e.g. wavelet transformations). The first goal has been initially
shown in controlled laboratory settings (Conevski et al., 2020b;
Conevski et al., 2020c) and partly in field conditions (Conevski
et al., 2022). The present work aims to build upon these results
and provide deeper insight into how to properly use the ADCP
data. The second goal is partially examined in Conevski et al.
(2022), but here, a deeper overview of the signal components is
presented. In the end, unsupervised machine learning data clas-
sifiers are used to prove that the bedload characteristics, e.g. the
grain size and transport intensity could be defined by using only
the information delivered by the ADCPs. To engage these objec-
tives, an M9 by Sontek and a RioGrande by RDI were deployed
simultaneously, exploring weak to moderate bedload transport
of sand to fine gravel material, in three different navigable rivers
(Rhine, Elbe and Oder). Moreover, this study offers a signifi-
cantly larger dataset from three different rivers covering different
bedload transport conditions and PSDs.

2 Methodology

2.1 Study sites

The measurements were conducted in the three large rivers
in Germany, the Rhine, Elbe and Oder, over a period of 6
years. The campaigns were part of regular sampling routines

organized by the WSV (Waterways and Shipping Administra-
tion) and BfG (German Federal Institute of Hydrology) that
collect sediment data during the entire year. Table 1 provides
a list of the cross sections, locations, hydraulic conditions, and
some bedload characteristics including the traditionally mea-
sured transport rate. Overall, there are 28 cross sections and
more than 350 different positions. Note that data for some of the
sandy cross sections from Elbe and Oder were also presented in
Conevski et al. (2020a).

2.2 Experimental set-up and procedure

The experiments were organized as described in Conevski et al.
(2020a). Two ADCPs were used, M9 by Sontek and RioGrande
by RDI, mounted on small vessels on opposite sides of the sur-
vey ship (Fig. 1), ensuring that both are in a fixed position
with minimum movements. The M9 operated with 3 MHz in
all positions, mostly using the incoherent (IC) signal process-
ing configuration, but sometimes it switched to pulse coherent
SmartPulse HD (Conevski et al., 2020a). The RioGrande oper-
ated with 1.2 MHz, typical RDI broadband configuration (BB).
The BT sampling rate ranged between 0.8 s and 2 s depending
on the depth and the number of bins in the water profile. The
pinging rate for the BT mode was always set to 1, and the rest
of the commands remained at the default, as suggested by the
manufacturers (RDI, 2015; Sontek, 2017). Note that in the pre-
vious studies (Conevski et al., 2020a; Conevski et al., 2020b) no
significant changes were observed while using different signal
processing and command configurations at the same frequency,
regardless of the bedload transport conditions.

The BfG bedload sampler was operated by a crane on the side
of the M9, at a distance of 10–15 m downstream, thus a possi-
ble interference was avoided (Fig. 1). On the opposite side of
the ship, sometimes suspended sediment samples were collected
using a pump sampler and filtering method. This data was used
in the correction of the backscattering strength (Section 2.4).

The ADCPs were simultaneously and continuously measur-
ing 10–30 min per each position along the cross-section. The
bedload sampler was sampled two or three times per position,
depending on the bedload transport conditions. Cameras were
installed in the sampler structure (Fig. 2), to visualize the phys-
ical sampling and to understand if the sampler was correctly
positioned and if there was blockage of the nozzle. If a problem
was identified on the camera, the sample was not considered in
the calculations, and in most cases, a new attempt was made at
a slightly different location.

2.3 Physical bedload sampling

The bedload sampler used in these campaigns is developed by
BfG, and apart from minor further developments, it has been
in continuous use along German waterways for about 50 years.
It is a pressure-difference sampler and was originally devel-
oped based on the Bed load Transport Meter Arnhem, BTMA
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Table 1 Average hydraulic parameters given for the full cross-section

Date
Pos. per

CS

Location,
name of the

station

Distance from
source (or the

German border)
km Q (m3 s–1) H (m) S ‰

D90
(D90grab)

(mm)

D50
(D50grab)

(mm)
u∗

(m s–1)
Qm

s
kg s–1 m–1

ODER 17 May 2017 7 Neurüdnitz 656 748 2.59 0.15 1.7 (1.2) 0.6(0.5) 0.062 0.043
18 May 2017 8 Hohenwutzen 662 721 3.12 0.15 1.8(3.5) 0.7(0.8) 0.068 0.076

ELBE down 27 March 2018 5 Neu Darchau 535.9 697 3.60 0.13 2.2 (3.3) 0.5 (0.8) 0.068 0.048
28 March 2018 5 Wilkenstorf 516.2 691 2.56 0.11 2.5 (4.1) 0.7 (0.7) 0.052 0.044
29 March 2018 5 Langendorf 501 702 3.27 0.13 2.6 (1.3) 0.5 (0.6) 0.065 0.088
9 June 2021 5 Neu Darchau 535.9 489 3.10 0.12 3.1 (1.3) 0.6 (0.6) / 0.035
8 June 2021 5 Wilkenstorf 516.2 492 2.80 0.11 1.6 (10?) 0.6 (1.2) / 0.055
7 June 2021 5 Langendorf 501 504 3.17 0.13 3.2 (3.3) 0.8 (0.8) / 0.025

ELBE up 28 May 2018 6 Barby 294 276 2.35 0.19 3.6 (2.8) 1.1 (0.9) 0.066 0.041
29 May 2018 5 Saale downstream 291 323 2.22 0.20 3.4 (15?) 1.1 (1.9) 0.066 0.066
29 May 2018 5 Saale upstream 290.6 246 2.14 0.20 3.1 (28.2) 1.1 (2.5) 0.065 0.055
30 May 2018 6 Breitenhagen 287.8 221 1.91 0.19 3.5 (8.1) 1.1 (1.7) 0.060 0.042
31 May 2018 5 Buckau 321 296 2.30 0.20 2.8 (2) 0.9 (0.8) 0.067 0.017

Middle Rheine 23 November
2020

9 Nierstein 483.5 820 3.98 0.09 4.7 (17.7) 9.3 (4.6) 0.058 0.005

24 November
2020

10 Laubenheim 493.6 796 3.06 0.09 4.5 (35.5) 9.6 (6.9) 0.051 0.016

25 25 November
2020

11 Mainz 498.3 903 3.11 0.09 1.3 (21.2) 4.0 (2.9) 0.051 0.006

26 November
2020

12 Niederwalluf 508 925 3 0.09 1.4 (40.1) 4.2 (5.8) 0.050 0.004

30 November
2020

9 Eltville 511.4 840 2.67 0.09 2.1 (39.9) 6.5 (7.4) 0.047 0.002

1 December
2020

11 Oestrich 517.7 845 2.4 0.09 2.9 (35.5) 8.9 (7.5) 0.045 0.002

2 December
2020

10 Bingen 528.8 861 2.06 0.09 1.3 (39.9) 5.8 (5.1) 0.042 0.006

3 December
2020

11 Assmannshausen 532.9 870 3.15 0.24 1.7 (80?) 6.6 (50?) 0.087 0.001

Lower Rheine 21 June 2021 9 Porz 681.3 2012 3.08 0.21 13.2 (63.4) 23.1 (18.6) 0.086 0.026
22 June 2021 9 Rheindorf 703.6 1963 3.1 0.20 14.4 (44.9) 20.7 (13.8) 0.079 0.007
23 June 2021 9 Urdenbach 720 2079 3.06 0.19 13.8 (57.6) 20.9 (18.8) 0.079 0.024
24 June 2021 9 Uedesheim 729.3 2204 2.77 0.20 11.5 (37.9) 19.8 (13.1) 0.075 0.034

Lilar Lower
Rheine

2 November
2021

8 Schenkenschanz 859 1052 3.42 0.14 17.9(36.3) 6.6 (8.5) 0.082 0.014

4 November
2021 (only
active width)

3 Schenkenschanz 859 1037 3.52 0.14 19.5(34.4) 6.7 (7.4) 0.082 0.027

Abbreviations: H, mean cross section depth; Q, mean discharge; D50 and D90, characteristic bedload particles; Qs, mean bedload transport rate of all positions and samples; u∗, shear velocity;
D50grab and D90grab, particles collected by a mechanical grabber with a depth between 20 and 60 cm, representing riverbed surface material; CS, cross section.
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Figure 1 Experimental set-up, example of the instrument positions relative to the ship

(a) (b)

Figure 2 BfG bedload sampler in operation. (a) Side-look of the BfG bedload sampler in operation. (b) Front-look of the BfG bedload sampler in
operation

(Vries, 1979). The BfG sampler is equipped with a steel basket
with a 1.4 mm mesh size (note that the bottom does not have
a mesh); a nozzle with 16 cm width and 10 cm height; the total
length of the sampler is 91 cm, without the landing structure.
To facilitate the landing and to ensure contact with the riverbed,
the sampler is mounted on a steel frame and the nozzle neck
is made of flexible plastic material (Fig. 2). As with all other
direct bedload samplers, the BfG sampler suffers from differ-
ent measurement inaccuracies, which generally result in only a
portion of the material transported at the location of the mea-
surement being collected by the sampler. Therefore, the results
from the sampler require a calibration factor and the efficiency
depends on the amount of sediment caught (Vries, 1979). The
BfG sampler was developed for use in larger rivers like the
Rhine with coarse sandy and gravelly bedload material. For a
bedload material with a larger proportion of fine grain sizes,
a lower efficiency must be expected, e.g. from losing material
while lifting up or clogging the mesh (Brandstetter et al., 2012;
Gaweesh & Van Rijn, 1994). The efficiency of the sampler was
also tested with different transport conditions and PSD, resulting
in calibration factors (Hubbell, 1964) that are used to correct the
measured transport rate (Banhold et al., 2016). The calibration
factors mostly depend on the total collected bedload mass and
the hydraulic efficiency related to its design, and in this study
varied between 1.1 and 1.5.

Based on the observations of the cameras mounted on the
sampler some measurements were discarded due to unreliable
sampling. At some positions, a large deviation between the three
samples was an additional indicator to exclude these samples
from further analysis (Conevski et al., 2020a). The final pro-
cessing of the data is simple averaging of the valid samples per
position.

2.4 ADCP working principle, acoustic properties, and data
pre-processing

ADCPs are active ultrasound instruments, for which the work-
ing principle is sending an acoustic pulse with a pre-defined
length (e.g. depending on the instrument’s working frequency
and configuration), then receiving the reflected signal with the
same transducer (RDInstruments, 2011). The received signal
is then analysed internally to obtain the well-known ADCP
outputs such as the echo intensity, velocity and depth. The
determination of the velocity is based on the “Doppler shift
frequency” (RDInstruments, 2011). ADCPs are generally con-
figured as an assembly of four transducers spaced at 90°
azimuth intervals (i.e. Janus configuration). These transduc-
ers form acoustic beams with a grazing angle of 70°–60° that
allows 3D velocity estimation, under the assumption that the
velocity is homogeneous in the sampling plane of all four
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beams. The sampling geometry of the four beam footprints
was reviewed in Rennie et al. (2002), Rennie et al. (2017),
and Conevski et al. (2020a). The ADCPs have two operat-
ing modes: water profiling (WP) mode and BT mode. The
working principle is the same, but the BT mode uses longer
pulses, which are supposed to contain more energy and allow
the sound beam to ensonify the bottom over the entire beam
width all at once (R. Conevski et al., 2020a; Lee Gordon &
Instruments, 1996; Rennie et al., 2017). The BT is used for
identification of the riverbed (i.e. water depth) and determin-
ing the velocity of the vessel, vBT. For stationary deployment
(Fig. 1), the BT signal is affected by the riverbed mobility,
particularly, the BT velocity is equal to the apparent bedload
velocity, va = vBT. This velocity (va) is considered a measure
of the spatially averaged bedload velocity (Rennie et al., 2002).
Note that the determination of the BT velocity is more com-
plex than the WP water velocity because the Doppler shift
differs from one edge to the other of the acoustic footprint
and it strongly depends on the rough riverbed surface and the
acoustic properties of the instrument (R. Conevski et al., 2020a;
Lee Gordon & Instruments, 1996). Due to this complex scat-
tering process, the acoustics measurements are often affected
by noisy data (Conevski et al., 2019), therefore filtering of
the time series is necessary. The filtering procedure involves:
(i) threshold de-spiking and vector filtering (i.e. eliminating all
values exceeding three standard deviations from the mean or
with opposite direction of the flow) as described in Conevski at
al. (2019, 2020a); (ii) elimination of the data exposed to waves
(e.g. sudden changes of the pitch-roll or spikes in the GPS); (iii)
eliminating the velocities for which values were equal or larger
than the velocity of the last WP cell (i.e. closest to the bed).
The filtered time series were averaged to get the final apparent
bedload velocity, va.

Besides the apparent bedload velocity, both ADCPs deliver
the BT echo intensity in instrument units (EI). The determina-
tion of the EI internally in the ADCPs is not clearly explained
by the manufacturer, but could be interpreted based on trailing,
leading edge, or the centre of the echo distribution (Conevski
et al., 2020a; Conevski et al., 2020b; Rennie et al., 2017).
This signal contains information from both the mobile bedload
particles (i.e. volume scattering Sv) and the immobile bedload
particles beneath the active bedload layer (i.e. surface scattering
Ss). Investigating the sensitivity of the BS strength towards the
bedload characteristics requires derivation of a modified sonar
equation (Conevski et al., 2020b):

BS = 10 log(Ss + Sv) = −SL0 + kdB(EI − Er) − Af

+ 2αR + 20 log(R) − PdB (1)

where SL0 is the source level calculated using the transmit volt-
age and currents present in the RDI output files or the pressure
at the transducer, P, in the Sontek output file, as suggested by
Shields (2010) and RDI (RDInstruments, 2015). kdB is scal-
ing factor to dB, Er is the noise level, R is the slant distance

to the sediment bed. The transmission losses in two direc-
tions include beam spreading 20log(R) and the attenuation in
the water column (2αR) that accounts for the absorption due
to water viscosity (Medwin & Clay, 1998) and the suspended
sediment attenuation in the water column. The suspended sedi-
ment attenuation coefficient was calculated using the mean SSC
and median diameter measured at the same time or for sim-
ilar discharges. Nevertheless, the averaged SSC varied from
20 mg l−1 to maximum 170 mg l−1, resulting with a maximum
of 0.1 dB m−1, although the median diameter was generally very
fine (0.001–0.5 mm), corresponding to the prevailing viscous
term (R. J. Urick, 1983). The attenuation in the active bedload
layer is not taken into consideration and it is accounted as a bias
in the BS strength. PdB is the transmit voltage, and Af is the area
of the surface scattering at the bed, which is usually applied to
normalize the surface backscatter for the unit area. More details
about the parameters are given in the laboratory experiments
presented in Conevski et al. (2020c).

2.5 Temporal analysis and classification

The nature of the bedload transport is characterized by a spo-
radic, inhomogeneous motion of particles, particularly in gravel
riverbeds (Wilcock et al., 2009), which makes the transport spa-
tially and temporally variable. Characterization of this variabil-
ity is crucial for understanding the bedload processes, as well as
their impact on the river morphology. Analysis of BS strength
and the apparent bedload velocity using signal processing tools
have demonstrated that there are short-term variations that are
usually lost after averaging the time series (Conevski et al.,
2022). In this study, the wavelet transforms analysis of the signal
is performed to understand better these short-term nonstation-
ary effects (Foufoula-Georgiou & Kumar, 1994). The wavelet
analysis permits studying local features of non-stationary sig-
nals, in frequency and time, where the Fourier transformations
usually fail (Foufoula-Georgiou & Kumar, 1994). The analy-
sis is presented through the wavelet spectrum (i.e. scalograms),
which represent an absolute value of the continuous wave trans-
formation (cwt) coefficients plotted as a function of time and
frequency. The cwt enables time-frequency analysis of the time-
series of both variables, aiming to identify the local (e.g. burst-
ing of patch of sediments, ripples superimposed on the dune,
etc.) and global (e.g. dune mobility) periodicities of the bed-
load transport. The 2-D visualization of the cwt on the ADCP
variables helped for identification of the instantaneous bedload
characteristics, such as bedload rate intensity and granulometry
variation. Moreover, the cwt could also identify some periodic
noise sources that can be related to the ship, the instrument or
the natural environment at the study site.

Finally, the post-processed ADCP BT outputs (va, Bs) and
some statistical variables obtained from the same time series
were clustered using unsupervised machine learning (ML)
approach (i.e. Gaussian mixture models, GMM). The main
motivation is to demonstrate that a rather simple application of
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the ML method on the ADCP outputs could be a stand-alone tool
to classify the bedload transport conditions. The GMM used in
this study are based on K-independent Gaussian distributions
that are used to model the separate clusters (Jothilakshmi &
Gudivada, 2016). The GMMs are considered more robust and
more suitable for data with several inputs (Jothilakshmi & Gudi-
vada, 2016). The GMM returns the cluster centroid and cluster
variances for a family of points if the number of clusters is pre-
defined (i.e. training phase). The centroid and variance can then
be passed to a Gaussian probability distribution function to com-
pute the similarity of an input query point with reference to a
given cluster (i.e. evaluation phase).

3 Results

The results section is divided into three parts: (i) the mean val-
ues analysis of the ADCP outputs versus bedload intensity and
the bedload PSD which elucidates the reciprocal sensitivity;
(ii) time-frequency analysis of one randomly chosen measure-
ment; (iii) bedload classification applying GMM to ADCP
outputs.

3.1 Backscattering strength sensitivity towards the bedload
intensity and bedload grain sizes

The temporal mean values of the BS strength (Bs) are plotted
against the bedload intensity, which in this case is represented
by the apparent bedload velocity (va). The Bs is the average of
all four slant beams (e.g. for 1.2 MHz, RDI and 3 MHz, M9)
and va is calculated using the homogeneous assumption of the
beams. Both variables are filtered and de-spiked as explained in
section 2.4. It is assumed that va represents the bedload intensity,
better than the physically measured transport rate, due to a few
reasons: (i) the spatial consistency of the va and Bs, knowing that
the sampler is some 15–20 m away from the ADCPs sampling
area (Fig. 1); (ii) temporal alignment between ADCP derived
data, avoiding any deviation among the periods of operating the
physical sampler; (iii) the possible inaccuracies introduced by
the BfG-sampler, especially in weak transport conditions and
uneven riverbed (Conevski et al., 2020a; Gaweesh & Van Rijn,
1994). By deploying va as an indicator of the bedload intensity,
the invalid samples, measured by the BfG sampler (i.e. which
are discarded in the other analysis) are actually included in this
comparison and marked with the x-symbols in Fig. 3.

Figure 3a–c show that the Bs values for 3, 1.2 and 0.5 MHz
(vertical beam, M9) are decreasing as the intensity of the
transport increases. This was most obvious for the 3 MHz,
most likely due to the highest working frequency and smaller
grazing angle (65°), which implies the highest losses in the
active bedload layer and prevailing volume scattering (Conevski
et al., 2020b). It could be also noticed that there are two
trends, which represent sand-dominated (red arrow, Fig. 3a) and
gravel-dominated riverbed (blue arrow, Fig. 3a). Note that there

is not a precise distinction between sand and gravel, knowing
that in most of the gravel-dominating measurements, there is
also a high partition of sand. The highest bedload intensity, the
sandy data from Oder (Table 1), seems to lay between these two
trends (small triangular symbols Fig. 3a), most likely due to the
increased ambient noise (which is not modelled) and presence
of debris in the bedload transport. Some outliers are also visible
in Fig. 3a, which are identified as ADCP-biased measurements.
These data contain erroneous measurements of the apparent bed-
load velocity: the shaded rectangles in the lower part of Fig. 3a
represent, for example, the flow of leaves, debris and shells that
mimics the bedload transport velocity; the shaded rectangles in
the upper part of Fig. 3a represent very rough bedload surface,
rocks and stones, with no bedload transport. This confuses the
Doppler shift estimation, resulting in false velocities (Medwin,
2005).

The 0.5 MHz vertical beam data looks more consistent,
resulting in a smaller slope of the decreasing trend (Fig. 3b).
This is explained by the vertical grazing angle and lower work-
ing frequency. The division into two groups of datasets (e.g.
gravel vs sand) is also visible here, but there is no obvious
change in the trends. Note that va has the same data as for
the 3 MHz (i.e. only the slant beams can be used for velocity
estimation).

The 1.2 MHz, RDI, similarly to the laboratory experiments
(Conevski et al., 2020b), showed low sensitivity towards differ-
ent bedload transport conditions (Fig. 3c); penetrating the active
bedload layer and dominantly scattering from the immobile sur-
face below. Two trends may again be identified: one, which is
more inclined, the data that is more scattered both due to the
rough surface of the coarse armoured layer or bedforms (black
arrow, Fig. 3c), and another that is almost vertical, that includes
the data with moderate to abundant transport rate (right, Fig.
3c). The outliers are not easy to identify, because the data do
not distribute with evident correlation. Nevertheless, the sandy
data on the right of Fig. 3c represent sand passing on top of
an armoured/rocky layer in Middle Rhine 498.3 km (Table 1),
and could be identified as outliers deviating from the general
trend. In the middle Rhine, there is predominantly gravel but in
average or below average flow there are patches of relatively
intensive sand-gravel transport, as was the case in some of the
campaigns (Table 1). Note that RDI uses BB-coded signal pro-
cessing which enables higher resolution profiling and acoustic
sampling through the entire active layer (Conevski et al., 2020a,
2020b).

For the M9 – 3 MHz, it was observed (Fig. 4a) that the coef-
ficient of variation of the BS strength (CvBS) slightly increases
as the coefficient of variation of the bedload apparent bedload
velocity (Cvva) increases. It is also noticeable that the varia-
tion of the va is higher for the gravel data or the data with
no reliable physical bedload measurements. This follows the
laboratory tests (Conevski et al. 2020b), suggesting that the
higher bedload transport intensities trigger more deviation in the
results. The M9 – 0.5 MHz resulted in a rather stable variation of
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(a) (b) (c)

Figure 3 Apparent bedload velocity (va) as an indicator of the bedload transport intensity against the BS strength (Bs). (a) Data extracted from M9
3 MH – IC; (b) data extracted from M9, vertical beam (VB) 0.5 MH – IC; (c) data extracted from RDI 1.2 MH – BB; the × symbols indicate that
the bedload measurement was unreliable, or there were no data at all, thus these points were not used in the calculations

the backscattering strength and was very low (Fig. 4b, ∼ 0.05).
This further corroborates the finding that volume random scat-
tering from moving particles (i.e. the active layer) prevails in a
condition of greater mobility while fixed reflection from immo-
bile particles (i.e. surface scattering) overlaps in low transport
conditions. Similar to M9 – 0.5 MHz, 1.2 MHz gave low Cv val-
ues, also due to the influence of the surface scattering, but as a
consequence of the finer resolution and BB signal processing
(Conevski et al. 2020a).

In Fig. 5 the correlation between Bs and the median diame-
ter (D50), calculated from sediment caught by the BfG sampler
(i.e. only mobile particles), is presented for the three frequencies
used in this study. The 3 MHz shows no correlation with D50,
and this complies with the previous comment that the volume
scattering of moving particles prevails. Moreover, the 3 MHz
IC also performs more superficial sampling of the active layer
due to the lower resolution of the bin profiling (Conevski et al.,
2020b), resulting in less sensitive data toward the shape of the
particles (D50). The prevailing volume scattering is visualized
with the negative trend (Fig. 4a, red line) that demonstrates the
loss of the BS strength within the active layer for the sandy envi-
ronment (also in Fig. 3a). The Bs for the gravel data (group
of points on the right in Fig. 5a) seem to stay stable for all
points, most likely due to the shallow and insufficient ensoni-
fication of the riverbed (i.e. shorter pulse length and coarse
profiling) and smaller grazing angle for the M9 (65° for M9, 70°
for RDI).

On the other hand, a positive correlation between Bs and D50

was observed for the 0.5 MHz (Fig. 5b), which complies with
the fact that the impact of the volume scattering is minimal,
and that surface scattering prevails at a 90° grazing angle and
lower working frequency (Conevski et al., 2020b). For exam-
ple, in most of the cases, the difference between sand and gravel
is about 5 dB. The vertical beam also shows a direct reflection
of the riverbed and minimizes the refraction losses, making

the D50–Bs relation stronger (Urick, 1983), knowing that the
static bed and bedload have similar PSD (Table 1). For negli-
gible sound attenuation, the increase of the BS strength with an
increase in the grain size complies with the Rayleigh scattering
theory, which states that larger particles have stronger backscat-
tering properties (Medwin, 2005; Moate & Thorne, 2009).
Therefore, the observed D50–Bs positive correlation reflects
an overall PSD coarsening which entails stronger backscatter-
ing for coarser fractions falling within the Rayleigh regime or
a wider class reaching the geometrical regime (i.e. maximal
scattering strength for given frequency).

The RDI 1.2 MHz data behave differently than the M9 and
forms an asymmetrical parabolic function (Fig. 5c) that implies
the signal penetrates the active layer. For sand-dominated envi-
ronments, the sound propagation reaches the immobile particles;
thus Bs starts to increase as the D50 enlarges, and that is the
prevailing effect of surface scattering for sandy more inten-
sive transport. In the upper part of the parabola, the BS starts
to decrease at the transition from sand to gravel. This is a
signal attenuation that might be ascribed to sound absorption-
scattering within the active layer and reflection losses at layer
interfaces (e.g. between the active layer and the armoured layer
beneath). Particularly relevant for reflection losses, the rough
surface of the immobile armoured layer coupled with the 70°
grazing angle may broaden the reflected return in all direc-
tions within the active layer, therefore contributing to more
diffusive loss (Conevski et al., 2020b; Ivakin, 1981). Further-
more, the RDI-BB coded signal processing enables much finer
resolution, which coupled with the lower working frequency
and enhanced the signal penetration within the active bed-
load layer (Conevski et al., 2020b; RDI, 2015). Concluding
on that, reflection losses apparently prevailed for gravel beds.
In this case, the immobile particles, which are typically larger
than the sampled particles (Table 1), formed an acoustically
rough and dispersive bed, with a roughness wavelength that
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(a) (b) (c)

Figure 4 Coefficient of variation of the apparent bedload velocity (Cvva ) versus coefficient of variation of the BS strength (Bs). (a) Data extracted
from M9 3 MH – IC; (b) data extracted from M9, vertical beam (VB) 0.5 MH – IC; (c) data extracted from RDI 1.2 MH – BB; the size of the symbols
indicates the standard deviation of corresponding PSD of the bedload caught by the BfG physical sampler; the × symbols indicate that the bedload
measurement was unreliable, or there were no data at all, thus these points were not used in the calculations

(c)(b)(a)

Figure 5 The median grain size (D50) of the bedload (i.e. mobile particles) against the BS strength (Bs). (a) Data extracted from M9 3 MH – IC;
(b) data extracted from M9, vertical beam (VB) 0.5 MH – IC; (c) data extracted from RDI 1.2 MH – BB

was significantly larger than the 1.2 MHz wavelengths (Urick,
1983).

The standard deviation (std) of the mobile particles is gener-
ally high, particularly in the case of gravel-bed rivers. However,
the std of the M9 data is not correlated with the particle size
deviation (not shown). This corroborates the finding that the
3 MHz performs superficial sampling, and the 0.5 MHz vertical
beam results in prevailing surface reflection poorly affected by
particles sorting within the active layer. On the other hand, the
coefficient of variation for the 1.2 MHz Bs increases with the Cv
of the grains, which agrees with the more efficient penetration
and scattering of sound throughout the active layer.

Note that in Fig. 5, ∼ 10% fewer samples were analysed,
because only the samples with bedload transport rate larger than
0, (Qs > 0 kg m−1s−1), were considered, where PSD is available
and the samples for which poor sampling was observed, with the
camera, were eliminated.

3.2 Time-frequency analysis of va and Bs

One measurement/position of cross-section 703.6, in the Lower
Rhine River (Table 1) was chosen to visualize the temporal
and spatial variability of the bedload data by using cwt and
scalograms (i.e., plotted cwt in time and frequency). The infor-
mation from the scalograms will help understanding the bedload
characteristics at different instances. The measurement was cho-
sen randomly among the ones that contain valid information
from the BfG-bedload sampler. The physically measured sam-
ple had the following characteristics: median grain size equal
to D50 = 7 mm with 35% content of sand; mean transport rate
equal to 35 g s–1 m–1, which makes for weak to medium bedload
transport conditions, dominated by gravel particles.

The calculations were performed in Matlab using the cwt
function where the analytic Morse wavelet was used as a
mother wavelet for decomposition of the signal, with symmetry
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(a)

(b)

(c)

(d)

(e)

Figure 6 Time frequency analysis of the va – Bs in both X (beam 2–4) – Y (beam 1–3) ADCP oriented directions. (a) moving mean (window, [15
15]) of va and Bs in Y direction (dotted line) and in X direction (full line); (b) cwt of va in X direction; (c) cwt of Bs in X direction; (d) cwt of va in
Y direction; (e) cwt of Bs in Y direction

parameter, gamma, equal to 3 and the time-bandwidth product
equal to 60 (Lilly, 2017), which means perfectly symmetric.
The maximum frequency limit presented in the scalograms is
determined based on the Nyquist frequency, whereas the max-
imum period limit cannot exceed the signal length divided by
the product of two times standard deviations of the wavelet and
the wavelet peak frequency (Lilly, 2017). The total length of the
registered data by the ADCP was 20.4 min, with sampling rate

of 1s, therefore allowing a comprehensive investigation of the
variation in time.

The cwt analysis of the data shown in Fig. 6 is from the M9
working at 3 MHz – IC and it is divided into X –Y instrument
directions (i.e. averaging the data of beam 2–4 and beam 1–3).
By doing this the spatial variation of the bedload, at a local scale,
is considered. The ADCP was positioned in a way that the Y-
direction is the main flow direction.
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Figure 6 shows higher magnitudes of the cwt coefficients
and a tendency of motion in the Y-direction, at the same time
in the X -direction, until 7 min there is almost no motion (blue
lines, Fig. 6a), although vax is changing sign, crossing the zero,
7 times until min 7. At the beginning of 7 min, there is a pul-
sation of vax in a positive direction and then negative at min
8; after that the motion in the X -direction is dominantly in a
negative direction. This is also visualized in the vamagnitudes
of the cwt coefficients (Fig. 6b, c), which have the same time
resolution as the data. For the both X –Y directions, until the
3 min, there is no transport, except possible weak fluxes of some
sand-organic mixtures (Fig. 6a–e), then movement is visible in
the Y-direction and increase of the va, followed by a decline of
the Bs (Fig. 6d, e). Near the end of the time series, va increases
in both directions and the transport occurs at higher frequen-
cies (e.g. 500 mHz). At the same time, the BS strength in the
X -direction is stronger with oscillations that appear between
150–300 mHz present almost the entire measurement (long red
rectangle, Fig. 6c), most likely due to sampling directly on rocks
stones falling within the acoustic footprint of beams 2–4, as
well as due to the uneven riverbed (Fig. 7). In the Y-direction
an aggregation of energy was observed, but fewer peaks in this
interval (150–300 mHz), which is due to beams grazing towards
the flow direction (red rectangle, Fig. 6e). In Y-direction the Bs

is lower and more attenuated due to the more intensive trans-
port, resulting in lower cwt magnitudes at the frequencies where
the va intensifies (e.g. between min 3 and 4 as well as at 12
and 18 min). Interestingly, before and/or after each peak of va

cwt magnitude, there is also an abrupt change of Bs magnitude
(see the arrows in Fig. 6). This phenomenon is also illustrated in
Fig. 8, where two sequences are cut from the time series for va

and Bs and plotted one against another. In the period between
minute 9.5 and minute 10.5 (Fig. 8a) there is a tendency to
decrease the velocity in X -direction and increase the BS strength
by 2 dB, which implies intensifying of the surface scattering.
At the same time, in the Y direction, the values of va and Bs

remain invariant, with a slight tendency to increase (see also Fig.
6d, e). On the other hand, Fig. 8b (at 18–19 min) demonstrates
negative correlations between va and Bs, reflecting the increase
in the apparent velocities, the bedload transport intensity, and
the thickness of the active layer. The intensity is higher in the
Y-direction.

Moreover, looking at the high-frequency events, it appears
that some information is missing and that the 1 Hz sampling
of the ADCP is unable to fully describe the non-stationary
fluctuations of the bedload transport (upper right part of Fig.
6b–d).

The final comment is related to the lower frequency peak at
150 mHz and 12 min in both Fig. 6b and d (dashed red rectan-
gles), which shows fluctuations of the velocities, most likely due
to the passage of the ship (registered in the field notes). Register-
ing low cwt magnitudes in the BS strength at these frequencies
shows the possibility of eventual water bias (Rennie et al., 2002)

Table 2 Parameters in the GMM unsupervised ML model.
Please note that the results of each combination of inputs are
shown in Fig. 9.

ADCP Inputs Clusters

M9 3 MHz, 0.5MHz,
(Fig. 9a)

va, Bs, a std(va),
std(Bs), b FD,
c va

err, BsVB,
std(BsVB)

5

RDI 1.2 MHz,
(Fig. 9b)

va, Bs, std(va), std(Bs),
FD, va

err
5

M9 3 MHz,
(Fig. 9c)

va, std(va), FD, va
err, 4

RDI 1.2 MHz,
(Fig. 9d)

va, std(va), FD, va
err 3

astd refers to the standard deviation of the variable
bFD percentage of filtered data (Conevski et al., 2019)
cBottom track, error velocity (RDI, 2015)

most likely initiated by the hydrodynamic pressure of the nearby
ship passage.

3.3 Bedload classification using ADCP outputs as input: va

and Bs

The correlations given in Figs 3 and 4 supported the possibility
of developing a statistical or machine learning model that could
classify the data. To evaluate the ADCP outputs in the least
biased way, an unsupervised machine learning (ML) model,
GMM, was used to classify the data, using the mean and std val-
ues of the filtered Bs and va as inputs (Table 2). In two scenarios,
four tests were performed, with and without the BS strength in
the input variables for the M9 and the RDI (Table 2). The main
purpose was to demonstrate that the BS has an added value to a
better representation of the bedload transport. The unsupervised
ML models do not require targets to calibrate (i.e. Qs and/or
D50) but use only the features derived from ADCP outputs.
The GMM were applied both to the 3 MHz M9 and 1.2 MHz
RDI datasets, after performing normalization of the inputs. The
number of clusters and the parameters of the GMM models
were optimized in a trial-and-error procedure using Akaike’s
information criterion for the estimated model (Jothilakshmi &
Gudivada, 2016).

Figure 9 presents four plots of D50 vs Q∗s, where Q∗sis
a dimensionless transport rate (Van Rijn, 1984), in which the
assigned colours are the clusters estimated by the GMM, using
only the ADCP data (Table 2). Remarkably comparable results
were obtained for both datasets, the M9 and the RDI (Fig. 9a, b),
identifying five optimal clusters that were classified based on the
transport conditions, no transport, weak to moderate transport
conditions; and according to the granulometry gravel to sand
data (Table 3). In general, there are three clusters (e.g. cyan,
green and blue in Fig. 9a, b) that are associated with sand trans-
port and one that is associated with gravelly dominated transport
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Figure 7 Picture of the riverbed nearby the example presented in Fig. 6 (wavelet analysis)

(a) (b)

Figure 8 Bs – varaw data, time instances from the identified form the cwt analysis in both directions X –Y (Fig. 5). (a) Bs – va, between 9.5 min and
10.2 min, also shown with arrows in the cwt magnitudes. (b) Bs – vabetween 18 min and 19 min, also shown with arrows in the cwt magnitudes

(black). This corroborates with the conclusions given in Rennie
et al. (2017), that ADCP data collected in a gravel river sig-
nificantly differ from those in sandy rivers. The GMM seemed
to perform better for the M9, establishing a cleaner distinc-
tion between gravel and sand with less overlapping and little
double membership in the clusters, most likely because of the
vertical beam data (i.e. 0.5 MHz), which strengthened the input
information regarding the D50 in the GMM. The green cluster
in both Fig. 9a and b is overlapping with the other clusters
because it is the transition from weak to moderate transport

conditions, which involves the formation of bedforms. In both
datasets, 20% of the points share more than one cluster. The
zero-transport values are represented in the separated fifth clus-
ter which is not visible in Fig. 9. However, it can be noticed
that some other clusters also partition in the fifth cluster as out-
liers due to existing outliers in the datasets, discussed in the next
section.

Figure 9c and d show results from GMM without the BS
strength variables (Table 2); the classification seems to be less
efficient in defining the clusters. This is particularly visible for
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(a) (b)

(c) (d)

Figure 9 Plots of D50 vs Q∗swhere Q∗s is dimensionless transport rate measured by the sampler, and D50 the median sediment particle size. The
clusters (Table 3, a qualitative explanation of the clusters of each plot) are showing the results from the GMM applied using only the ADCP outputs
(Table 2). Note that D50 vs Q∗s is used only to visualize the clusters and these variables are not use in the clustering. (a) M9 3–0.5 MHz, including
both va and Bs; (b) 1.2 MHz RDI, including both va and Bs; (c) M9 3–0.5 MHz, including only va (d) 1.2 MHz RDI, including va. In all plots the size
of the symbols is proportional with the std of the mobile bedload PSD at that position

the M9 (Fig. 9c), where the GMM failed to distinguish among
the different grain sizes. This is expected because the 3 MHz
should be representing the velocity at the top of the active layer
and in this test the vertical beam data are not used. The GMM
using va from the 1.2 MHz delivered somewhat better results,
giving the optimal solution for only three clusters (Fig. 9d), pro-
ducing two weak transport clusters, gravel (back circles, Fig. 9d)
and sand (cyan stars, Fig. 9d) and good to intensive sand trans-
port conditions (blue squares, Fig. 9d). The GMM were unable
to cluster the no-transport values in the last test, having only the
va-related inputs (Table 2).

Further parameter optimization of the GMM could possibly
result in better clustering, but it is out of this study’s scope. The
obtained results demonstrate that the ADCPs alone give enough

information reflecting the most important bedload parameters
variation (i.e. Q∗s and D50).

4 Discussion

4.1 Sources of uncertainty in the ADCP outputs and
backscatter sensitivity

Figures 3 and 5 showed that the BS strength is sensitive to
the bedload intensity and the PSD of the bedload (Conevski
et al., 2020b). It was also presented that the field measure-
ments are more complicated, entailing many external factors
that might disturb the measurements and eventually introduce
more noise and outliers. Some of those can be easily eliminated
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Table 3 Qualitative description of the clusters and outliers in Fig 9, based on inputs in Table 1.

Cluster Fig 9a M9 3/0.5MHz Fig 9b RDI 1.2 MHz, w/o Bs Fig 9c M9 3/0.5MHz, Fig 9d RDI 1.2 MHz, w/o Bs

1 No symbol No or very
weak bedload
transport.

No or very
weak bedload
transport.

No or very weak
bedload transport.

N/A

2 Black Gravel transport
weak to medium.
With 4 outliers in
the sandy area,
with high std of
the PSD.

Gravel transport
weak to medium,
with 6 outliers.

Weak transport, both
sand and gravel.
With 4 outliers in
the good transport
conditions.

Weak transport, both
sand and gravel.
With approx. 10
outliers in the good
transport conditions.

3 Cyan Sand or mixtures
weak to good
transport
conditions.

Sand or mixtures
weak to good
transport
conditions.
Overlapping
with the gravel
dominated.

Sand or mixtures of
sand and gravel;
weak to good
transport conditions.

Sand or mixtures weak
to good transport
conditions. Outliers
in the weak gravel
transport conditions.

4 Green Sand transport good
to abundant, the
transition class.

Sand transport good
to abundant,
overlapping with
class 2.

Gravel and sand
mixtures, overlap-
ping without clear
division

N/A

5 Blue Sand intensive
transport and/or
good to abundant

Sand intensive
transport
and/or good
to abundant.
6 outliers that
are in the weak
transport area.

Sand intensive
transport and/or
good to abundant.
With 4 outliers that
are in the weak
transport area.

Sand intensive
transport and/or
good to abundant,
with some outliers
that are in the weak
transport area.

but a certain on-site knowledge must be used. During these
extensive campaigns, the following sources of uncertainty were
observed:

• Passage of leaves and wood near the riverbed during the
autumn measurements, resulting in false va and attenuated
Bs.

• Passage of large cargo ships near the measuring set-up,
influencing the apparent bedload velocity estimation. The
appearing surface waves affect the water velocity and
the apparent bedload velocity filtering (Conevski et al.,
2019), as well as potentially producing a water bias (Ren-
nie et al., 2002), affecting only the apparent bedload
velocity.

• Patches of shells and algae moving at the riverbed dur-
ing high-water velocities, causing false va, similar to the
leaves.

• Highly uneven riverbed, rocky bottom, or large submerged
gravel bars, resulting in inhomogeneity of the beam data,
different BS values and false va.

• Mats of algae carpeting the rocks at the river bottom
(particularly close to banks in low-velocity areas), con-
tributing to lower, false BS strength. In addition, if these
algae are swirling with the flow and/or if other underwater
vegetation is present, it can result in false va values.

• An armoured layer, or a layer of rocks and intensive fine
gravel-sand transport on top of it. In these cases, the BS
strength values were higher and not representative of the
sand and fine gravel. In particular, the lower frequency
measurements were biased towards the layer of immobile
stones below and not to the mobile bedload.

Another important source is the natural variability of the bed-
load, which is emphasized in the weak transport conditions and
gravel riverbeds. Some of the BS data could be underestimated
in these cases due to the final averaging of the results. Moreover,
the comparison with traditional methods (i.e. pressure difference
samplers) should not be taken for granted. On several occasions,
the sampler was not able to properly catch the bedload transport
due to: (i) landing on the lee side of the dune, resulting in sand
pausing below the sampler, causing a scouring effect; (ii) land-
ing on rocky bed with intensive sand-gravel transport on top of
it. In these cases, the Bs interpretation would be wrong, as well
as the va to Qs comparison.

4.2 Practical information from the temporal and spatial
variations

The temporal analysis using cwt in the two main instrument
directions allowed better interpretation of the bedload transport
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in time and frequency. It provided information for the tempo-
ral variability and, by using the data from separate beams, also
for the spatial uniformity. The peak energy accumulations in
a certain period, resulting in high va values, showed that the
averaging of the long-term time series could lead to a wrong
interpretation of the bedload transport, especially if it is gravel
dominated. This gives particular importance to the vector fil-
tering procedure (i.e. eliminating all velocities in the opposite
direction of the main flow), but also a consistent mismatch with
the bedload sampling data. Moreover, the abrupt accumulation
of energy with high va yet low Bs (Fig. 6b–e, black arrows)
proved the negative correlation of the Bs versus va presented
also in Section 3.1 (Fig. 3a), with these instances of decline of
the BS strength presumably due to attenuation in the active layer
during conditions of more intensive transport.

The low cwt magnitude in the X -direction (Fig. 6b, c) sug-
gested that the four beams averaging of the ADCPs could be
another source of uncertainty, e.g. a spatial inconsistency when
calculating the mean Bs and the modulus of the velocity vectors
measured by the ADCP, which is then compared to the sam-
pler’s data. In that case (Fig. 6), more reasonable could be a
direct comparison of the va in the Y-direction, as the sampler
was sampling the same direction in a considerably smaller area.

The lower frequencies’ peaks in the cwt magnitudes (e.g.
less than 200 mHz) could be also associated with turbulent
events near the bed and bedforms (e.g. low-streak ejections,
bursts) and the eventual presence of macro-turbulent structures
(Nezu & Nakagawa, 1993). The bursting phenomena could
appear in periods of 4–7s (i.e. 150–250 mHz) for shear velocities
u∗ = 0.04–0.1 m s−1 (Table 1), and initiate bedload as reflected
in the apparent bedload velocity (Nezu & Nakagawa, 1993).
However, a more detailed analysis must be performed to analyse
the entire water profile of the ADCP measurements and corre-
late the water velocity close to the bed and the apparent bedload
velocity. Moreover, the wavelets could help in identifying the
pulsations (i.e. possibly initiated by macro-turbulent structures)
of the bedload and thereby identify the periodical motions of
gravel patches in mixed gravel-sand river environments (Fig. 6),
especially if long time series of measurements are performed.
For example, for Lower and Middle Rhine, it was noticed that
the cwt magnitudes of the apparent bedload velocities, with a
range of 0.04–0.06 m s–1, could be associated with the pulsation
of sand-gravel. Conversely, cwt magnitudes of the BS strength
in the range of 2–3 dB can be associated with rough riverbeds
(e.g. bedforms, rocks, coarse armoured gravel). This could be
accompanied by more complex feature extraction using wavelet
packet entropy, wavelet scattering, etc.

4.3 Wavelet analysis for filtering

The wavelets could also be used to improve the de-noising and
filtering of the raw data. For instance, discarding the low fre-
quency va data with high cwt magnitudes could contribute to
more consistent va values, in this case, eliminating the false

data affected by the nearby passing ships (Fig. 6, dashed rect-
angles). After an extensive cwt analysis of several different
bedload conditions, the filtering procedure could be upgraded
by introducing a low- or high-frequency pass filter, which
would discard the erroneous velocities produced by the external
disturbances.

4.4 Classification of the ADCP data for different bedload
transport conditions

The effectiveness of the BS strength data in the improvement of
a simple implementation of unsupervised models (e.g. GMM)
proved the added value of the BS strength data in the qualitative
and quantitative evaluation of the bedload transport. The impor-
tance of the BS strength was also presented in the other sections,
but the GMM offered fast, simple, and coupled implementation
of the ADCP variables, partially eliminating the ambiguity in
the BS strength data (e.g. 1.2 MHz, Fig. 4). The most distinc-
tive clusters were obtained by using the M9 data involving all
beams, including the vertical one, which highlighted the fact
that change of the angle helped the bed material recognition not
being biased by a possible transmission in active bedload layer.
A vertical beam and the possibility to change grazing angle
would increase the received information about the bed material
both for immobile and mobile particles.

It should be noted the unsupervised ML models might not
be the best model choice, but the testing of more comprehen-
sive models (e.g. supervised ML) is out of the scope of this
study.

4.5 Recommendations about analysis of the BS data in the
field

The joint analysis of the backscattering strength from the river
bottom and the apparent bedload velocity supports a wider
understanding of the bedload transport, but possible biases must
be carefully evaluated. For example, the BS strength signal
could be attenuated by the sand motion or highly scattered by
the rocky armoured bed, thus a pre-knowledge of the sampling
conditions is necessary to validate the BS data.

Regarding the bedload sampling: integrating cameras to the
sampler as in this study is an advantage. In fact, many false
samples were discarded based on videos. Also, in some cases
(as explained above) the filtered va represents a more reliable
choice for further analysis and comparisons. In the same man-
ner, the weak transport conditions should be analysed with
special attention. It is recommended to perform a visual check
of the videos, if they exist, as well as spatial-temporal analy-
sis as suggested in Section 4.2. This would allow more efficient
filtering of the biased data. Finally, longer sampling times are
recommended, especially in gravel environments characterized
by pulsating mobilization events or in case of a disturbed envi-
ronment (e.g. in the navigation channel during the passage
of ships).
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4.6 Future research

The next step of this research will be focused on detailed inves-
tigation of the structural and natural uncertainty for all types of
the ADCP, bedload transport conditions and the grain size of
the mobile particles, and finally advancing towards estimation
of the total bedload transported masses.

Another example for future research efforts on this subject
could be the implementation of the clustering method on moving
boat ADCP measurements using RTK-GPS (Rennie & Church,
2010). The clustering method using the suggested variables
(Table 2) on the entire data cloud would result in re-mapping the
clusters of different bedload transport conditions. Furthermore,
a more extensive investigation on unsupervised and supervised
ML performance is recommended in future works. The super-
vised ML models such as neural networks, and fuzzy modelling
could be a reasonable approach for identifying both the D50 and
Qs, by using the ADCP data as inputs. Moreover, physics-based
variables used as inputs in the same models could also enhance
efficiency. The cwt analysis should be applied for different bed-
load conditions and time sequences, to possibly establish a
routine for more efficient filtering of the ADCP data, but also
for automatic detection of gravel pulsations or bedload superim-
positions, for which possibly longer measurements are advised.
In addition, the cwt could deliver more features (i.e. peaking
frequency) to be used as input variables in machine learning
models.

5 Conclusions

The collected data by two different commercial ADCPs, in large
navigable sand-gravel rivers, demonstrated a possibility to use
the BS strength for detecting the median bedload grain size,
as well as to indicate the bedload concentration (i.e. the active
bedload layer). The Bs measured by the M9 – 0.5 MHz – gave
the most consistent, almost linear and positive correlation with
the D50, because of the 90° grazing angle, and limited influence
of the volume scattering initiated by the active bedload layer.
It should be noted that the PSD of the immobile bed did not
deviate significantly from mobile bed material (i.e. armoured
layer vs. moving bedload), which contributed to a better per-
formance of the vertical beam, M9. At the same time, for the
M9 – 0.5 MHz, Bs resulted in a weak negative correlation when
compared with the bedload intensity, possibly due to the sur-
face deformation and insensitivity to volume scattering. On
the other hand, the acoustic losses through the active bedload
layer impacted the Bs of M9 – 3 MHz; which yielded a very
poor correlation with the D50 and increasing trends for sand
and gravel versus the corresponding bedload intensities. These
results showed that the vertical beam represented a most useful
complementary information, regardless of the steep slope of the
linear regression line. Conversely, the 3 MHz beam set is sam-
pling the top of the active layer resulting in biased backscatter
data which is not directly related to PSD features.

The 1.2 MHz BS strength data showed parabolic behaviour,
deviating from the Rayleigh regime (i.e. higher Bs values for
coarser PSD corresponding to larger D50), at the point of transi-
tion from sand to gravel. This was a coupled effect of the finer
profiling resolution of the RDI and the scattering losses due
to the rough immobile bed surface. The 1.2 MHz, again, was
almost insensitive to the bedload transport conditions, reflect-
ing the influence of surface scattering due to the finer echo
profiling resolution and the coded BB signal processing. This
phenomenon makes the Bs from the RDI – 1.2 MHz more
suitable for grainsize identification, despite the slanted beams;
however, this should be further examined with large range of
PSDs and surface slopes.

The temporal analysis of a single measurement has demon-
strated the importance of the correct averaging, identification of
bedload pulsations, and possible detection of turbulent events
(e.g. bursting, or low-streak pulsations) that induce bedload
motion. Particularly relevant for result reliability, the temporal
analysis enables data filtering from external disturbances, such
as local waves from the nearby boats. This analysis separated
flow and transversal direction by considering instrumental ref-
erence system almost aligned to those directions (i.e. acoustic
beam pairs lying in two perpendicular vertical planes aligned
and perpendicular to flow). This demonstrates that the appar-
ent velocity in the flow direction (from the two beams lying in
the vertical plane aligned to flow) better compares to bedload
rate from samples whereas the other pair of beams frequently
results in va degradation. This corroborates the need for accurate
and firmly fixed ADCP deployment in the field and va filtering
based on the angle deviation to corresponding water velocity
from ADCP.

Coupling the va and Bs, by using an unsupervised machine
learning approach indicated a possibility of classifying the bed-
load data related to their transport intensity and grain size. The
clustering was most efficient for the M9 using both 3 MHz and
0.5 MHz, which, again, confirmed the importance of the vertical
beam in the grain sizes classification. This somehow compen-
sates for M9 – 3 MHz slanted beams’ sensitivity to volume
scattering. This method could be useful in cases where the phys-
ical measurements are lacking, and identification of the active
bedload area is required.
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Notation

Af = area of the surface scattering at flume bed (dB)
ADCP = acoustic current Doppler profiler (–)
Bs = corrected backscattering strength (dB)
BS = backscattering (–)
BT = bottom track (–)
Cvva = coefficient of variation of the apparent bedload

velocity (–)
CvBS = coefficient of variation of the backscattering

strength (–)
cwt = continuous wavelet transformation (–)
D50 = particle median diameter (m)
D90 = particle diameter bigger than 90% (m)
Dstd = standard deviation of the PSD (m)
EI = BT echo intensity (dB)
Er = noise level (dB)
f = ADCP working frequency MHz
FD = percentage of the discarded velocity samples after

the filtering (%)
g = gravitational constant (m s−2)
GMM = Gaussian mixture models (–)
H = water depth (m)
IC = incoherent signal processing
PdB = transmit voltage (dB)
Pl = acoustic pulse length (mm)
PSD = particle size distribution (–)
Qs = physically measured transport rate at the end of the

flume (kg s m−1)
R = slant distance from the transducer to the sediment

bed (m)
S = slope of the river surface (%)
SL0 = source level (dB)
std(va) = standard deviation of the raw apparent bedload

velocity (m s−1)
Ss = surface backscattering (dB)
Sv = volume backscattering (dB)
std = standard deviation (–)
U = average-depth water velocity (m s−1)
u∗ = shear(friction) velocity (m s−1)
va = the apparent velocity, measured by the ADCPs and

filtered (m s−1)
vBT = bottom tracking velocity (m s−1)

vgps = GPS vessel velocity (m s−1)
α = attenuation coefficient (–)
l = wavelength (mm)
ϕ = acoustic beam opening angle (°)
θ = acoustic beam incident angle (°)
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