Balancing the Scales: Achieving the Optimal Beta-Lactamase Inhibitor to Beta-Lactam Ratio in Piperacillin/Tazobactam Against *Enterobacterales*

Supplemental Materials

Figure S1. Modeling Strategy to comodel both piperacillin (Pip) / tazobactam (tazo) infusion using a fractionation function for the dose and independent compartments for each compound.

F, fraction of infusion representative of each compound. Since piperacillin : tazobactam is formulated 8:1, the value for F was fixed to 1/9 = 0.11

V1, represents the volume of the central compartment for piperacillin

V2, represents the volume of the central compartment for tazobactam

Clp, piperacillin clearance

Clt, tazobactam clearance

Clt = various functions of Clp is provided in Table 1 that includes linear, power, and saturable models of Clt as a function of Clp. This is based on the known renal tubular inhibition of tazobactam clearance by piperacillin

Table S1. Structural model number, name, description, and structural equations used in Monolix2023R1.

Number	Model name & description	Structure			
1	PipTazoIndependent	input = {V1, Clp, Clt, V2, F}			
	A model that reflects independent modeling of piperacillin clearance (Clp) and tazobactam clearance (Clt), illustrated in Figure S1 A	PK: ; PK model definition depot(target = A1) Equation: $t_0 = 0$ A1_0 = 0 A2_0 = 0 A3_0 = 0 ddt_A1 = -F*A1 - (1-F)*A1 ddt_A2 = (1-F)*A1 - Clp/V1*A2 ddt_A3 = (F)*A1 - Clt/V2*A3 C1 = A2/V1 C2 = A3/V2			
		OUTPUT:			
2		$output = \{C1, C2\}$			
2	PiplazoComod-Linear(Slope)	input = {V1, Clp, V2, F, S}			
	A model that reflects independent modeling of piperacillin clearance (Clp) and tazobactam clearance (Clt) that is a slope only model of piperacillin clearance (Clp), illustrated in Figure S1 B	PK: ; PK model definition depot(target = A1) Equation: t_0 = 0 A1_0 = 0 A2_0 = 0 A3_0 = 0			
		ddt_A1 = -F*A1 - (1-F)*A1 ddt_A2 = (1-F)*A1 - Clp/V1*A2 ddt_A3 = (F)*A1 - (Clp*S)/V2*A3 C1 = A2/V1 C2 = A3/V2 OUTPUT: output = {C1, C2}			
3	PipTazoComod- Power(Int+Slope)	input = {V1, Clp, V2, F, S, Int}			

	A model that reflects	PK:
	independent modeling of	: PK model definition
	piperacillin clearance (Clp) and	depot(target = A1)
	tazobactam clearance (Clt)	
	that is a slope and intercept	Equation:
	model of piperacillin clearance	t 0=0
	(Clp), illustrated in Figure S1 B	A1_0=0
		A2_0 = 0
		A3_0=0
		_
		ddt_A1 = -F*A1 - (1-F)*A1
		ddt_A2 = (1-F)*A1 - Clp/V1*A2
		ddt_A3 = (F)*A1 - (Int + (Clp)*S/V2)*A3
		C1 = A2/V1
		C2 = A3/V2
		Ουτρυτ·
		$output = \{C1, C2\}$
Δ	PinTazoComod-Power(Slope)	$input = {V1 Cln V2 E S}$
-		(vi, cip, vz, r, s)
	A model that reflects	PK:
	independent modeling of	; PK model definition
	piperacillin clearance (Clp) and	depot(target = A1)
	tazobactam clearance (Clt)	
	that is a power model of	Equation:
	piperacillin clearance (Clp),	t_0 = 0
	illustrated in Figure S1 B	A1_0 = 0
		A2_0 = 0
		A3_0 = 0
		$ddt \Lambda 1 - E*\Lambda 1 - (1-E)*\Lambda 1$
		$ddt_A = (1-F)*A1 - Cln/V1*A2$
		$ddt_A3 = (F)^*A1 - (Clp^S)/V2^*A3$
		C1 = A2/V1
		C2 = A3/V2
		OUTPUT:
		output = {C1, C2}
5	5PipTazoComod-	[LONGITUDINAL]
	Power(Int+Slope)	input = {V1, Clp, V2, F, S, Int}
	A model that reflects	РК:
	independent modeling of	: PK model definition
	piperacillin clearance (Cln) and	depot(target = A1)
	tazobactam clearance (Clt)	
	that is a power model with a	Equation:

	coefficient of piperacillin	t 0 = 0
	clearance (Cln) illustrated in	$A_{1} = 0$
	Figure S1 B	$A^{2}_{A} = 0$
		$A_{3}^{(1)} = 0$
		//3_0 = 0
		ddt_A1 = -F*A1 - (1-F)*A1
		$ddt_A2 = (1-F)*A1 - Cln/V1*A2$
		$ddt \Delta 3 = (E)*\Delta 1 - (Int*(Cln)^{(1)})$
		C1 = A2/V1
		$C_2 = A_3/V_2$
		OUTPUT:
		$output = \{C1, C2\}$
6	PinTazoComod-	
Ŭ	Saturable(Emax)	$input = {V1 Cln V2 E Imax IC50}$
	Saturable(Emax)	input = (v1, cip, v2, r, indx, icso)
	A model that reflects	DK.
	independent modeling of	· PK model definition
	nineracillin clearance (Cln) and	depot(target = A1)
	tazobactam clearance (Clt)	depot(target – AI)
	that is an Empy model	Faultion
	(inditis dif Elliax model (indibitory) of piporocillin	+ 0 - 0
	(Infinition y) of piperacium	$1_0 = 0$
	Signate (CIP), mustrated in	
	Figure ST B	A2_0 = 0
		A3_0 = 0
		dd + 0.1 - [*0.1] (1] * 0.1
		$uu_AI = -F^*AI - (1-F)^*AI$
		$ddt_A = (1-F)^A + C(p)^{-A}$
		CI = AZ/VI
		$ddt_A = (F)^* A - (C P^* (1 - C P^* (1 - C$
		(Imax*C1)/(IC50+C1))/V2)*A3
		C2= A3/V2
7	Distance Company	
/	PipiazoComod-	[LONGITUDINAL]
	Saturable(Sigmoidal)	input = {v1, Clp, v2, F, Imax, IC50,Gamma}
	A waa dal that yafla sta	
	A model that reflects	rN.
		$r_{\rm N}$ model definition
	piperacillin clearance (Cip) and	depot(target = AI)
	tazobactam clearance (Clt)	E susti a s
	that is an Emax model	Equation:
	(innibitory) with sigmoidicity	
	parameter Gamma of	A1_0 = 0
	piperacillin clearance (Clp),	A2_0 = 0
	illustrated in Figure S1 B	A3_0 = 0

	ddt_A1 = -F*A1 - (1-F)*A1 ddt_A2 = (1-F)*A1 - Clp/V1*A2 C1 = A2/V1 ddt_A3 = (F)*A1 - (Clp*(1- (Imax*C1^Gamma)/(IC50+C1^Gamma))/V2)*A3 C2= A3/V2
	OUTPUT: output = {C1, C2}

Table S2. Model Log (Proportional/normal error), V1, V2, F fixed

Model	Parameters	AIC	Proposal offered by statistical testing and
Number			incorporated in the covariate (Covar) model
1 (Base)	CLp, CLt	8562.42	
1 (Covar)	CLp, CLt	7771.89	Correlation CLp+CLt , CKDEPI2021mlmin for both
2 (Base)	CLp, S -linear	8047.99	
2 (Covar)	CLp, S - linear	7783.47	CKDEPI2021mlmin for CLp
3 (Base)	CLp, S, Int - linear	8060.56	
3 (Covar)	CLp, S, Int - linear	7779.36	CKDEPI2021mlmin for CLp & S
4 (Base)	CLp, S - power	8072.28	
4 (Covar)	CLp, S - power	7805.01	CKDEPI2021mlmin for CLp
5 (Base)	CLp, S, Int - power	8043.7	
5 (Covar)	CLp, S, Int - power	7779.6	CKDEPI2021mlmin for CLp
6 (Base)	CLp, Imax, IC50 - Emax	8042.92	
6 (Covar)	CLp, Imax, IC50 - Emax	7777.5	CKDEPI2021mlmin for CLp
7 (Base)	CLp, Imax, IC50,γ - Sig	8050.83	
7 (Covar)	CLp, Imax, IC50, γ- Sig	7788.15	Correlation CLp, IC50, γ & CKDEPI2021mlmin for CLp

* CKDEPI2021mlmin benchmarked to 60 ml/min

Model 1	VALUE		STOCH. AF	PROX.
AIC= 7771.89			S.E.	R.S.E.(%)
Fixed Effects				
V1_pop	15			
Clp_pop	6.36		0.19	3
beta_Clp_logtCKDEPI2021mlmin	0.77		0.044	5.65
Clt_pop	5.88		0.17	2.96
beta_Clt_logtCKDEPI2021mlmin	0.93		0.042	4.47
V2_pop	15			
F_pop	0.11			
Standard Deviation of the Random Effects				
	Value	C.V.(%)		
omega_Clp	0.41	43.3	0.13	31.7
omega_Clt	0.42	43.64	0.14	33.5
Correlations				
corr_Clt_Clp	0.92		0.31	34
Error Model Parameters				
b1	0.28		0.013	4.71
b2	0.29		0.011	3.91

Table S3. Comparison of independent clearance structured model (Model 1) for piperacillin and tazobactam compared to dependent model (Model 6)

Model 6	VALUE		STOCH. APPROX.	
AIC= 7777.50			S.E.	R.S.E.(%)
Fixed Effects				
V1_pop	15			
Clp_pop	6.38		0.18	2.78
beta_Clp_logtCKDEPI2021mlmin	0.84		0.039	4.69
V2_pop	15			
F_pop	0.11			
Imax_pop	0.11		0.015	13.8
IC50_pop	29.86		14.51	48.6
Standard Deviation of the Random Effects				
	Value	C.V.(%)		
omega_Clp	0.4	41.94	0.021	5.16
omega_lmax	0.49	52.64	0.097	19.6
omega_IC50	1.42	254.94	0.52	36.8
Error Model Parameters				
b1	0.29		0.011	3.75
b2	0.29		0.011	3.83

Figure S3. Illustration of the expected reduction in tazobactam clearance (CL) as a function of piperacillin concentrations where the maximum reduction approaches 11% (Imax) at high piperacillin concentrations with half of this maximal effect at 29.9 mg/L

	Base							Final
	No Covar.	CG	2009CKDEPI	2009CKDEP	2021CKDEPI	CG_adjBW	CG_DW	2021CKDEPI
Baramotor			mL/min/1.73	.,	mL/min/1.73			
	8562.65		m2 2 8120 02		m2	mL/min	mL/min	mL/min
Delta AIC	0	-/106 12	-122 62	-161 16	-/10 76	-101 19	-772 22	-700 76
Stochastic approx	imation	-490.12	-432.02	-404.10	-415.70	-494.10	-725.55	-790.70
	ination							
V1_pop	15	15	15	15	15	15	15	15
Clp_pop	6.35	6.91	7.02	6.68	6.72	6.32	3.24	6.39
	4.42%	2.91%	3.11%	2.94%	3.12%	2.94%	5.40%	2.92%
Clt_pop	5.89	6.49	6.7	6.23	6.31	5.84	2.61	5.89
	4.96%	2.89%	3.06%	2.83%	3.11%	2.86%	5.64%	2.95%
V2_pop	15	15	15	15	15	15	15	15
F_pop β Clp	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111
(kidney function)		0.71	0.71	0.72	0.73	0.76	0.0098	0.77
		5.40%	6.28%	5.72%	6.25%	5.53%	6.34%	5.43%
β_Clt								
(kidney function)		0.86	0.89	0.88	0.91	0.93	0.012	0.92
		4.38%	5%	4.60%	4.98%	4.38%	5.39%	4.47%
Standard deviation								
Ω_{Clp}	0.66	0.39	0.42	0.4	0.43	0.4	0.46	0.41
	5.06%	5.71%	5.72%	6.34%	5.66%	5.96%	30.11%	11.64%
Ω_{Clt}	0.74	0.39	0.41	0.37	0.43	0.39	0.48	0.41
	4.96%	5.56%	5.71%	6.04%	5.56%	5.56%	28.14%	12.01%
Correlation param	neters							
corr_Clt_Clp							0.94	0.93
Residual error par	ameters							
piperacillin_prop	0.31	0.3	0.31	0.31	0.3	0.3	0.28	0.28
	4.45%	4.22%	4.17%	4.28%	4.19%	4.22%	3.79%	3.98%
tazobactam_prop	0.32	0.32	0.33	0.32	0.32	0.31	0.29	0.29
	4.24%	4.03%	4.17%	4.09%	4.12%	4.01%	4.15%	3.78%

Table S4. Comparison of alternate kidney function estimation equations in standard and body surfacearea normalized units based on Model 1 to illustrate the rationale for selection of

CG, Cockcroft-Gault equation relying on actual or total body weight, 2009CKDEPI, the original 2009 Chronic Kidney Disease Epidemiology equation, 2021CKDEPI, the revised 2021 Chronic Kidney Disease Epidemiology equation, CG_adjBW, Cockcroft-Gault equation relying on adjusted body weight, CG_DW, Cockcroft-Gault equation relying on dosing weight where dosing weight is selection of actual weight when less than ideal body weight, adjusted body weight when actual weight is \geq 1.25 fold higher than ideal body weight or ideal body weight when neither condition is met.

Figure S4. Observed and Individual prediction (mg/L) plots for observations (mg/L) with piperacillin (A) and tazobctam (B).

В

Figure S5. Individual weighted residuals verus time and individual predictions (mg/L) with piperacillin (A) and tazobactam (B).

Figure S6. Histogram and cumulative probability distribution plots of the individual weighted residuals and normalized prediction distribution errors for piperacillin (A) and tazobactam (B).

В

Figure S7. Visual predictive check plots with prediction corrected observed concentrations of piperacillin (A) and tazobactam (B) over time since last dose.

Figure S8. Scatter and linear fit plot (against the line of unity) of the analytical estimated (Rate of infusion/Css) versus the final population PK model estimated individual clearance (CL) for piperacillin, R²= 0.95 (A) and Tazobactam, R²= 0.93 (B)

20

Model Estimated Individual Tazobactam CL (L/h)

0

0

10

----- Fitted values

40

30

Line of Unity

В