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Abstract: A contactless position sensor based on an array of magnetically coupled resonators and an
external single coil cell is discussed for both stationary and dynamic applications. The simple structure
allows the sensor to be adapted to the system in which it is installed and can be used to detect the
positions of objects in motion that bear an external resonator coil that does not necessitate a supply. By
exploiting the unique behaviour of the array input impedance, it is possible to identify the position of
the external resonator by exciting the first array cell with an external voltage source and measuring
the resulting input current. The system is robust and suitable for application in harsh environments.
The sensitivity of the measured input impedance to the space variation is adjustable with the definition
of the array geometry and is analysed. Different configurations of the array and external resonator
are considered, and the effects of various termination conditions and the resulting factor of merit after
changing the coil resistance are discussed. The proposed procedure is numerically validated for an array
of ten identical magnetically coupled resonators with 15 cm side lengths. Simulations carried out for a
distance of up to 20 cm show that, with a quality factor lower than 100 and optimal terminations of both
the array and external coil, it is possible to detect the position of the latter.

Keywords: position sensor; inductive sensors

1. Introduction

Noncontact position sensors are crucial to drive and control operational processes,
ranging from automated industrial manufacturing [1–3] to vehicle traction and propulsion
systems [4]. Recent developments in automatic machines and drives require ever higher
performance of the system components, especially in terms of their dynamic responses,
reliability, and accuracy [3,5]. Hence, the position sensors must also be able to operate
while satisfying these requirements, allowing the control system to operate at its maximum
capability. Important attention is also given to the EMC issues that the sensor could lead to,
for which several standards have been developed and continuously updated in previous
decades. Last, but not least, the cost of the device plays a crucial role. This depends on
the types of materials used, the construction process, and the acquisition system used to
process the signals. In this framework, a widespread solution is the use of inductive position
sensors [4–6]. These devices exploit the law of magnetic induction and are composed of
magnetically coupled parts, whose relative positions affect the values of certain system
parameters according to a specific relation (that clearly depends on the physical features of
the parts). Once this relation is known, the relative positions of the parts can be estimated
from the measurement of the affected system parameters [6,7]. The parts consist of coils
(wound or printed on PCBs) coupled with other coils or with metal objects that can be
arranged in different structures [8–10].

In this paper, an inductive position sensor based on resonator arrays is discussed. It ba-
sically consists of magnetically coupled resonant coils arranged to form a one-dimensional
array [11] and an external resonant coil coupled to one or more array cells. Resonator
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arrays are mainly devoted to very-low-power systems, especially for consumer electronics
applications, as discussed in [12–15], but more recently, they have also been considered
for high-power applications [16], where the coils and compensation networks deserve
specific attention [17,18]. The possibility of using resonator arrays to detect objects was
also explored in [19–21], where the interaction between metallic objects or tags and the
resonator array was exploited. In particular, the presented sensors have been proven to be
capable of detecting the position of a resonator that can be fixed to any object.

To improve the accuracy and resolution, the detection of the exact location of an external
resonator coupled with the array is performed by exploiting the unique behaviour of the
system’s input impedance, which is expressed as a continuous function of the external coil
position and presents a recursive form [22,23]. This sensing technique was proposed to track
vehicle positions in a dynamic wireless power transfer system for the charging of moving
electric vehicles, where the coils were designed first of all for power transfer [22] and then
exploited for the position sensing function. A simple algorithm that takes advantage of the
unidirectional motion of the vehicle (and thus of the external coil) was proposed.

In this paper, the unique behaviour of the input impedance function of resonator ar-
rays is exploited to build ad hoc sensors for industrial or consumer electronics applications
that are able to accurately and uniquely determine the external coil position. Moreover,
to enrich the analysis and consistently discuss the application, the system design along
with a simple methodology to evaluate the uncertainty in the measure are also addressed.
Receiver position detection has been proven to also be effective in dynamic conditions.
With proper design and calibration, position sensors based on a resonator array can provide
great accuracy and theoretically an infinite resolution, along with a variety of construc-
tion techniques (in particular, flexible printed circuit boards, PCBs) and are robust and
lightweight. Depending on the system used for monitoring and its physical dimensions,
and thus the total array length, the resonating cells may have dimensions that range from
a few millimetres up to a metre. These are crucial features that make inductive position
sensors a very attractive solution. Moreover, due to the very simple structure and lim-
ited number of components, resonator arrays are very cheap to design and manufacture.
Figure 1a shows an example of a wound coil array, whose copper wire coils allow the
circulation of considerable currents. The system can be exploited for both power transfer
and position detection. In Figure 1b, a PCB printed array is depicted. Its coils can have
very small dimensions, and it can be adapted to applications of all kinds and is particularly
robust and noninvasive.

(a)

(b)

Figure 1. Resonator arrays made from (a) wound coils and (b) printed circuit board spiral coils.
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In Section 2, from a circuit analysis of these systems, an analytical expression of the
input impedance of a resonator array coupled with an external resonator placed in a generic
position is presented, while in Section 3, the trend is analysed for different coil parameter
values. This analysis is the prelude to a discussion on the design criteria, based on which
it is possible to dimensionalise the sensor so that it achieves the required performance in
terms of accuracy and resolution. Section 4 then discusses the uncertainty of the estimated
impedance (from the voltage and current measurements) and how this is reflected in the
longitudinal position inaccuracy, considering a discrete implementation.

2. System Circuit Modelling

The system presented in this paper is composed of a resonator array with an additional
resonator over it (moving or standstill) as is schematically illustrated in Figure 2a. The
position of the moving resonator along the array is identified with the variable x. The
array is composed of n identical and equally spaced coils along x, so that the mutual
inductance M between each pair of adjacent coils is the same and all cross couplings
between nonadjacent cells are neglected, according to the so called “nearest-neighbour
approximation” [24]. The coils feature a resistance R and a self inductance L and resonate
with a series-lumped capacitor of capacitance C at the frequency f0 = 1/(2π

√
LC). In

order to minimise ohmic losses occurring in the windings, the coils are usually designed
with a large cross section which, at the same time, provides a large quality factor Q. We see
at the end of Section 3 that an excessively large factor of merit should be avoided and that
input impedance curves are better distinguished with lower Q values.

(a)

(b)

Figure 2. Schematic representation of (a) a resonator array with an external coil and (b) its equiva-
lent circuit.

Due to the topology of the system, the best choice for the additional resonator is a
moving coil of the same size as, or slightly smaller than, the array resonators. In fact,
a larger coil would couple with more array cells, at the same time compromising the
spatial resolution and impeding the occurrence of “perfect alignment” positions. Thus, for
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simplicity, a moving coil identical to the array resonator cells is considered. The moving
resonator can be placed at any position along the array, and the mutual inductance between
the moving resonator and the generic ith resonator of the array varies according to the
moving resonator position x. Since the mutual inductance coefficients between the external
resonator and the facing cells depend on the resonator position, a relative coordinate ξ may
be defined as

ξ = x− (i− 1)d (1)

where x is the absolute coordinate along which the array lies, i indicates the first array cell
facing the external resonator, and d is the resonator size in the x direction (as mentioned,
taken as equal to the size of the single cells of the array).

Moreover, additional loads are added to both the external resonator and the last array
cell, Ẑer and ẐT , respectively (see Figure 2a). They provide two degrees of freedom, which
can modify the behaviour of the system and are crucial for the accuracy of position sensing,
as discussed later.

The system is excited in the first array resonator with a sinusoidal voltage at the
resonant frequency f0, and thus, it is possible to consider all currents and voltages as
phasors at the angular frequency ω0 = 2π f0. Under this hypothesis, it is possible to
define the impedance of each cell of the array as Ẑ = R + jω0L + 1/(ω0C), where the
termination impedance must be added for the latter as Ẑn = R + jω0L + 1/(ω0C) + ẐT ,
and the impedance of the external resonator should be Ẑr = R + jω0L + 1/(ω0C) + Ẑer. In
resonant conditions, they reduce to Ẑ = R, Ẑn = R + ẐT and Ẑr = R + Ẑer, respectively.

The behaviour of the system can be described with a set of n + 1 Kirchhoff voltage
law (KVL) equations, one for each array resonator, that include the relevant component
equations. Considering the moving resonator coupled with both the ith and (i + 1)th cells
of the array and a real voltage source connected to the first cell, a system of KVL equations
can be written as

−V̂s + Ẑs Î1 + Ẑ Î1 + jωMÎ2 = 0

jωMÎ1 + Ẑ Î2 + jωMÎ3 = 0
...

...

jωMÎi−2 + Ẑ Îi−1 + jωMÎi = 0

jωMÎi−1 + Ẑ Îi + jωMÎi+1 + jωMi,r(ξ) Îr = 0

jωMÎi + Ẑ Îi+1 + jωMÎi+2 + jωMi+1,r(ξ) Îr = 0

jωMÎi+1 + Ẑ Îi+2 + jωMÎi+3 = 0
...

...

jωMÎn−1 + Ẑ În + ẐT În = 0

(2)

with one additional KVL equation for the receiver:

jωMr,i(ξ) Îi + jωMr,i+1(ξ) Îi+1 + Ẑr Îr = 0. (3)

By solving this system of equations, it is therefore possible to calculate the current of all
resonators under the conditions specified by the parameters. It is evident that the position
of the receiver affects the KVL equations (through the mutual inductance Mi,r(ξ)) and, in
turn, the resulting current. In general, the system must be solved for each receiver position.

Input Impedance of a Resonator Array with an External Coil

The input impedance of the system can be studied by resorting to the introduced
circuit model, described by the equation system (2). The input impedance of the array
Ẑeq(x) at the resonant frequency of the cells for a certain position x of the external coil
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can be defined as the ratio of the input voltage V̂1(x) and current Î1(x) phasors at the
frequency f0:

Ẑeq(x) =
V̂1(x)
Î1(x)

(4)

and, referring the input voltage to the source voltage V̂s, it yields that:

Ẑeq(x) =
V̂s(x)− Ẑs(x) Î1(x)

Î1(x)
=

V̂s

Î1(x)
− Ẑs. (5)

The analytical expression of the input impedance can be obtained by reducing (2) to
one equation and, in particular, to the one referred to in the first resonator. This is possible
by substituting the one relevant to the adjacent resonator in each equation, starting from
the nth one (the rightmost one) in our circuit. Thus, (2) reduces to

−V̂s +

[
Ẑs + Ẑeq

i,i+1(ξ)

]
Î1 = 0 (6)

where Ẑeq
i,i+1(ξ) corresponds to the equivalent impedance seen in the first cell of the array

with the external coil coupled with the ith and (i + 1)th resonators.
The array input impedance results in the recursive formula:

Ẑeq
i,i+1(ξ) = Ẑ +

(ωM)2

Ẑ+
(ωM)2

. . .+
(ωM)2

Ẑ+Ẑdi
(ξ)+

(ωM)2 − D̂i,i+1(ξ)

Ẑ+Ẑdi+1
(ξ)+

(ωM)2

Ẑ+
(ωM)2

. . .+
(ωM)2

Ẑ+ẐT

(7)

where
D̂i,i+1(ξ) = 2jωMẐdi,i+1

(ξ) + Ẑ2
di,i+1

(ξ) (8)

and

Ẑdi
(ξ) = ω2 M2

i,er(ξ)

Ẑer
,

Ẑdi+1
(ξ) = ω2 M2

i+1,er(ξ)

Ẑer
,

Ẑdi,i+1
(ξ) = Ẑdi+1,i

(ξ) = ω2 Mi,er(ξ)Mi+1,er(ξ)

Ẑer
.

(9)

The impedance terms (9) are usually called “defect impedances” and correspond to
the reflection impedances of the receiver to the facing array resonators. In general, for each
couple of facing resonators, i and i + 1, the input impedance of the system can be defined
as a continuous function of space. This kind of function is known as a “continued fraction”,
which is a recursive formula that can be calculated through an iterative process. Thus, it is
difficult to express it as a function of the absolute coordinate x, since the continued fraction
changes its form depending on the receiver’s position.

To the best of the authors’ knowledge, no closed analytical expressions are known for
expressions of the type (7) for any position of the receiver. However, this kind of expression
can be easily computed numerically by means of computers or embedded systems (e.g.,
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exploiting modern digital signal processors). For simplicity, the array input impedance
of (7) for a generic receiver position x is considered and indicated as Ẑeq(x).

Due to the presence of an external coil coupled with the array resonators, Ẑeq(x)
generally presents complex values, even when the system is excited at its resonant fre-
quency, while the input impedance of a resonator array without any external coil is purely
real [12,24]. Considering all cells operating in perfect resonance, the internal impedance
Ẑ and the defect impedances Ẑdi

, Ẑdi+1
, and Ẑdi,i+1

of (9) are purely real, while D̂i,i+1 is
complex. This can be explained by considering that the presence of the moving coil intro-
duces further coupling between the resonators it faces with a consequent phase delay in
the impedance seen from the array input port.

According to [22], for a certain array, both the magnitude and the phase of the input
impedance oscillate depending on the external coil position. In particular, while the magni-
tude is always positive, the angle can be positive or negative, therefore meaning Ẑeq(x) can
present with either inductive or capacitive behaviour depending on the x coordinate.

The trend of the input impedance strongly depends on the parameters of the array. In
general, to preserve the periodicity and symmetry of the structure, all coils are identical,
so they are characterised by the same parameters. Ẑeq(x) can be adjusted by acting on the
termination impedance ẐT and the external resonator impedance Ẑer. The optimal values
of Ẑer and ẐT must be chosen to achieve the desired trend and fulfil the requirements of
the specific application.

3. Resonator Array as a Linear Position Sensor

As discussed in the introduction, the unique behaviour of the input impedance can
be exploited to determine the position of an external resonator coupled with the array. By
feeding the first array resonator with a sinusoidal voltage vs(t) (whose phasor is indicated
as V̂s) at the cell’s resonant frequency f0, the input impedance of the array can be estimated
for any position of the external coil as

̂̃Z =
V̂1meas

Î1meas
(10)

where Î1meas and voltage V̂1meas are the phasors of the measured input current and voltage,
respectively, at the resonant frequency. The symbol “∼” denotes the estimated quantities.

In addition to the voltage source, a system for measuring the current and voltage of
the first resonator of the array is therefore necessary. Knowing the internal impedance
Ẑs of the voltage source, it is possible to determine the input impedance of the array by
measuring the input current:

̂̃Z =
V̂s − Ẑs Î1meas

Î1meas
=

V̂s

Î1meas
− Ẑs. (11)

In order to identify the absolute position of the external coil, it is necessary for the Ẑeq(x)
function to present a one-to-one behaviour with respect to the position x (a so-called
“bijective” function), i.e., each value (even complex) of Ẑeq(x) corresponds to a unique value
of x, and there is complete mapping between the two domains.

The resistance of the resonator windings is usually undesirable in resonant systems,
since it leads to power losses and thermal heating. However, it guarantees the convergence
of Ẑeq(x) to finite values and makes them different for any moving coil position, in par-
ticular when moving from one cell to another along the resonator array. Indeed, both the
magnitude and phase of the equivalent impedance are attenuated as the moving coil is
positioned far from the array input resonator, and the combination of their values is unique
for any position x of the moving coil. Thus, once the array parameters have been fixed,
the measurement of the array input impedance allows the estimation of x. The coils are
designed to maximise the self and mutual inductances, and then, the value of the resistance
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is consequently found. The remaining degrees of freedom are the array coil number n, their
size d in the x direction of the space, and the impedances ẐT and Ẑer.

3.1. Design and Choice of Array Parameters

The size and arrangement of the coils must be adapted to the system in which the sen-
sor is to be installed, and it is therefore essential to determine the requirements concerning
the full-scale range, accuracy, and sensitivity.

The full-scale value of the sensor is closely related to its specific application and must
be established during the design or installation phase. It basically corresponds to the overall
array length lx. It is, in fact, possible to build modular arrays that can be configured in the
field (arrays on flexible PCBs that can be cut and fixed to the structure and to the object
whose translational position is to be measured).

The basic accuracy of the location is instead mainly affected by the number of coils, which
determine the periodicity and therefore the trend of the input impedance of the array. It can be
observed that the portion of space lx in which the sensor has to operate can be covered by an
arbitrary number of resonators, which determines the number of periods of Ẑeq(x) (the larger
the number the shorter the length). Having a larger number of periods improves the location
accuracy, because for the same amount of translational movement, the observed variation of
Ẑeq(x) is greater as it moves through many complete turns of its phase.

Once the array length has been chosen, the number of coils n is clearly related to the
dimensions (lx = nd) which, in turn, affects the trend of the mutual inductance Mer,i(x).
Theoretically, since the space variation of Mer,i(x) is continuous, an array composed of at
least one resonator could be sufficient to make the sensor operate. However, the moving
coil length has to be greater than half of the array resonator length; otherwise, Mer,i(x)
will be symmetric with respect to x, and it will not be possible to distinguish whether the
moving coil covers the first or second half of the resonator. In practical applications, it is
convenient to reduce the length of the moving coil and adapt it to the size of the object to
which it is fixed. In this way, it is possible to cover the entire area of movement of the object
without altering the size of the moving coil.

It is worth mentioning another aspect that should be addressed in the design stage,
which is the cell resonant frequency f0. Its major impact is on the mutual impedance ωM
between the resonators, as shown in (7), in particular, at the highest frequencies. The value
of f0 affects the value of the impedance function, even if does not alter its behaviour. In
addition, an increase in f0 allows the use of smaller capacitors, making the system lighter
and cheaper. However, it must also be observed that this leads to an increase in the coil
resistance R due to skin and proximity effects. These effects can, however, easily be taken
into account, and the proposed discussion on the sensor design is not affected. In general,
the design choices are the result of a compromise that depends on the type of application.

3.1.1. Sensitivity

To effectively evaluate the accuracy of position detection, it is convenient to introduce
sensitivity parameters, defined as the variation in the input impedance per unitary variation
in the longitudinal direction x. Since Ẑeq(x) is a complex value function, its sensitivity to
space variation is defined for the amplitude and the phase as, respectively,

smag(x) =
d|Ẑeq(x)|

dx
(12)

and

sph(x) =
dϕẐeq

(x)

dx
. (13)

Intuitively, it is clear that the larger the values, the greater the accuracy of the measurement.
However, it is important to note that if the sensitivity values are too high, the sensor may
be required to evaluate very small or very high impedance values, resulting in the necessity
of covering large dynamics, unnecessarily complicating the measurement system. The
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sensitivity is mainly affected by the space variation in the mutual inductance dMer,i(x)/dx,
which contributes to Ẑeq(x), as it is possible to see from (9) and (7).

Finally, it can be observed that the minimum step ∆x is fixed by the discretisation step
used to calculate the mutual inductance function Mer,i(x). When the geometry of the array
coils allows Mer,i(x) to be calculated analytically, theoretically, ∆x → 0, and the minimum
step should be fixed by the accuracy of the current sensor and the computational burden
(depending, in turn, on the DSP capability).

Overall, once Mer,i(x) and ∆x have been defined, the number of coils can be chosen
according to the length lx and the sensitivity parameters smag and sph.

3.1.2. Termination Conditions

The termination impedances ẐT and Ẑer are chosen to be real values to avoid the
alteration of the coil resonant frequency. Specifically, the short-circuit (SC), open-circuit
(OC), and matching terminations have been considered, being the typical ones for resonator
arrays [12,25]. They correspond to ẐT = 0, ẐT → ∞, and ẐT ≈ ω0M (the latter is used for
low-loss arrays operating at the cell’s resonant frequency), respectively.

As a first consideration, it should be noted that an OC termination of the array is
completely useless, since the last resonator does not interact with the others, and thus, the
presence of the moving coil over there is not detected. Moreover, the behaviour of Ẑeq(x) is
the same as when the array is considered to be shorter by one resonator. Thus, a consistent
choice should be 0 ≤ ẐT ≤ ω0M.

Concerning Ẑer, a similar discussion can be made. The limit cases are Ẑer = 0 (equiva-
lent to a SC condition) and Ẑer → ∞ (equivalent to an OC condition). The former choice
leads to large values for the defect impedances defined by (9), and thus, for the array input
impedance as well. Depending on the position of the external coil, the defect impedances
contribute to Ẑeq(x) differently (see (7)). The latter case leads, instead, to null defect
impedances, which no longer have any effect on the array response, thus making sensing
via the input impedance impossible.

It is thus reasonable to choose a real value for Ẑer, depending on the resulting input
impedance trend. As a reference value, it is possible to use the external coil matching
impedance discussed in [18], which is calculated by considering the external coil (in [18],
referred to as the “receiver”) as an array made from a single cell connected to the effective
resonator array. It is defined as Rlopt

er = ω0M2
r,i(x)

∣∣
max. It is important to note that there are

no recommended values to use and that the impedances ẐT and Ẑer (being the degrees of
freedom of the system) can be chosen directly in the field during system calibration.

As a last consideration, it is evident that the largest array input impedance values are
found for i = 1 (external coil coupled with the first cell), since the defect impedances directly
affect the coil connected to the impedance measuring apparatus (basically the current sensor
and the voltage source). Having values that are too large may complicate the tuning of the
current sensor, since the range of values that should be measured is excessively widened.

Overall, the convergence and univocity of the equivalent impedance function can be
verified from its trajectory in the complex plane, which should be limited and should not
present intersection points. This approach is adopted in the following discussion.

3.2. Case Study

As a case study, the 10-cell resonator array depicted in Figure 1b was considered. The
parameters of the resulting system are listed in Table 1.

In [22], different complex values of Ẑer were considered (both inductive and capacitive),
focusing on a range of possible loads for the receiver coil for a power transfer application
(moving electric vehicle); the resonator array laid on the driving lane was configured with
typical termination values. However, in this study, we considered a purposely developed
position sensor in which both ẐT and Ẑer can be used as degrees of freedom in order to
optimise the performance. As already mentioned, to avoid the alteration of the resonance
frequency of the coils, it is convenient to choose real impedance values.
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Table 1. Resonator array parameters.

Quantity Symbol Value

Resonator Resistance R 0.11 Ω
Resonator Self Inductance L 12.5 µH

Resonators Mutual Inductance M −1.55 µH
Capacitance C 93.1 nF

Resonance Frequency f0 300 kHz
Source Impedance Ẑs 0.01 Ω

Source Voltage V̂s 3.6 Vrms

For the design of this sensor, the behaviour of the input impedance Ẑeq(x) of the con-
sidered 10-cell array was evaluated by considering a SC, OC, and the matching terminations
and external coil impedance values of 0.2Rlopt

er , Rlopt
er , and 5Rlopt

er . To highlight the effect of
the resonator resistance (and thus the resulting quality factor Q), the simulations considered
the resistance of the coil only, providing a quality factor Q = 300 at f0 = 300 kHz, and the
presence of an additional series resistor adjusted to Q = 90 at the same resonant frequency.

The trajectories of the input impedance in the complex plane are plotted in Figures 3 and 4
for Q = 300 and Q = 90, respectively, as a function of the external resonator position for
different load values Ẑer for short-circuit (SC), matched, and open-circuit (OC) terminations
of the array, respectively.

The trajectories perform cycles in the complex plane which, therefore, indicates that
both the magnitude and the phase of Ẑeq(x) oscillate between relative maxima and minima,
depending on the position of the external coil. The plots clearly show that, whatever
the parameters of the system are, the input impedance always has a positive real part
(as expected, being a passive system), whereas the imaginary part oscillates between
positive and negative values. The array exhibits globally capacitive or inductive behaviour,
depending on the position of the external coil. This characteristic does not affect the
operation of the sensor, since both the analytical calculation and the measurement of Ẑeq(x)
can be performed for any value of the input impedance angle.

This periodicity is analogous to that described in [22,24], where it is illustrated that
with real values of Ẑer, the input impedance is real if the external coil is aligned with an
array resonator (the phase angle is zero). Then, for these positions, the magnitude values
depend on the specific number of resonators and the array termination.

For the purpose of sensing the external coil position x, the main requirement is to
obtain an input impedance function that has unique values for each position x. This
behaviour can be clearly deduced from its trajectory in the complex plane. However, each
of these curves tends to have intersections for some positional values. By observing their
zoomed-in views in Figures 3 and 4 (specifically, Figure 3b,d,f for Q = 300 and Figure 4b,d,f
for Q = 90), it can be seen how it is instead possible to avoid this superposition by choosing
suitable load and termination impedance values.

In particular, for the 10-cell resonator array considered in this analysis, the curve that
best satisfies this requirement is obtained with Ẑer = Rlopt

er and ẐT = ω0M (matching), as
depicted in Figure 3a,b for Q = 300 and Figure 4a,b for Q = 90.

The role of the quality factor of the coils can be appreciated by observing the extent
of the area covered by the trajectories in the complex plane: the smaller the Q, the smaller
the module of the function Ẑeq(x). This occurs because low-quality factors indicate high
resistance in the coils, which affects the denominators of the recursive function (7). For the
purpose of external coil sensing, the optimal quality factor should present much smaller
values than those required by coils for power transfer (which have Q� 100).

Overall, the best choice for the 10-cell array considered in this study is to use Ẑer = Rlopt
er ,

ẐT = ω0M (matching) and Q < 100. With proper optimisation algorithms, it is clearly
possible to improve the calculation of the values of Ẑer and ẐT . In mathematical terms, the
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goal is to maximise the minimum difference (considered a complex difference by choosing
an appropriate norm in the complex space) between the values of the function Ẑeq(x) for
different x values, separated by the minimum detectable movement, which corresponds to
the accuracy of the spatial position determination.

(a) (b)

(c) (d)

(e) (f)

Figure 3. The array input impedance as a function of the receiver position for a resonator quality
factor of Q = 300 for different values of load resistance Ẑer: (a) array terminated in a SC and (b) its
zoomed-in view; (c) matched array and (d) its zoomed-in view; (e) array terminated in an OC and
(f) its zoomed-in view.



J. Low Power Electron. Appl. 2023, 13, 41 11 of 16

(a) (b)

(c) (d)

(e) (f)

Figure 4. The array input impedance as a function of the receiver position for a resonator quality
factor of Q = 90 for different values of load resistance Ẑer: (a) array terminated in a SC and (b) its
zoomed-in view; (c) matched array and (d) its zoomed-in view; (e) array terminated in an OC and
(f) its zoomed-in view.

3.3. Effect of the Distance between the External Coil and the Resonator Array

In general, the sensor can operate for any vertical distance h of the external coil (with
respect to the array of resonators) as long as this is coupled with the facing cells of the array.
Specifically, the mutual inductance between the external coil and the array resonators must
differ from zero. However, for different h values, the function Ẑeq(x) may present different
values (even if the behaviour is the same), and it is necessary for the current measurement
system on the first resonator to work adequately. In Figure 5a, the mutual inductance
Mi,er between the ith array resonator and the external coil is plotted as a function of the
(normalised) positions x for different vertical distances. For a fixed position, the mutual
inductance value decreases as the distance between the external coil and the array increases.
As a consequence, the input impedance function is “less affected” by the presence of the
external resonator and its value changes.

Figure 5 shows the trajectory in the complex plane of the input impedance function for
different distances h for the case of matched termination and an optimal external resonator
load (that is, the best configuration for the considered array, as previously concluded in
Section 3.2). It particular, hre f refers to a distance of 2 cm.
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(a) (b)

Figure 5. Comparison of (a) mutual inductance Mi,er values and (b) resulting Ẑeq for different
distances between the transmitting array and the receiver coil, indicated by multiples of the reference
height hre f = 2 cm used for the case study.

As expected, the input impedance function has a similar trend for the three cases,
although the values for a given position x are different. Overall, as the vertical distance
increases, the values of the input impedance become smaller. Similarly, the difference
between the impedance magnitude or phase for two consecutive positions x (described by
the sensitivity functions) reduces, requiring more accurate current and voltage sensors in
the measurement apparatus. It can be concluded that

• Theoretically, the sensor can work as long as the mutual inductance differs from zero
(and, thus, the input impedance varies with x);

• Practically, the vertical distance h is limited by the accuracy of the measurement
system, which should be able to detect the magnitude and phase variations for the
different positions x;

• Qualitatively, by inspecting the results shown in Figure 5, even in the 10hre f case
(20 cm), the changes in impedance with each periodic variation can be visually distin-
guished, and the necessary accuracy is in the order of few percent, which is achievable
with off-the-shelf devices for current and voltage measurement.

4. External Coil Position Detection

Considering the system operating in resonance, the resonator impedance presents a
positive real part only, which is due to the winding resistance of the coils, making the values
of the array input impedance differ for each moving coil position x. Indeed, while both
the magnitude and phase of Ẑeq(x) can have the same value for different x values, their
combination is unique for a certain x. For the set of parameters of the considered 10-cell
array in the previous example, this can be appreciated from Figure 6, which shows the
trajectory of the input impedance function in the complex plane according to the moving
coil position x for certain values of Ẑt and Ẑer. There are no intersections in the amplitude
phase plot.

The input impedance can then be estimated according to (10) by feeding the first array
resonator with a sinusoidal voltage v1(t) at the resonant frequency f0 and measuring the
current circulating in the same resonator i1(t).

Then, by comparing the estimated and (theoretically) calculated values, it is possible
to determine the moving coil position x. In particular, the calculated impedance should
match the measured one within a level of tolerance.

The conditions to be satisfied can be written as

‖ Z̃− |Ẑeq(x)| ‖≤ δZ, (14)
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‖ ϕ̃− ϕẐeq
(x) ‖≤ δϕ, (15)

where δZ and δϕ are the tolerance margins accepted for the magnitude and phase equalities,
respectively.

Figure 6. The input impedance trajectory as a function of the external resonator position for the
10-cell array described in Section 3 with a matching termination and Ẑer = Rlopt

er . The function
evolves for increasing x values in the direction of the red arrows with counterclockwise rotation.

Mer,i(x) is assumed to be numerically calculated with a discretisation step ∆x, and thus,
as a consequence, all parameters defined according to Mer,i(x) are affected by the choice
of ∆x. In particular, the discrete formulation of the sensitivity provided in (12) and (13)
can be written for a certain value of the (discretised) space coordinate xk, considering the
difference quotients:

Smag(xk) =
∆|Ẑeq|

∆x
(xk) (16)

Sph(xk) =
∆ϕẐeq

∆x
(xk). (17)

With Ẑeq(x) spiralling to lower values for increasing x value, as shown in Figure 6,
these expressions clearly indicate that, assuming a fixed space interval ∆x, the sensitivity
of the input impedance is different for each ∆x. This suggests the need to define variable
tolerance margins that should be larger when the sensitivity is higher (this has also a
practical justification).

Ẑeq(x), being a bijective function, has no crossovers and its values are always dis-
tinct, so under an ideal perspective, it is, in principle, possible to determine the present
position x∗ with a single measurement with infinite accuracy. Two factors hinder such a
straightforward solution:

• Ẑeq(x) is not invertible, and the determination of x∗ is achieved iteratively, as described
in Section 4; the x values are thus discrete (indicated by xk), evenly distributed, and
separated by ∆x, which sets the resolution of the longitudinal position axis and causes
Ẑeq(x) to be replaced by a linear interpolation Ẑeq(xk);

• Voltage and current measurements at the fundamental (resonance) frequency are
subject to both noise and general uncertainty, for which each measured value is
characterised by an interval of confidence that indicates its likely spread around the
“true value”.

For the latter, starting from the standard uncertainty of the voltage and current read-
ings at the resonance frequency, u(V̂1) and u( Î1), we can define a corresponding uncertainty
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for the estimated Ẑeq by distinguishing the amplitude and phase. Let us consider the mag-
nitude and phase of V̂1 and Î1 to be V1 and I1 and ψV and ψI , respectively. We know that
the amplitude and phase of Ẑeq are determined by

|Ẑeq| =
V1

I1
∠Ẑeq = ψV − ψI (18)

Assuming then that the two measurements of voltage and current are uncorrelated or
weakly correlated (as some common influence from environmental factors, for example,
cannot be ruled out completely), the uncertainties may be calculated by ignoring the
crossed terms:

u(|Ẑeq|) = u
(

V1

I1

)
=

√(
u(V1)

V1

)2

+

(
u(I1)

I1

)2

(19)

u(φẐeq
) = u(ψV − ψI) =

√
(u(V1))

2 + (u(I1))
2 (20)

The two uncertainties on the magnitude and phase of Ẑeq must then be divided by
the two calculated sensitivities in order to derive the expected uncertainty on the position
value which, in turn, determines the minimum acceptable discretisation step ∆x.

In general, it is required that{
∆Ẑeq > u(|Ẑeq|)
∆ϕẐeq

> u(ϕẐeq
) ∀ ∆x (21)

and thus, the discretisation step must be chosen to be small as possible, such that

∆x >


u(|Ẑeq|)

min
k
{Smag(xk)}
u(ϕẐeq

)

min
k
{Sph(xk)}

.
(22)

It is worth mentioning that, when the required ∆x does not satisfy (22), it is possible
to increase the number of coils n, so that Smang and Sph increase for the same ∆x.

5. Conclusions

The possibility of employing resonator arrays with a receiver as a passive sensor
for object location has been proposed and discussed. This is applicable to any scenario
of a longitudinally extended structure (e.g., a supporting structure, such as a track) and
a translating object, as well as to rotational scenarios. A longitudinal array structure of
magnetically coupled resonators is attached to the fixed structure and magnetically coupled
to the external coil attached to the moving object. The position is then estimated by measur-
ing the array input impedance. This is possible with a simple high-frequency impedance
measurement system consisting of a sinusoidal excitation source at the resonance frequency
f0 and a current and voltage sensor at the array input port, supported by computational
resources for signal postprocessing and impedance estimation.

The resonator array can be built with any slim, flat structures, such as wounded coils
or even printed circuit board circuits. It is also suitable for application in a considerable
longitudinal extension. It is advisable for the size of the external resonating coil attached
to the moving object to be the same as that of the cells in the array to improve the spatial
accuracy. A coil that is too large, besides being cumbersome, would couple with many array
cells, making the impedance function ambiguous and its determination more difficult.

A specific case study that considered a resonator array with 10 cells was considered.
Based on the resulting parameter values, a discussion on the required voltage and current
measurements highlighted that simple and cheap sensors and transducers are needed.



J. Low Power Electron. Appl. 2023, 13, 41 15 of 16

This technique can be implemented in arrays specifically developed as position sensors,
which can be introduced into systems with moving mechanical parts. Attention should
be paid when there are metal parts in the surrounding structure, which can modify the
parameters of the resonators. It is, however, possible to consider these variations in the
sensor calibration phase, which can be facilitated by acting on the load and termination
impedances. A range of values for the array cell resistance (to determine the factor of
merit at the resonance, it should be desirably low, at least smaller than 100) and the array
termination (the matched impedance termination provides the best results, as discussed at
the end of Section 3) was discussed.

Requiring little power and cheap components, it is therefore possible to create arrays
with inductors printed on flexible PCBs, which can be easily installed on both translational
and rotational systems and that are robust from environmental and mechanical viewpoints.
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