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A B S T R A C T

Model calibration can be a very intensive and time-consuming task, especially when dealing with non-linear
and large finite element models. The computational effort further increases when multiple specimens have to
be calibrated. This is typical of laboratory experiments where several specimens made with the same and/or
different constituent materials are tested. This paper proposes a calibration procedure aimed at reducing
the computational effort of multiple specimen model calibration. The calibration procedure combines the
robustness of a surrogate-assisted evolutionary algorithm with the exploitation of a database collecting the
results of the previously calibrated specimens. In this research, the proposed procedure is applied to the
calibration of the parameters of a cohesive crack model for fiber-reinforced concrete specimens. The benefit
of the proposed procedure is shown by comparing the results with those obtained from the same calibration
method but without accounting for the previous results in the calibration of a new specimen.
1. Introduction

Inverse analyses are widely employed for the calibration of material
mechanical models [1]. The direct definition of their parameters from
experimental test is often unfeasible, in particular for complex models.
Therefore, in many applications parameters are estimated by minimiz-
ing the difference between the measures obtained from an experimental
test and the corresponding responses obtained from a simulation model,
e.g. a finite element (FE) model. This approach is very suited for the
calibration of non-linear mechanical models describing the behavior of
cementitious materials (see, for instance, [2,3]). Due to the difficulties
in performing uniaxial tension tests [4], model parameters are usually
estimated through inverse analyses based on the results of a three
point bending test (TPBT) performed on a notched beam or of a wedge
splitting test (WST) [5]. The specimen response to a WST is commonly
simulated through FE models [6–8], while for a TPBT both closed
form solutions [9–13] and numerical simulations [8,14] have been
developed. Among these models, the fictitious crack model proposed
by Hillerborg [15] is probably one of the most commonly adopted.
However, other similar models can be found in literature, such as the
cracked band model by Bazant and Oh [16].

Once the mechanical model describing the material behavior is
defined, a proper strategy is required to evaluate the model parameter
values that ensure the minimum discrepancy between experimental and
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numerical outcomes. A global approach can be adopted, involving the
simultaneous optimization of all parameters defining the mechanical
model. In this case, the simplest way to proceed is to use a trial-
and-error procedure or a manual parametric study [17–19]. However,
these approaches are not efficient and their results may be far from
the desired accuracy. Hence, specific calibration procedures based on
optimization algorithms able to find the best solution by minimizing
the differences between numerical and experimental results need to
be employed. To this purpose, both gradient-based [7,12] and non
gradient-based algorithms [20,21] have been adopted in literature.
de Oliveira and Gettu [12] proposed a weighted objective function
to be minimized with a gradient-based algorithm combined with line
search techniques. The convergence rate is improved by using the
Newton–Raphson algorithm or the steepest descent method depending
on whether the Hessian matrix is positive definite or not. On the other
hand, Buratti et al. [21] employed the genetic optimization algorithm
implemented in Matlab to solve the inverse problem. The correspond-
ing numerical curve was in good agreement with the experimental
results presented in the same article. A possible alternative to these
approaches is the sequential optimization, where subsets of parameters
are calibrated in different phases and on the basis of different subsets
of data [8,13,17]. Sequential optimization can be successfully applied
when the number of constitutive parameters to compute is high and
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the optimization can result in an ill-conditioned problem. However,
the sequential optimization of parameter subsets may lead to a local
minimum rather than to the global one. Jepsen et al. [22] proposed
an adaptive method aimed at constructing a multi-linear softening
curve. First, a bi-linear curve is used for the fitting, then edge points
are sequentially added to the curve one by one in accordance with a
refinement criterion. An interesting application of the Kalman filter
in this field was proposed by Bolzon et al. [6], thus enabling the
uncertainty quantification associated with the estimated parameters.

Unfortunately, model calibration is a very time consuming task, es-
pecially when dealing with non-linear and/or large FE models (e.g. [23,
24]). Although a single analysis with such models may not be exces-
sively time consuming, the model calibration procedure involving an
iterative process may become very computationally expensive. More-
over, TPBTs or WSTs are usually performed on a series of specimens
that can be arranged in groups according to their properties. Each
group can be composed of several specimens with the same properties.
In this situation, several mechanical models need to be calibrated
to investigate both the effect of different constituent materials and
the variability of model parameters for specimens of the same group.
In this case, multiple optimization problems must be solved and the
computational effort may become excessive. Although the calibration
of multiple specimens is very recurring in the research activity, the
literature lacks studies aimed at reducing its computational cost.

In this demanding context, this paper proposes a procedure to
reduce the computational effort of model calibration when dealing
with multiple specimens, each one with the same geometry but with
different constituent materials. In particular, the procedure exploits the
results obtained from the calibration of each single specimen to guide
the calibration of new specimens. Each specimen calibration is per-
formed through a surrogate-assisted evolutionary algorithm combined
with an improved sampling strategy [25]. The basic idea for an effi-
cient model calibration of multiple specimens is the following: all the
parameter values investigated in each specimen calibration are stored
in a database so that the calibration of each new specimen can start
from the database values rather than from randomly generated samples.
This allows guiding the research of the optimal model parameters on
the basis of the calibration results obtained for previous specimens,
thus reducing the number of model evaluations required. The proposed
procedure is able to reduce the model evaluations required while the
robustness in the global minimum search is guaranteed by the use of
an efficient evolutionary algorithm.

The proposed procedure is applied in this study to the calibration
of the constitutive models of multiple fiber-reinforced concrete (FRC)
specimens, characterized by the same geometry and varying concrete
strength and fiber dosage. The distinctive contribution of this work
is the development of an efficient calibration procedure and it is not
limited to the specific presented case study. This procedure can be
extended to any case where a numerical model has to be calibrated
on the basis of experiments performed on multiple specimens with
the same geometrical characteristics. The number of parameters to be
calibrated in a single optimization problem is not theoretically limited,
provided that the problem is well-posed, namely its solution exists, is
unique, and continuously depends on errors present in the problem
formulation [26]. The only drawback related to an increasing number
of calibration parameters is the resulting increased computational time.
The proposed approach can be employed to identify model parameters
for design applications [21] or to calibrate advanced non-linear models
for research purposes [24].

The paper is organized as follows. First, the experiments on the
FRC specimens, their mechanical modeling and the objective function
defined for model calibration purposes are introduced in Section 2.
The procedure proposed for the calibration of multiple specimens is
described in Section 3, while the calibration results are presented and
discussed in Section 4. Finally, conclusions are drawn in Section 5.
2

2. Calibration of stress–crack opening relationship for FRC speci-
mens

This section describes the experimental tests performed on the
FRC specimens, the model adopted to characterize their mechanical
behavior and the objective function defined for the model parameter
calibration. The mechanical model is a non-linear stress–crack opening
relationship whose parameters are calibrated through the optimization
procedure described in Section 3. In the present paper, the proposed
calibration algorithm is applied to FRC elements in bending, because,
for this material, specimens that have the same geometry and fiber
dosage, and are made from the same concrete batch, tend to have signif-
icantly different mechanical responses due to the random distribution
of fibers. Therefore, numerical model calibration is performed on each
specimen in order to investigate the variability of the numerical model
parameters.

2.1. Experimental tests

The experimental campaign is carried out on 150 × 150 × 550 mm3

prismatic specimens cast with different concretes and fiber dosages.
Crimped polypropylene fibers with a length of 39 mm and an equiv-
alent diameter of 0.92 mm are used. Each specimen is tested in a
three-point bending scheme and is notched at mid-span in order to
control the crack triggering, according to EN 14651. A clip-on displace-
ment transducer is installed at the bottom of the specimen, across the
notch, in order to measure the Crack Mouth Opening Displacement
(CMOD). Test are carried out in CMOD control with a servo-hydraulic
testing machine, with an opening rate of 0.05 mm/min for CMOD <
0.1 mm and 0.1 mm/min for larger CMOD values. A picture of the
experimental setup is shown in Fig. 1(a), while Fig. 1(b) presents an
example of a force–CMOD curve obtained from one of the tests. A total
of 63 specimens are tested, they are classified in the following based on
the compressive strength of the concrete (with strength varying from
34 MPa to 55 MPa), and on the fiber dosage (4, 6 and 8 kg/m3).
or each dosage of fibers three different batches of 7 specimens are
roduced, the compressive strength is assumed constant for each batch
nd is measured by means of tests on two cubes. In particular, the
ollowing 9 specimen groups are identified: F4-C54, F4-C47, F4-C41,
6-C55, F6-C43, F6-C34, F8-C41, F8-C39, F8-C37, where F𝑥 denotes
he fiber dosages and C𝑥𝑥 the concrete compressive strength. The 7
pecimens of each batch are referred to as T1–T7. According to this
lassification, the force–CMOD curve shown in Fig. 1(b) refers to the
irst specimen (T1) of the group characterized by 54 MPa of concrete
ompressive strength and a fiber dosage of 4 kg/m3. The specimens are
ade with the main objective of obtaining a sufficiently large number

f different force–CMOD curves in order to test the advantages of the
lgorithm proposed in the following. No particular target in terms of
trength was set.

.2. Numerical model

The three point bending tests are modeled by means of a 2D FE
odel using the software Abaqus. Exploiting the symmetry of the prob-

em, only half of the specimen is modeled, using four-node plane-stress
lements (type CPS4R in Abaqus) with an elastic isotropic material. The
rack propagation is simulated using a simple cohesive crack model,
y means of nonlinear springs (see Fig. 2(a)) with a very high elastic
tiffness in tension and compression. The high initial stiffness of the
prings is necessary so as not to add further elastic deformability to the
ystem, whose overall elastic deformability is simulated through the
lastic 2D elements. The adopted mesh is depicted in Fig. 2(b). In the
rack zone the elements are square with an edge size of 2 mm. The
nalysis is conducted under displacement control by increasing with
small step size the vertical displacement of the beam midspan and

y recording the corresponding values of force and CMOD. During the
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Fig. 1. (a) The experimental setup and (b) the force–CMOD experimental curve of the
specimen F4-C54-T1.

analysis, when the tensile stress in one of the nonlinear springs equates
the tensile strength of concrete 𝑓𝑐𝑡, the crack opens/propagates, and the
stress in the spring is described based on the stress (𝜎)-crack opening
(𝑤) relationship

𝜎(𝑤) = 𝑔1(𝑤) + 𝑔2(𝑤) = 𝑎1
(

𝑒−𝑎2𝑤
)

+ 𝑎3
(

𝑒−𝑎4𝑤 − 𝑒−𝑎5𝑤
)

(1)

where 𝑎1 to 𝑎5 are unknown parameters. The exponential curve of
Eq. (1) is adapted from [27]. The overall trend of Eq. (1) and the
partial contribution of 𝑔1(𝑤) and 𝑔2(𝑤) are shown in Fig. 3 . Note that
𝑔1(𝑤) describes mainly the crack propagation in concrete, while 𝑔2(𝑤)
(and the parameters 𝑎3-𝑎5) characterize the effect of the fibers. Since
𝜎(𝑤) = 𝑎1 when 𝑤 = 0, the parameter 𝑎1 represents the tensile strength
of concrete 𝑓𝑐𝑡. Clearly, in the adopted model the elongation of a certain
nonlinear spring represents one half of the crack opening at the location
of the spring. Moreover, as mentioned before, the elastic behavior of
concrete in tension before cracking is simulated by the quadrilateral
plane stress elements.

It should be noticed that many stress–crack opening relationships
have been proposed in the literature [28]; the one adopted here
(Eq. (1)) was chosen in the first place because it depends on 5 pa-
rameters and therefore it is associated to a certain complexity of the
optimization problem. In the second place, it allows to describe the
shape of the experimental curves with a good accuracy, with particular
reference to the second peak observed in the force–crack opening
relationship (see Fig. 1(b)). In the present work the numerical model
is functional to application of the calibration algorithm. Clearly more
advanced models are available in the literature [29,30], but their
adoption would not change the conclusions of the present work on the
efficiency of the proposed calibration algorithm.
3

Fig. 2. (a) Schematic view of the numerical model and (b) FE model mesh.

Fig. 3. Stress–crack opening relationship of Eq. (1). Continuous black line: 𝑔1(𝑤),
dashed blue line: 𝑔2(𝑤), bold red line: 𝑔(𝑤). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

2.3. Definition of the objective function

The aim of the calibration procedure is to find the optimal vector
𝐚 = {𝑎1,… , 𝑎5} composed of the 5 parameters of the constitutive law
(Eq. (1)) that best approximates an experimental test. It should be
noticed that the elastic modulus of the concrete is not included in
the optimization process because it has a limited effect on the force–
CMOD curves after the first peak. A value of 37,200 MPa is used.
The choice of the objective function 𝐻 for the optimization problem
is crucial for the success of the calibration procedure [31,32]. In this
paper, the objective function is defined as the weighted sum of three
squared residuals between experimental results, indicated with the (ex)
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superscript, and numerical results, indicated with the (n) superscript,
in terms of force–CMOD curves:

𝐻(𝐚) = 𝑘1𝑒
2
𝐹 + 𝑘2𝑒

2
𝐴 + 𝑘3𝑒

2
CMOD (2)

where 𝑒2𝐹 is the squared residual in terms of maximum force 𝐹max,
efined as

2
𝐹 =

(

𝐹 (ex)
max − 𝐹 (n)

max(𝐚)

𝐹 (ex)
max

)2

(3)

𝑒2𝐴 measures the residual in terms of area 𝐴 under the force–CMOD
curves in the interval 0.03 mm ≤ CMOD ≤ 3.5 mm and is defined as

𝑒2𝐴 =
(

𝐴(ex) − 𝐴(n)(𝐚)
𝐴(ex)

)2

(4)

and 𝑒2𝐶𝑀𝑂𝐷 is the average residual at 𝑁 different reference CMOD
values

𝑒2CMOD = 1
𝑁

𝑁
∑

ℎ=1

(

𝐹 (ex)(CMODℎ) − 𝐹 (n)(CMODℎ, 𝐚)
𝐹 (ex)(CMODℎ)

)2

(5)

In this study, 𝑁 = 8 and the reference CMOD values are CMOD1 =
0.03 mm, CMOD2 = 0.05 mm, CMOD3 = 0.1 mm, CMOD4 = 0.2 mm,
CMOD5 = 0.5 mm, CMOD6 = 1.5 mm, CMOD7 = 2.5 mm, CMOD8 =
3.5 mm. The wights in Eq. (2) are set as follows: 𝑘1 = 𝑘2 = 𝑘3 = 1.

Given an experimental force–CMOD curve, the goal of the calibra-
tion is to find the set of parameters 𝐚 that minimizes the objective
function Eq. (2), thus minimizing the discrepancy between the experi-
mental and the numerical findings. The algorithm does not involve the
calibration of unique parameter values for a set of nominally equal
specimens. Indeed, in this case it would not be possible to estimate
the model parameter variability due to the random distribution of
fibers inside the concrete matrix. The optimization is thus carried out
independently for each specimen.

3. Calibration of multiple specimens

The proposed calibration procedure combines the robustness of a
surrogate-assisted evolutionary algorithm and the efficiency related to
the exploitation of a database of results. This latter is built during the
calibration procedure and allows reducing the number of model eval-
uations required to calibrate the numerical model based on the results
obtained from multiple specimens. The surrogate-assisted evolutionary
algorithm is presented in Section 3.1 with reference to the calibration
of a single specimen, while the efficient procedure for the calibration
of multiple specimens is described in Section 3.2.

3.1. The surrogate-assisted evolutionary algorithm

The surrogate-assisted evolutionary algorithm employed in this pa-
per was originally proposed by one of the authors [25,33] and is
based on the use of the differential evolution (DE) algorithm [34]
combined with a second order polynomial surrogate and two scoring
criteria to improve the performance of the original DE algorithm. The
DE algorithm is a parallel direct search method widely employed in
the field of numerical optimization. The basic procedure of the DE
algorithm is reported in detail in [34], while a description of the
surrogate-assisted strategy is presented in the following.

The calibration parameters 𝑎𝑖 are collected in the 𝐷-dimensional
vector 𝐚 = {𝑎1,… , 𝑎𝑖,… , 𝑎𝐷} (𝐷 = 5 in the present work) and the
aim of the calibration procedure is to find the optimal value of 𝐚 that
ensures the minimum value of the objective function of Eq. (2). At
each iteration 𝐺 of the calibration procedure, a set of 𝑁𝑃 parameter
vectors is defined according to the criteria described in the following.
Hence, at each iteration 𝐺 the population is composed of 𝑁𝑃 parameter
vectors 𝐚𝑗,𝐺 (with 𝑗 = 1,… , 𝑁𝑃 ), each one representing a point in the
D-dimensional search domain. The 𝑁𝑃 parameter vectors of the 𝐺th
iteration are referred to as generation 𝐺.
4

When dealing with the calibration of the first specimen, the first
generation of parameter vectors (𝐺 = 1) is randomly chosen in the
research domain. The objective function value 𝐻(𝐚𝑗,1) corresponding
to the 𝑗th parameter vector of the initial population is evaluated
using Eq. (2). Notice that the numerical quantities 𝐹 (𝑛)

max, 𝐴(𝑛) and
𝐹 (𝑛)(CMODℎ) in Eq. (2) are obtained by running the FE model described
in Section 2.2 with the model parameters 𝐚𝑗,1. Once the objective
function values 𝐻(𝐚𝑗,1) for each of the 𝑁𝑃 first generation parameter
ectors are computed, the surrogate-assisted algorithm generates the
𝑃 parameter vectors of the new generation trying to establish a bal-

nce between local and global search. This means to enhance both the
ccuracy of the solution in the neighboring of the optimum predicted
t the previous iteration (local exploitation) and the global optimum
earch (global exploration).

The local exploitation is performed by means of a second order
olynomial surrogate function, used to approximate the objective func-
ion 𝐻 with the objective of improving the convergence speed to the
lobal minimum. In the proposed algorithm, a second order polynomial
unction is selected because it can locally fit the objective function

and its minimizer can be calculated analytically (i.e. without any
terative process). The definition of the surrogate function is detailed
n Section 3.1.1.

The global exploration is performed by combining the parameter
ectors 𝐚𝑗,𝐺 belonging to the same 𝐺-generation to explore the search
pace and to avoid reaching local minima. According to the classic DE
lgorithm, a linear combination of the vectors 𝐚𝑗,𝐺 is used.

Each new parameter vector defined by the two above described
trategies is assigned a score in order to select only the ones that are
ither likely to provide new information on the research domain or that
re characterized by lower objective function values. To this aim, the
𝐻 vectors characterized by the lowest score are selected and their

orresponding objective function values are calculated. The influence
f 𝑁𝐻 on the speed rate of the algorithm is evaluated in [25], where
n optimal value of about 4 or 5 is proposed. Details about the score
ssignment are presented in Section 3.1.2.

A new parameter vector is part of the next generation population
nly if its corresponding objective function value is lower than one
f the vectors of the current generation. The algorithm proceeds for
uccessive iterations until prescribed convergence criteria are reached.

At each iteration, all vectors 𝐚𝑗,𝐺 constituting the generation 𝐺,
he corresponding objective function values 𝐻(𝐚𝑗,𝐺) and the numerical
esults (namely the force–CMOD curve obtained from the FE model
ith 𝐚𝑗,𝐺 in this research) are stored in a database. This database is
sed in the calibration of a single specimen for scoring purposes (see
ection 3.1.2) as well as to calibrate multiple specimens (Section 3.2). A
lowchart of the surrogate-assisted evolutionary algorithm is presented
n Fig. 4.

.1.1. Surrogate definition
The 𝑁𝑃 parameter vectors of the generation 𝐺 are starting points

or the definition of the next generation of vectors. This is achieved
ccording to two strategies. The first is the classic strategy of the DE
lgorithm [34], based on the mutation (linear combination of vectors)
nd crossover (combination of the mutant vector and original vector
omponents) operations. The second strategy adopted in this research
s based on surrogate functions and detailed in the following. At each
teration 𝐺, 𝑁𝑃 subsets of vectors, each one composed of 𝑁𝑆 vectors
with 𝑁𝑆 < 𝑁𝑃 ), are randomly generated. The number of subsets 𝑁𝑆 is
efined based on the dimension of the search space, the value adopted
n the present paper is discussed in Section 4. For each vector, the
orresponding value of the objective function 𝐻(𝐚𝑗,𝐺) is known (i.e. the
E model is run, numerical results are known and 𝐻(𝐚𝑗,𝐺) is calculated).
or each subset of 𝑁𝑆 vectors, a second-order polynomial surrogate
unction 𝐻 is calibrated to obtain an estimate of the objective function
𝐻 :

𝐻(𝐚 ) = 1 𝐚𝑇 𝐐𝐚 + 𝐥 𝐚 + 𝑐 (6)
𝑗,𝐺 2 𝑗,𝐺 𝑗,𝐺 𝑗,𝐺



Construction and Building Materials 411 (2024) 134757L. Vincenzi et al.
Fig. 4. Flowchart of the surrogate-assisted evolutionary algorithm.

where 𝐐 is a 𝐷×𝐷 matrix of quadratic coefficients and 𝐥 is a 𝐷×1 vector
of linear coefficients. The coefficients of the quadratic term matrix, of
the linear term vector and of the constant 𝑐 are estimated by applying
the least square estimation method, i.e. by minimizing the squared sum
of the differences between 𝐻(𝐚𝑗,𝐺) and 𝐻(𝐚𝑗,𝐺) for the 𝑁𝑆 selected
points. If the surrogate function has a minimum, its minimizer 𝐚 is
analytically obtained as:

𝐚 = −𝐐−1𝐥 (7)

and it is proposed as a candidate for the next generation.
To sum up, a candidate vector 𝐚 is obtained for each of the 𝑁𝑃

groups. It is evaluated according to Eq. (7) or through the classic
linear combination of vectors depending on whether the surrogate has
a minimum or not. A score is then assigned to each candidate vector
𝐚 according to the criteria described in Section 3.1.2 and the objective
function values are evaluated through Eq. (2) for the candidate vectors
presenting the lower scores.

3.1.2. Scoring operation
The scoring operation is performed to assign a score to each candi-

date. The score 𝑆 is defined as the weighted sum of two criteria. The
5

first criterion depends on the objective function value predicted by the
surrogate 𝐻(𝐚𝑗,𝐺) and the related score 𝑆1 is computed as:

𝑆1 = 1 − exp
(

−
𝐻(𝐚𝑗,𝐺)2

𝐻best𝐻min,𝑠

)

(8)

where 𝐻best is the minimum objective function value obtained until
the current generation and 𝐻min,𝑠 is the minimum among the objective
function values evaluated for the 𝑁𝑆 points selected to calibrate the
surrogate. The lower the predicted value 𝑠𝑓 is, the smaller the score 𝑆1
of the candidate is.

According to the second criterion, the score 𝑆2 depends on the
distances of the candidate from the points for which the objective
function has been already evaluated. For this purpose, the database
created within the procedure is used. In this case, in order to ensure
a global exploration of the research domain, the farther the parameter
vector is from the already evaluated points, the lower is the score 𝑆2.
The score 𝑆2 is defined as follow:

𝑆2 = 1 −
𝛥𝑚𝑖𝑛
𝛥𝑚𝑎𝑥

(9)

where 𝛥𝑚𝑖𝑛 and 𝛥𝑚𝑎𝑥 are the minimum and the maximum distance
between the candidate and all already evaluated points.

The two scores are combined with a weighted sum as 𝛼1𝑆1 + 𝛼2𝑆2,
where 𝛼1 and 𝛼2 are weights. 𝛼1 and 𝛼2 are chosen in the range
0≤ 𝛼1, 𝛼2 ≤1, with 𝛼1 + 𝛼2= 1. If 𝛼2 is close to one, the global
exploration prevails on the local search and the candidate points are
mainly placed in a rather unexplored region of the parameter domain.
Otherwise, if the value of 𝛼1 is high, local exploitation is emphasized
and the candidate points with low predicted objective function values
are preferred. According to [25], two different sets of weights are fixed
depending on the convexity of the response surface. In the case the
surrogate has a minimum and the minimizer is the candidate for the
next generation, a higher weight must be assigned to the first criterion,
i.e. 𝛼1 = 2∕3 and 𝛼2 = 1∕3. In the case the surrogate research fails,
weight values are set as 𝛼1 = 0 and 𝛼2 = 1, favoring the second criterion.

Only the first 𝑁𝐻 candidates (with 𝑁𝐻 < 𝑁𝑃 ) with the lower scores
are selected for new evaluations. In this way, a very reduced number of
new FE model resolutions are performed at each generation. This allows
to improve the speed performance of the optimization algorithm while
keeping high the number of candidates at each iteration. Having a high
number of candidates at each iteration is fundamental to preserve the
ability of the algorithm to find the global minimum also in complex
optimization problems.

3.2. The proposed calibration procedure for multiple specimens

The proposed procedure aims at reducing the computational effort
for the calibration of multiple specimens. Obviously, the resolution of
the FE model (needed to find the force–CMOD curve in the present
paper) for a given set of constitutive law parameters and for a given
geometry will produce results that are independent from the exper-
imental data. On the contrary, the objective function value changes
if the numerical outcomes are compared to the results of different
experiments. Starting from this consideration, all the numerical results
obtained from the calibration of a single specimen are stored in the
database (see Section 3.1). This latter is then used to calculate the
objective function values for other specimens and to map the parameter
domain using the points (i.e. 𝐚 vectors) already investigated, thus
avoiding to repeat FE analyses. This allows to speed up the convergence
of the optimization algorithm as the database grows.

The proposed procedure can be summarized as follows:

• Apply the surrogate-assisted evolutionary algorithm for the cal-
ibration of the first specimen as described in Section 3.1. Ran-
domly choose the initial vector population within the parameter
space.
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• Throughout the calibration process, store in a database the value
of each parameter vector 𝐚𝑗 investigated, the corresponding objec-
tive function value 𝐻(𝐚𝑗,𝐺) and the force–CMOD curve produced
by the FE analysis. The value of 𝐻(𝐚𝑗,𝐺) is used within the
calibration of the first specimen to guide the choice of the best
candidates while the force–CMOD curve is used for the calibration
of subsequent specimens.

• When the algorithm reaches the solution for the first specimen,
store results in the database and select a new specimen to cali-
brate.

• For each parameter vector 𝐚𝑗 that has been used to perform a
FE analysis, calculate the new value of the objective function 𝐻
by comparing the numerical force–CMOD curve contained in the
database with the experimental curve for the new specimen, by
means of Eq. (2).

• Select the initial population of 𝑁𝑃 vectors for the calibration of
the selected specimen in the following way. Two-thirds of the
𝑁𝑃 vectors are chosen as those which have the lowest values of
the objective function 𝐻 . For the remaining population, choose
vectors that ensure a well distributed population in the research
space. For this purpose, use the score 𝑆2 of Eq. (9) to select the
best candidates.

• With the selected initial population, apply the surrogate-assisted
evolutionary algorithm described in Section 3.1 to calibrate the
constitutive law parameters of the current specimen. During the
calibration, update the database with data on the new evaluations
of the FE model.

• Repeat the procedure for all the other specimens.

A flowchart of the procedure can be found in Fig. 5.
The proposed procedure has several advantages. First, the use of

a surrogate function coupled with an evolutionary algorithm allows
to reach the optimal solution with a limited number of evaluations
also in the case of multiple local minima [25]. On the contrary, a
local optimization algorithm, such as a gradient-based algorithm, does
not guarantee the convergence to the global minimum but it could
converge to a local minimum depending on the chosen starting point.
Moreover, the efficiency of local optimization algorithms rapidly de-
creases when the number of calibration parameters is greater than 3 or
4.

The use of a database allows to map the research space of new
specimens and, consequently, to identify the region where the global
minimum is more likely to be, without performing the large number
of objective function evaluations typical of the first iterations of the
procedure. Moreover, the use of the database helps the algorithm to
avoid the resolution of the numerical model in already mapped regions
and where the objective function has high values. This is done not only
with reference to the research points in the current generation or within
the single optimization problem, but it is also done by exploiting all
the results obtained for the previous specimens. The parameter space
mapping coupled with the polynomial surrogate also allows a very fast
convergence if the current specimen has a force–CMOD curve not very
different from one of the previously calibrated specimens. In this case,
the second order polynomial function is able to locally fit the objective
function and find a good solution also at the first iterations.

The same combination between the surrogate-assisted evolutionary
algorithm and the database of results would have not been so easy
if dealing with classic evolutionary or gradient-based algorithms. The
main disadvantage of using evolutionary and genetic algorithms is that
a large number of objective function evaluations are required to reach
the global minimum. This is because they are based on a probabilistic
search without information on the shape of the objective function.
Moreover, as the calibration results obtained in the previous iterations
and/or in the calibration of other specimens are not taken into account,
usually new candidate vectors fall in some already investigated regions
of the parameter domain.
6

Fig. 5. Flowchart of the proposed procedure for the calibration of multiple specimens.

Gradient-based algorithms are guided from the gradient of the ob-
jective function and they account for the shape of the objective function
only locally. No information about the objective function in regions
that are far from the evaluated point is considered. A previous solution
(i.e. the solution of a previously calibrated specimen) can be used as a
starting point for the current calibration to have an advantage in terms
of speed rate. However, the starting point could be inappropriate in the
case of specimens with constitutive law not similar to the previous one
and there is no guarantee to converge to the global minimum if the
starting point is not close to it.

4. Results and discussion

The calibration procedure proposed in Section 3.2 is used to cal-
ibrate the parameters of the model in Eq. (1) for the 63 specimens
described in Section 2.1. The 5 calibration parameters 𝑎1,… , 𝑎5 are
searched within the ranges reported in Table 1.

In order to obtain the coefficients of the second order polynomial
function in a 5-dimensional space at least 21 points are needed. Con-
sequently, a value of 𝑁𝑆 greater than 21 is required. In this research,
𝑁𝑆 is chosen equal to 26. The number of members of each population
𝑁 and the number of new evaluations for each generation 𝑁 are set
𝑃 𝐻
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Fig. 6. Some examples of calibration results: experimental (red) vs numerical (blue) force–CMOD curves. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
Table 1
Search range for the constitutive law parameters.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
[MPa] [1/mm] [MPa] [1/mm] [1/mm]

Min value +2.30 +6.50 +5.00 +0.39 +0.70
Max value +4.50 +13.00 +7.80 +0.65 +3.00

equal to 38 and 4, respectively. The weights for the scoring operation
are selected according to the strategy introduced in Section 3.1.2. The
calibration process is stopped when at least two research points have
the objective function value 𝐻 less than 10−2 and their relative distance
is less than 10−1.

Fig. 6 shows examples of the obtained results in terms of force–
CMOD curves. The numerical predictions (blue lines) almost perfectly
match the experimental results (red lines). The number of objective
function evaluations needed for the calibration of each specimen ac-
cording to the proposed procedure is reported in Fig. 7(a). The spec-
imen order of Fig. 7(a) corresponds to the order in which specimens
have been calibrated. As far as the first specimen group (namely F4-
C54) is concerned, we can note that the calibration of the first specimen
is computationally demanding, while the calibrations of the other
specimens of the same group are very fast. In particular, the number
of required iterations goes from about 150 for the first specimen up
to values lower than 10 (reaching even values of 1) for the other
specimens of the same group. This is due to the fact that the target
experimental curves are similar for specimens belonging to the same
group. In this case, indeed, the data stored in the database (Section 3),
populated during the calibration of the model for first specimens,
allow to reduce the number of evaluations of the FE model. When the
concrete strength and/or the fiber dosage change, the required number
of evaluations slightly increases. In fact, the larger is the difference
between the experimental curves of the current and previous specimen,
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the greater is the number of objective function evaluations required
to reach the convergence since the distance between the minima of
the objective function increases. In any case, the number of objec-
tive function evaluations required adopting the proposed procedure
is significantly lower than that needed if the calibration procedure
is separately applied for each specimen (Fig. 7(b)), namely without
benefit from the result database. A total of 2285 objective function
evaluations are required to calibrate all of the specimens with the
proposed procedure while they become 9940 without exploiting the
database, although the convergence criteria are the same.

The optimal values of the calibration parameters 𝑎𝑖 are listed in
Table 2. Results are averaged over the 7 specimens of each group. Pa-
rameter values for each specimen are graphically represented, together
with their mean value, in Fig. 8. As expected, a global increase in
the parameter 𝑎1 (representative of the concrete tensile strength) with
the concrete compressive strength can be observed. The peak of the
second branch of the constitutive law depends on a combined effect
of parameters 𝑎3-𝑎5, which vary with the fiber dosage. The numerical
stress–crack opening relationships obtained for each specimen group
with the model parameters of Table 2 are presented in Fig. 9. As
expected, greater concrete strengths lead to a higher curve peak, while
the second stretch increases with the fiber dosage. Peak values of the
first and second stretch of the mean curve for each specimen group are
presented in Table 3.

The reduction in the computational effort does not compromise the
calibration accuracy. This is demonstrated by the good correspondence
between experimental and numerical results observed in Fig. 6 as well
as in Table 4. In particular, Table 4 presents the absolute value of
the errors 𝑒𝐹 , 𝑒𝐴 and 𝑒CMODℎ (see Section 2.3) averaged over the 7
specimens of each group. Besides the results presented in Fig. 6 and Ta-
ble 4, the comparison between the experimental and numerical curves
of each single specimen and the corresponding errors are presented in
Table A.5 and Figs. A.10, A.11, A.12. This comparison confirms the

good agreement between results.
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Fig. 7. Number of objective function evaluations: results obtained using (a) the proposed procedure for the calibration of multiple specimens and (b) the surrogate-assisted
evolutionary algorithm applied separately for each specimen.

Fig. 8. Trend of the calibration parameters 𝑎𝑖: single values (markers) and mean trend (lines). Fiber dosages of 4 kg/m3 (red), 6 kg/m3 (blue) and 8 kg/m3 (black). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Mean trend of the stress–CMOD curve for the different specimen groups. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Mean values of the calibration parameters 𝑎𝑖.

Specimen 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
group [MPa] [1/mm] [MPa] [1/mm] [1/mm]

F4-C41 +2.96 +9.08 +5.12 +0.55 +1.04
F4-C47 +3.47 +11.50 +4.94 +0.57 +1.08
F4-C54 +3.66 +9.64 +4.89 +0.50 +1.10
F6-C34 +2.86 +7.81 +5.70 +0.51 +1.20
F6-C43 +3.58 +9.69 +4.80 +0.47 +1.14
F6-C55 +3.91 +9.20 +6.04 +0.45 +1.14
F8-C37 +3.09 +8.62 +6.32 +0.44 +1.18
F8-C39 +2.93 +6.80 +5.43 +0.40 +1.07
F8-C41 +3.28 +7.77 +6.12 +0.42 +1.25

Table 3
Peak values of the stress–crack opening curves. 𝜎peak1: stress corresponding to the first
peak; 𝜎peak2 and 𝑤peak2: stress and crack opening corresponding to the second peak,
espectively.
Specimen 𝜎peak1 𝜎peak2 𝑤peak2
group [MPa] [MPa] [mm]

F4-C41 +2.96 +1.16 +1.30
F4-C47 +3.47 +1.13 +1.25
F4-C54 +3.66 +1.39 +1.31
F6-C34 +2.86 +1.73 +1.24
F6-C43 +3.58 +1.52 +1.33
F6-C55 +3.91 +1.99 +1.34
F8-C37 +3.09 +2.21 +1.33
F8-C39 +2.93 +1.91 +1.48
F8-C41 +3.28 +2.36 +1.32

Table 4
Absolute values of the errors 𝑒𝐹 , 𝑒𝐴 and 𝑒CMODℎ averaged over the 7 specimens of each
group. 𝑒CMODℎ is calculated for CMOD values of 0.5 and 2.5 mm.

Specimen 𝑒𝐹 𝑒𝐴 𝑒CMOD0.5 𝑒CMOD2.5
group [%] [%] [%] [%]

F4-C41 +1.37 +0.25 +4.26 +1.11
F4-C47 +1.01 +0.48 +6.28 +0.76
F4-C54 +1.38 +0.19 +5.33 +1.07
F6-C34 +2.02 +0.59 +2.71 +1.71
F6-C43 +1.11 +0.46 +5.74 +2.01
F6-C55 +0.83 +0.41 +2.65 +1.23
F8-C37 +1.84 +0.54 +5.44 +0.87
F8-C39 +1.90 +0.41 +4.26 +2.11
F8-C41 +1.21 +0.32 +4.78 +1.51

5. Conclusions

This paper proposes a computationally efficient procedure to cal-
ibrate the model parameters of multiple specimens. The procedure
9

combines the robustness in the global minimum search of a surrogate-
assisted evolutionary algorithm with the exploitation of a database
collecting the results of the previously calibrated specimens. In this
way, the calibration of each new specimen can start from the database
values rather than from randomly generated samples. This allows guid-
ing the research of the optimal model parameters on the basis of the
calibration results obtained for previous specimens, thus reducing the
number of model evaluations required.

As an example, the procedure has been applied to the constitu-
tive model calibration of multiple groups of fiber-reinforced concrete
specimens. All the specimen groups are characterized by the same
geometry but different concrete strength and/or fiber dosage. The
constitutive model of each specimen is a cohesive crack model and
its parameters are calibrated by minimizing the differences between
the force–CMOD curve simulated by the model and the experimental
counterpart obtained from a three-point bending test performed on the
notched specimen.

The proposed procedure is compared with a classic calibration
strategy that involves the separated calibration of each specimen with-
out taking advantage of the result database. The proposed calibration
procedure allows reducing the total number of model evaluations by
about 4.5 times. Benefits are very remarkable for specimens of the same
groups that have similar experimental curves, but also for specimens
belonging to different groups. In this case, indeed, the mapping of
the parameter space enables to have a more rich starting population
and to significantly reduce the model evaluations also when the global
minimum of the objective function for two subsequent calibrations
moves in the parameter space.

This procedure is not limited to the experimental tests and the
mechanical model presented in this work but it can be employed for the
calibration of other mechanical models. It is particularly suited to the
calibration of specimen groups characterized by nonlinear constitutive
models due to the high computational effort needed to perform a
large number of model simulations. The reduction in the computational
burden does not compromise the calibration accuracy, as demonstrated
by the good agreement between experimental and numerical results
presented in the paper.
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Fig. A.10. Results for specimens with fiber dosage of 4 kg/m3. Red line: experimental curve; blue line: numerical curve. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. A.11. Results for specimens with fiber dosage of 6 kg/m3. Red line: experimental curve; blue line: numerical curve. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Table A.5
Errors 𝑒𝐹 , 𝑒𝐴 and 𝑒CMODℎ for each single specimen. 𝑒CMODℎ is calculated for CMOD values of 0.03, 0.05, 0.1, 0.2, 0.5, 1.5, 2.5, and 3.5 mm.

Specimen 𝑒𝐹 𝑒𝐴 𝑒CMOD0.03 𝑒CMOD0.05 𝑒CMOD0.1 𝑒CMOD0.2 𝑒CMOD0.5 𝑒CMOD1.5 𝑒CMOD2.5 𝑒CMOD3.5
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

F4-C41-T1 +0.33 +0.10 −6.83 +0.08 −0.82 −4.31 +10.13 −5.15 −2.91 +7.18
F4-C41-T2 +0.30 +0.42 −6.46 +0.94 +3.56 +11.28 +1.23 −7.67 −0.15 +12.78
F4-C41-T3 +1.32 −0.03 −9.58 −1.13 +1.56 −2.26 +1.06 −6.50 −0.49 +13.08
F4-C41-T4 +0.32 +0.62 −8.61 −2.96 −1.33 −1.92 +4.22 −1.82 +1.12 +0.91
F4-C41-T5 +1.32 +0.38 −7.94 −1.12 −3.14 +4.42 +4.92 −4.60 −1.82 +7.30
F4-C41-T6 +3.29 −0.03 −15.73 +4.60 −4.39 +4.19 +6.52 −6.54 −1.12 +8.02
F4-C41-T7 +2.68 −0.20 −13.68 +4.70 −4.02 −8.27 +1.73 −5.31 −0.19 +10.07
F4-C47-T1 +1.85 +0.38 −0.18 +0.14 −2.10 −3.99 +2.78 −3.41 +0.13 +3.28
F4-C47-T2 +0.24 −0.90 −4.30 +1.10 +0.39 −4.86 −2.43 −4.53 −0.32 +4.83
F4-C47-T3 +2.30 +0.16 +2.30 +2.73 −8.53 −3.06 +9.77 +0.27 −2.80 −5.96
F4-C47-T4 +0.83 −0.18 −9.80 +2.02 +1.50 −8.85 +3.62 −2.81 +0.31 +2.49
F4-C47-T5 +1.55 +0.98 +0.28 +0.12 −1.21 −8.26 +7.34 −3.77 +1.01 +8.35
F4-C47-T6 −0.14 +0.37 −1.89 +2.90 −2.50 −10.58 +9.02 −4.79 +0.39 +3.17
F4-C47-T7 −0.14 +0.37 −1.89 +2.90 −2.50 −10.58 +9.02 −4.79 +0.39 +3.17
F4-C54-T1 +2.15 +0.00 −7.09 −1.97 −4.50 −3.82 +3.61 −3.28 −0.47 +3.06
F4-C54-T2 +3.42 +0.34 −9.27 +4.66 −6.34 −4.35 +5.53 −4.69 −0.56 +8.51
F4-C54-T3 +1.42 +0.07 −14.70 −1.05 +1.14 −2.22 +9.27 −5.97 +0.13 +5.61
F4-C54-T4 −0.88 +0.02 −5.12 +0.26 +6.59 −0.94 +2.12 −4.30 +0.74 −1.99
F4-C54-T5 +1.51 +0.45 −8.98 +3.57 −0.44 −10.58 +5.06 −0.81 −1.01 +3.83
F4-C54-T6 −0.18 +0.09 −5.77 +1.55 +6.69 −6.72 +7.47 −3.09 −2.49 +3.04
F4-C54-T7 +0.08 +0.38 −0.57 −5.78 +1.62 +6.10 +4.28 −7.81 −2.12 +9.32
F6-C34-T1 −0.68 −0.28 −5.67 −2.12 +6.99 +4.27 −0.72 −6.31 −0.23 +10.56
F6-C34-T2 +0.31 +0.39 −7.22 −0.84 +7.53 +0.25 +2.88 −5.57 −0.48 +8.93
F6-C34-T3 +1.98 −0.52 −17.27 +0.65 +6.59 −0.81 +4.30 −4.46 −3.47 +5.96
F6-C34-T4 +4.28 −1.99 −4.99 +4.54 −1.41 −9.68 +0.04 −6.53 −2.26 +6.59
F6-C34-T5 +0.64 −0.52 −3.02 −3.45 +3.52 +1.25 +3.19 −9.18 −1.01 +11.85
F6-C34-T6 +5.45 −0.14 −12.61 +3.55 −5.58 −5.68 +1.87 +0.64 −2.44 +0.78
F6-C34-T7 −0.78 +0.29 −4.29 −0.98 +4.65 +5.64 +5.95 −3.73 −2.05 +5.62
F6-C43-T1 −0.95 +0.44 −7.35 −1.86 −1.10 +0.55 +2.50 −2.69 −2.15 +5.10
F6-C43-T2 +0.70 +0.42 −7.26 +0.99 −3.29 −1.88 +4.25 +0.56 −2.60 −1.49
F6-C43-T3 −0.11 −0.31 −8.26 +1.38 +6.11 +2.03 +6.54 −7.77 −1.89 +7.90
F6-C43-T4 +0.13 +0.61 −6.36 −0.69 +2.19 −2.59 +4.19 −3.22 −0.62 +7.65
F6-C43-T5 +0.62 −0.14 −1.26 +1.64 −7.25 −0.75 +8.64 −4.05 −3.38 +5.39
F6-C43-T6 +2.49 −0.58 −6.47 +3.77 −4.00 −7.65 +6.23 −3.23 −1.98 +3.21
F6-C43-T7 +2.73 +0.74 −0.28 +1.21 −12.14 −9.79 +7.82 −2.89 −1.45 +7.41
F6-C55-T1 +0.24 −0.45 −4.41 −0.57 −4.75 −1.32 +3.73 −1.72 −0.81 −1.13
F6-C55-T2 +0.23 −0.12 −4.18 −1.24 +2.32 −2.63 +2.83 −2.14 −1.60 +3.16
F6-C55-T3 +0.63 +0.18 −8.63 +0.60 +0.69 −8.70 +6.04 −1.63 +0.74 −1.44
F6-C55-T4 +0.69 −0.31 −0.94 −0.41 +4.38 −3.49 +2.40 −2.96 −1.51 +4.86
F6-C55-T5 −1.61 +0.44 −7.25 −1.34 +5.65 −2.08 +0.05 −4.54 −1.82 +5.73
F6-C55-T6 −1.88 +0.34 −2.50 −4.07 +4.38 +7.05 +0.48 −3.75 −0.90 +2.43
F6-C55-T7 −0.56 −1.00 −3.44 −4.35 −6.67 −4.02 +3.04 −4.81 −1.25 +5.45
F8-C37-T1 +0.60 +1.38 −4.46 −5.07 −0.87 +0.64 +5.50 −2.25 +0.53 +5.90
F8-C37-T2 +1.12 +0.12 −0.43 +0.69 −3.03 −4.87 +6.88 −3.94 −1.38 +4.83
F8-C37-T3 +3.59 −0.50 −6.75 −7.47 −4.70 −0.60 +6.20 −5.97 −0.56 +3.54
F8-C37-T4 +2.03 −0.53 −7.05 −3.48 −8.53 +1.56 +3.71 −3.49 −1.53 +4.18
F8-C37-T5 +2.67 −0.28 −17.45 −6.01 −5.99 −8.33 +5.84 −3.94 −0.63 +5.21
F8-C37-T6 +1.12 +0.12 −0.43 +0.69 −3.03 −4.87 +6.88 −3.94 −1.38 +4.83
F8-C37-T7 −1.79 +0.83 −9.94 −6.98 +1.72 +7.00 +3.07 −1.94 +0.09 +4.20
F8-C39-T1 +0.60 −0.13 −7.03 −0.64 −3.88 −1.92 +6.16 −3.81 −1.99 +5.02
F8-C39-T2 +3.85 +0.30 −14.69 +3.39 −2.68 −6.57 +7.37 −0.24 −2.28 +1.78
F8-C39-T3 −1.95 −1.67 −11.62 −3.05 −3.19 −6.40 +1.92 −0.64 −3.93 −1.36
F8-C39-T4 +1.95 −0.37 −14.99 +0.18 +7.63 +4.06 +0.23 −7.19 +0.02 +8.04
F8-C39-T5 +0.35 +0.12 −2.37 +0.22 −0.68 −6.25 +6.64 −1.75 −1.99 +2.50
F8-C39-T6 +2.69 −0.13 −14.63 −0.21 +4.94 −4.36 −0.47 −0.60 −0.96 +1.75
F8-C39-T7 +1.89 +0.18 −9.53 −6.66 +1.46 +1.99 +7.07 −1.09 −3.60 +1.08
F8-C41-T1 +2.97 −0.16 −6.45 +3.13 −6.96 −4.56 +6.33 −3.94 −0.67 +3.04
F8-C41-T2 +1.36 +0.01 −8.93 +1.23 +0.14 −3.51 +3.92 −1.45 −1.10 +2.42
F8-C41-T3 +1.14 +0.45 −4.60 +1.57 −3.52 −4.11 +5.37 −2.59 −0.51 +2.15
F8-C41-T4 +0.80 +0.06 −12.20 −0.60 +2.77 +4.55 +2.63 −3.50 −0.91 +2.99
F8-C41-T5 −0.29 −0.55 −0.79 +0.19 −7.18 +0.52 +7.60 −5.08 −2.64 +6.53
F8-C41-T6 +1.29 +0.55 −9.67 −0.37 −5.86 −0.50 +3.44 −1.46 +3.00 −0.51
F8-C41-T7 −0.64 −0.50 −4.34 −1.64 −2.01 −1.55 +4.14 −2.88 −1.72 +0.65
12
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Fig. A.12. Results for specimens with fiber dosage of 8 kg/m3. Red line: experimental curve; blue line: numerical curve. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
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