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Abstract: Flooding has always been a huge threat to human society. Global climate change coupled

with unsustainable regional planning and urban development may cause more frequent inundations

and, consequently, higher societal and economic losses. In order to characterize floods and reduce

flood risk, flood simulation tools have been developed and widely applied. Hydrodynamic models

for inundation simulation are generally sophisticated, yet they normally require massive setup and

computational costs. In contrast, simplified conceptual models may be more easily applied and

efficient. Based on the Hierarchical Filling-and-Spilling or Puddle-to-Puddle Dynamic Filling-and-

Spilling Algorithms (i.e., HFSAs), Safer_RAIN has been developed as a fast-processing DEM-based

model for modelling pluvial flooding over large areas. This study assesses Safer_RAIN applicability

outside the context for which it was originally developed by looking at two different inundation

problems with point-source flooding volumes: (1) rural inundation modelling associated with levee

breaching/overtopping; (2) urban flooding caused by drainage systems outflow volumes.

Keywords: DEM-based model; hydrodynamic models; point-source flooding volumes; rural inundation

modelling; Safer_RAIN; urban flooding

1. Introduction

Flooding has significant effects on citizens and economic activities in Europe, with river
and coastal flooding affecting millions of people. There has been a rise in the yearly flooded
area and the number of people impacted, although there has been a significant decline in
flood-related deaths [1]. Climate change and anthropogenic pressure are contributing to an
increase in both the frequency and intensity of severe flood events. High-resolution flood
monitoring is essential throughout the disaster management process, starting with the
early warning phase and extending to the emergency and civil protection stage, damages
evaluation, indemnification, and loss control [2]. In addition, the change in land use due to
urbanisation, particularly the transformation of forested or agricultural fields into imper-
meable metropolitan areas, often has a significant influence on climate-related problems
at the regional level. This may result in heightened vulnerability to river floods, among
other consequences [3,4]. Therefore, it is crucial that flood risk management plans take
into account the unique characteristics of the regions they represent and devise specific
solutions in alignment with the particular requirements and precedence of those places.
These plans should promote efficient cooperation across river basin districts and facilitate
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the achievement of environmental objectives set by community law at the same time. In
order to have a reliable and useful tool for making informed decisions about flood risk
management, it is imperative to create flood hazard maps and flood risk maps that include
data on potential sources of environmental contamination caused by flooding [5].

Flood modelling offers valuable data to facilitate flood risk evaluation and mitigation.
The accuracy of flood simulation results is strongly dependent on the quality of essential
input data related to topography and hydrometeorology. This includes data such as eleva-
tion, land use/land cover maps, soil properties, rainfall estimates, river geometry, initial
and boundary conditions, as well as infrastructure details. Among these inputs, the digital
elevation model (DEM) stands out as a critical component, as it plays a fundamental role in
determining the flow paths and drainage patterns across the landscape. Presently, there
is a greater availability of high-resolution DEMs which have been integrated into urban
flood models and vulnerability assessments [6–8]. Despite this, it is generally accepted
that the quality of the topographic data or DEM has a substantial effect on the validity of
hydrodynamic modelling results [9–11]. Due to recent progress in computer power and the
accessibility of high-quality data, hydrodynamic models are now capable of conducting
precise flood forecasts at high resolutions. These models can provide detailed information
on the timing and location of flood inundation, even in intricate urban settings [12,13].
The primary objective of flood modelling is to accurately determine the amount of flood
inundation. This is achieved by combining streamflow prediction models with hydrody-
namic models that have been well calibrated [14–16]. In recent decades, the availability
of Geographic Information System (GIS) tools and data, such as DEMs, has presented
a unique opportunity for the development of low-complexity DEM-based methods for
floodplain delineation, replacing hydrodynamic models in some cases [17–20]. Among
these DEM-based methods, those using a morphologic algorithm to distinguish between
flooded and non-flooded areas demonstrate better efficiency and need less computing
power [21–25].

SaferPlaces is a flood inundation simulation platform that utilises advanced techniques
in climate, hydrological, hydraulic, topographic, and economic modelling to evaluate the
hazard and risk of pluvial, fluvial, and coastal flooding in urban areas, both at present and
in the future (see https://saferplaces.co/ (accessed on 15 January 2024) and documentation
therein for additional details). The purpose of this platform is to simplify the process of
identifying and evaluating measures and plans to reduce the danger of flooding. It also
provides information to support strategies for adapting to climate change and reducing the
risk of disasters. Additionally, it enables different stakeholders to reach agreements and col-
laborate on building resilience. SaferPlaces is a continuation of the successful 2017 Climate
KIC Pathfinder project “PLACES—Pluvial flood hazard and risk assessment and mitigation
in European cities”. The primary objective is to improve, develop, test, and demonstrate the
effectiveness and scalability of a flood hazard and risk mapping and assessment service in
an urban setting. This service is vital for the development of climate adaptation strategies
and disaster risk reduction initiatives. Furthermore, it aims to promote discussions among
various stakeholders and to identify measures and strategies for reducing disaster risks
and adapting to climate change. It also intends to explore potential business opportunities
and economic benefits for making behavioural and land-use changes. This will be achieved
by implementing nature-based or ecosystem-based solutions, such as natural water re-
tention and urban requalification. Detailed hydrologic–hydraulic numerical modelling is
resource intensive and, as a result, inadequate for performing consistent hazard assess-
ments throughout large urban settlements. Many studies have highlighted the potential
of fast-processing DEM-based methods, such as the Hierarchical Filling-and-Spilling or
Puddle-to-Puddle Dynamic Filling-and-Spilling Algorithms (abbreviated herein as HFSAs),
considering the steadily increasing availability of LiDAR high-resolution DEMs (Digital
Elevation Models). Safer_RAIN is a module of SaferPlaces that uses a fast-processing
HFSA to accurately map pluvial flooding in large metropolitan areas. This is achieved
by considering the spatial distribution of rainfall input and infiltration processes using a
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pixel-based Green-Ampt model. The modelling approach and algorithms of Safer_RAIN
have been originally presented in [26] and are not reported here for the sake of conciseness.
The methodology focuses on utilising raster manipulation techniques and hydrological GIS
tools for DEM analysis. An interested reader can refer to [26] for additional details and a
presentation of the validation of the approach against real-world pluvial inundation events.

Safer_RAIN was originally designed to simulate urban flooding caused by spatially
uniform precipitation, and in the present study, we aim to investigate its possibilities
beyond its original intended use. We present two applications of Safer_RAIN for producing
urban and rural flooding scenarios associated with breaches in small stream levee-systems,
and drainage system outflow volumes. By expanding the scope of Safer_RAIN, we want to
demonstrate its versatility and effectiveness in simulating various flood scenarios.

Firstly, conventional flood risk management mostly depends on structural measures
to reduce the impact of floods, rather than using comprehensive strategies like expand-
ing river capacity and restricting development in flood-prone areas [27]. Practically, the
implementation of structural solutions such as levees, dams, and built channels promotes
the growth of urban and agricultural areas on floodplains, as it instills the belief among
the public that the danger of flooding has been diminished [28]. Additionally, there are
rural communities that have been affected by floods resulting from levee breaches [29].
This highlights the increasing demand for simulating rural flooding resulting from possible
levee failures in order to better understand and address the challenges faced by these areas
and the residual risk of flooding. Therefore, we conducted benchmarking activities to test
Safer_RAIN’s ability to simulate rural flood inundation, using the outputs of HEC-RAS
two-dimensional hydrodynamic modelling.

Secondly, recent studies have shown that drainage conditions can have a significant
impact on urban rainfall-runoff processes [30–32]. Alongside land use, the urban drainage
network system is considered a major contributor to urban inundations [33,34]. Previous
research indicates that a poorly designed or inadequate drainage system can lead to flooding
in urban areas, primarily due to outflow volumes [35–37]. Motivated by these findings, we
utilise Safer_RAIN to simulate flooding in urban areas caused by the limited capacity of the
drainage system. To assess the accuracy of our simulations, we compare the results with
those obtained from Hydro AS 2D hydrodynamic modelling, using identical boundary
conditions in Safer_RAIN.

The results of these two different applications enable us to better understand the true
potential and versatility of Safer_RAIN for modelling and mapping flood hazards in rural
and urban areas.

This paper is organized in the following way: Section 2—Materials and Methods;
Section 3—Application of Safer_RAIN for generating inundations scenarios from point-source
flood volumes; Section 4—Results; Section 5—Discussion; and Section 6—Conclusions.

2. Materials and Methods

2.1. DEM-Based Hierarchical Filling-and-Spilling Algorithm “Safer_RAIN”

Hydrodynamic models typically require extensive setup and computational resources,
making them impractical for quickly responding to emergent flooding events or accurately
characterizing flood hazards across large geographical areas with high horizontal reso-
lutions (e.g., 1 m) [38]. As a result, there is a need for reliable models that can rapidly
simulate large areas at high horizontal resolutions in inundation modelling. To overcome
the limitations and drawbacks of hydrodynamic inundation models, simplified conceptual
models have been developed. These simplified models offer significantly shorter runtime
compared to hydrodynamic models. The SaferPLACES project has successfully developed
and implemented simplified DEM-based flood hazard modelling modules that address
the three primary sources of flooding: Safer_RIVER for fluvial flooding, Safer_COAST for
coastal flooding, and Safer_RAIN for pluvial flooding [26]. In this article, our focus is on
Safer_RAIN as we apply this module to address a specific inundation problem faced by the
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drainage plain of the Pisciatello stream in the province of Forlì-Cesena, Northern Italy, as
well as certain areas in Milan, Italy.

The availability of high-resolution LiDAR DEMs, which can accurately capture and
represent surface depressions in the landscape [39], has led to the widespread use of
raster or DEM-based processing methods for quickly mapping flooding hotspots across
large areas. One popular approach is the hierarchical Filling-and-Spilling (HFS) algorithm
family, which has been implemented and improved within the Safer_RAIN module [40–42].
These algorithms utilise LiDAR DEMs to efficiently identify and analyse flooding patterns,
allowing for rapid and accurate mapping of flood-prone areas.

The classical implementation of HFS algorithms typically incorporates several simpli-
fying assumptions. Firstly, the drainage direction is determined using the traditional D8
method [43]. The dynamic nature of the flooding process is disregarded as these algorithms
do not solve hydrodynamic equations. Instead, they apply mass balance equations to the
hierarchical system of vertical and horizontal depressions, which are identified and delin-
eated from high-resolution DEMs. When a depression reaches its maximum filling level,
any excess water volume is distributed to downstream depressions based on their storage
capacity. Additionally, the HFS algorithms assume that the surface is impermeable, and
that rainfall is uniformly distributed across the area. These two hypotheses are applicable
specifically to traditional applications of HFS algorithms.

The application of Safer_RAIN primarily involves two phases: (i) DEM pre-processing,
which is similar to other previously proposed HFS algorithms, and (ii) an original depression-
flooding phase. During intense precipitation events that affect cities, surface depressions
and microtopography in the study area play a crucial role in water retention. The DEM pre-
processing is designed to identify depressions based on a high-resolution input DEM. Along
with depression extraction, the hierarchical structure of the depressions is established using
a top-down level-set method (see Figure 1 for reference) [41]. The connections between
upstream and downstream depressions at different locations and elevations are modelled
under the simplifying assumption of the D8 method. In the second phase, Safer_RAIN
simulates inundation using a level-set method that allows for partial flooding of the de-
pression system, relaxing the last two assumptions mentioned above. Infiltration losses are
represented through a pixel-based adaptation of the event-based Green-Ampt infiltration
model [44], and the rainfall input can be non-uniform in space, described by a raster map.
This phase requires information about the rainstorm event to be simulated, which can be
either synthetic or real, such as a weather radar map showing the accumulated rainfall
depth in a given time interval. For a detailed description of the Safer_RAIN algorithm, its
validation, and applications to different case studies, readers are referred to [26].

It is important to note that Safer_RAIN focuses on representing the hydrostatic and
final extent of inundation, rather than the dynamics of flooding. As a result, the inunda-
tions simulated by Safer_RAIN are expected to provide a more accurate representation
of water depth at the end of the rainstorm event, while potentially underestimating the
local maximum water depth during the event itself. However, as stated in [26], the runtime
of the flooding phase is remarkably short, even for large computational domains. This
makes the algorithm well suited for simulating numerous flooding scenarios, which is
essential for inundation forecasting/nowcasting or stochastic characterization of flood
hazards (e.g., [45]).

2.2. Metrics and Diagrams for Assessing the Reliability of Safer_RAIN Results

In order to assess the performance of Safer_RAIN, we conduct benchmarking exercises
by comparing its output to that of a numerical 2D hydrodynamic model. Additionally,
we compare different flooding scenarios generated by Safer_RAIN, taking into account
simulated flood maps, the FAI index, and the spatial frequency of pixel-based simulated
water depths. We also analyse differences between simulated water depths for pairs of
inundation scenarios. Throughout the results subsections of Sections 3 and 4, we present
these metrics and indices using tables and diagrams to provide a comprehensive evaluation.
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Figure 1. Nested depressions structure: (a) plan view; (b) cross-sectional views; and (c) hierarchical

tree, representing the intermediate-level depressions with specific colours and the corresponding

filling level for the bottom-up flooding phase indicated with numbers [26].

2.2.1. Flood Maps

The flood maps present a qualitative representation of the extent of inundation and
water depth across the study area. However, due to the inherent uncertainty of Safer_RAIN,
only pixels with a water depth exceeding 0.1 m are considered to be flooded. This approach
takes into account the uncertainty associated with the simulation results and ensures a
conservative assessment of the flooded areas.

2.2.2. FAI Index

The Flood Area Index is employed to compare the extent of flooded areas between
pairs of inundation scenarios. This index allows for a quantitative assessment of the
differences in the flooded area between these scenarios, providing valuable insights into
the variations in flood extent. The FAI is defined as:

FAI =
A

A + B + C
(1)

where:
A is the areas that are identified as flooded in both simulations;
B is the area that is flooded in one of the two simulations only;
C is the area that is flooded in the other simulation only.
FAI values range from 0 to 1. The closer the FAI value is to 1, the higher the similarity

between the inundation extents in the two simulations.

2.2.3. Distribution of Water Depths

In addition to comparing the extent of inundated areas using flood maps and the
Flood Area Index (FAI), we also conduct a quantitative assessment of the simulated water
depth. This involves analysing the cumulative frequency, or more precisely, the exceedance
probability of pixel-based simulated water depths across the computational domain. Fur-
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thermore, we compare pairs of simulated inundation scenarios by plotting the exceedance
probability of differences between local values (pixels) of simulated water depths. In the
latter case, a difference of 0 indicates that the water depths simulated for both scenarios are
identical or that the pixel remains dry (non-flooded) in both simulated scenarios. The larger
the area with a water-depth difference of 0, the more similar the two simulation results.
Additionally, smaller differences between water depths indicate closer simulation results.

3. Application of Safer_RAIN for Generating Inundation Scenarios from Point-Source
Flood Volumes

3.1. Rural Inundations from Minor Streams: Study Area, Available Data, and Analyses

The study area is situated in the drainage plain of the Pisciatello stream, in the province
of Forlì-Cesena, Northern Italy. This triangular-shaped area covers a total of 1352 hectares,
as shown in Figure 2. It is located within the municipality of Cesenatico, and it is positioned
near the Adriatic Sea. The Pisciatello stream runs along the southern border of the study
area, while the northern border aligns with the embankment of state road SS304. The
municipality of Cesenatico is seeking cost-effective tools for conducting high-resolution
flood hazard modelling and mapping to develop a more secure and sustainable urban
planning strategy. This objective serves as the original motivation for testing the capabilities
of Safer_RAIN in this context. We evaluate the performance of Safer_RAIN relative to the
2D hydrodynamic model available within the HEC-RAS modelling environment [46].

Figure 2. Overall study area (Northern Italy) and test area: small portion of the region of interest

used for testing HEC-RAS implementations with different resolutions.

Terrain data is described by a 1 m resolution LiDAR DEM in both Safer_RAIN and
HEC-RAS. The DEM is obtained from the Italian Ministry of the Environment’s National
Geoportal (http://www.pcn.minambiente.it/mattm/en/ (accessed on 15 January 2024)).
Given the very different natures of the two models, specific modelling strategies and choices
need to be adopted in order for the results to be comparable. Two aspects are of particular
importance: the representation of buildings and the representation of the inflow flood
volumes needed for modelling the inundation of the floodplain.

The presence of buildings can be accurately modelled in Safer_RAIN by incorporating
them into the digital surface model used in the computational domain [26]. Different mod-
elling strategies have been adopted in the literature to represent urban environments within
2D hydrodynamic inundation models, with variations aimed at controlling computational
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costs while sacrificing modelling accuracy [47]. In this study, we considered two modelling
strategies for implementing the 2D hydrodynamic model. The first strategy explicitly
accounts for the presence of buildings by elevating the building footprint above the ground
within the computational mesh. We refer to this strategy as “DEM with extruded buildings”
in the text. In this modelling approach, Manning’s roughness coefficient remains constant
across the entire study area. The second strategy, referred to as “DEM without buildings,”
does not include the representation of buildings within the computational domain. Instead,
it assigns a very high Manning’s roughness coefficient to the developed areas to account
for their higher resistance to inundation propagation.

Regarding the inflow flood volumes, Safer_RAIN only requires a flood volume as
input at a specific location within the computational mesh. However, for HEC-RAS 2D
inundation simulations, a complete inflow hydrograph is necessary. In this study, we utilise
three different hydrographs to simulate various breaching evolutions and observe their
impact on the inundation dynamics and the similarities between Safer_RAIN and HEC-
RAS simulations (Figure 3a). All three hydrographs are associated with a flood volume
corresponding to a 200-year return period, based on the most recent studies available
for the study area [48]. In Figure 3a, hydrograph (a) represents a scenario where the
breaching phenomenon occurs rapidly, with the complete formation of the levee breach
taking place within 1.5 h. The maximum outflow discharge for this scenario is 67.4 m3/s.
Hydrographs (b) and (c), on the other hand, depict slower formations of the breaches and
are characterized by maximum discharges of 10 m3/s and 5 m3/s, respectively.

✁�✂ ✁✄✂

Figure 3. (a) Inflow hydrographs used for simulating breaches with HEC-RAS. (b) The overall study

area indicating location of synthetic breaches and outlet boundary condition lines (BCLs).

3.2. Urban Inundations from Drainage System Outflows: Study Area, Available Data,
and Analyses

In this study, we are testing the capabilities of Safer_RAIN to simulate flooding caused
by the outflow volumes from drainage system manholes during heavy rainfall events.
Typically, Safer_RAIN is used to simulate urban pluvial flooding without considering the
presence and effects of urban drainage systems. However, we aim to expand its application
and assess its ability to accurately simulate this specific type of flooding. Our focus is on a
sensitive area in the northeastern district of Milan, known for its susceptibility to pluvial
flooding. To ensure the accuracy of our simulations, we have collaborated closely with
Metropolitana Milanese Spa (MM Spa), the organization responsible for managing Milan’s
drainage system. MM Spa has provided us with their numerical hydrodynamic model
of the drainage system, which we have used to identify the locations and volumes of the
outflowing manholes during critical storms in our study district. The storms in our study
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typically last around 90 min, so we have chosen to analyse a storm duration of 90 min. We
have considered three different scenarios with return periods of 20, 50, and 100 years to
capture a range of rainfall intensities. Using the volumes obtained from MM Spa’s model
as local water volume sources, we have incorporated them into Safer_RAIN to simulate the
inundated areas. In Safer_RAIN, we utilise a LiDAR Digital Elevation Model (DEM) with a
resolution of 1 m for our analysis. To accurately represent the depressions in the terrain,
we set a discretization interval of 0.05 m and established a threshold volume of 300 m3. In
Figure 4, we have also included the locations of the outflowing manholes, as identified
through the numerical simulations conducted with MM Spa’s model.Additionally, we
incorporate the extrusion of buildings into our analysis using OpenStreetMap. The results
of our simulations are depicted in Figure 5, which illustrates the flooded areas.

✁�✂ ✁✄✂ ✁☎✂

Figure 4. (a) Outflow volumes from drainage system as modelled by MM Spa for 90 min rainfall

events associated with 20 years return period. (b) Outflow volumes from drainage system as modelled

by MM Spa for 90 min rainfall events associated with 100 years return period. (c) Differences between

water depths simulated by Hydro_AS-2D (after 300 min) and Safer_RAIN for 100-year return period.

Figure 5. 3D rendering of inundated areas simulated by Safer_RAIN (Milan, Italy).

To ensure the accuracy and reliability of Safer_RAIN in simulating pluvial flooding,
we compare its output with the results obtained from a benchmark hydrodynamic model
known as Hydro_AS-2D. Hydro_AS-2D is an advanced hydrodynamic model that has
been developed by IBH (Water, Environment and Infrastructure, Austria). It is a state-of-
the-art model that operates in two dimensions (2D). The Hydro_AS-2D model is capable of
solving shallow water equations. Additionally, it provides users with the option to compute
pluvial floods and include the rainfall-runoff model in the simulation process. It is widely
recognized for its capabilities in accurately representing complex hydrodynamic processes
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associated with urban flooding. For our comparative analysis, we adopt the same boundary
conditions that were applied in the Safer_RAIN simulations. This includes utilising the
outflow volumes obtained from the three rainfall scenarios considered in our study.

We consider every manhole as a point source of water, assigning each one to the
nearest node in the computational meshes of Safer_RAIN and Hydro_AS-2D. In the case
of Hydro_AS-2D, we use nearest neighbor analysis in a GIS environment to associate the
manholes with nodes in the computational mesh. If multiple manholes are assigned to the
same node, we define the point source at that node based on the total outflow volumes from
the manholes. In Safer_RAIN, the total runoff per manhole is added to the corresponding
pixel in the computational mesh. On the other hand, in Hydro_AS-2D, the total runoff from
the manholes is represented as a point source or nodal boundary condition. This means
that the volume is distributed uniformly over the duration of 90 min.

4. Results

4.1. Rural Inundations from Minor Streams

4.1.1. Preliminary Sensitivity Analyses

In the case of rural inundations from minor streams, we had to perform a set of
preliminary analyses first in order to identify the settings for HEC-RAS benchmarking
simulations. Therefore, we develop multiple HEC-RAS models that we construct using
the available 1 m resolution LiDAR DEM, and we implement a mesh that incorporates
the buildings’ footprints as break lines. In all rural areas within the models, we assign a
Manning’s coefficient of 0.033, as previously discussed [49]. To accurately simulate the
embankment breaching phenomena, we apply different boundary conditions along the
frontier of the computational mesh. Specifically, along the Pisciatello stream (Southern
border), embankment breaches are added in the models. All simulated breaches are set to a
width of 100 m, and no outflow is enabled due to the presence of the levee and hanging
riverbed conditions. Additionally, a local energy slope of 1 perpendicular to each breach is
incorporated in all HEC-RAS simulations. For the Northern and Eastern frontiers of the
computational mesh, a free outflow boundary condition is set.

The Diffusion Wave equations are utilised in all simulations and detailed information
on HEC-RAS simulations is described in Table 1. To ensure a balance between computation
accuracy and runtime, we employ timesteps of 1 s or 15 s, depending on the specific case
(refer to Table 2). In order to conduct a sensitivity analysis, we compare three groups of
HEC-RAS simulations: (1) different resolutions for the computational grids (1 m or 5 m),
(2) LiDAR DEMs with or without extruded buildings, and (3) various inflows represented
by flow hydrographs a, b, and c in Figure 3a. These initial comparisons aim to determine the
optimal trade-off between runtime and mesh resolution for HEC-RAS simulations, as well
as to assess the impact of different input data and representations of the urban environment.

Table 1. HEC-RAS simulation information.

Simulation Runtime Error (m)
Relative

Error
Outflow
1000 m3

Ending Vol
1000 m3

Breach 1 (HR_1) 12:19:13 0.1244 0.02 3.6 603.1

Breach 2 (HR_2) 13:11:16 0.1455 0.024 0 606.7

Breach 3 (HR_3) 13:05:23 0.1326 0.022 0 606.7

Breach 4 (HR_4) 12:31:00 0.1621 0.027 0 606.8

Breach 5 (HR_5) 6:24:37 0.1023 0.017 0 606.7

Breach 6 (HR_6) 4:16:51 0.07421 0.012 0 606.7

Breach 7 (HR_7) 4:01:02 0.05888 0.010 0 606.7
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Table 2. Input data used in HEC-RAS simulations.

Simulation
Study Area

Dimension (ha)
Computational
Grid Size (m2)

Upstream Boundary
Condition

(Flow Hydrograph)

Downstream Boundary
Condition (Normal Depth

Friction Slope)

Computation
Interval

(s)

BCL2 BCL3

HR_TA1 50 1 × 1 a 0.003 0.0035 1

HR_TA5 50 5 × 5 a 0.003 0.0035 1

HR_TB1 50 1 × 1 a 0.003 0.0035 1

HR_Q67.4 1352 5 × 5 a 0.003 0.0005 15

HR_Q10 1352 5 × 5 b 0.003 0.0005 15

HR_Q5 1352 5 × 5 c 0.003 0.0005 15

HR_breach 1-7
(HR_7)

1352 5 × 5 a 0.003 0.0005 15

Effects of Mesh Resolution

The two simulations conducted over the test area utilise a 1 m resolution computational
mesh generated from the LiDAR DEM with extruded buildings, which accounts for the
complex morphology. In both cases, we adopt the flow hydrograph (a) to assess the impact
of 1 m and 5 m resolutions on the modelling of inundation. The location of the simulated
breach and the downstream outlet boundary condition lines (BCL2 and BCL3) are indicated
in Figure 3. Energy slopes of 0.003 and 0.0035, obtained from the LiDAR DEM, are assigned
to BCL2 and BCL3, respectively. To ensure numerically stable and accurate solutions, the
computation interval for solving the Diffusion Wave equations is set to 1 s in both cases.
Our results indicate very minimal differences between the output of the HR_TA1 and
HR_TA5 simulations, as evidenced by the Flood Area Index (FAI) results presented in
Table 3. The FAI values for both simulations, in terms of maximum water depth and end
water depth, are nearly 1, indicating negligible differences between the two simulations.
Therefore, for the remaining part of our study, we conduct HEC-RAS simulations with
a 5 m resolution, which is computationally feasible, and compare them to Safer_RAIN
simulations with a 1 m resolution.

Table 3. FAI values for comparisons of HECRAS and Safer_RAIN simulations.

Comparison
FAI

Max Water Depth
FAI

End Water Depth

HR_TA1 vs. HR_TA5
(Effect of different grid resolutions)

0.970 0.803

HR_TA1 vs. HR_TB1
(Effect of buildings)

0.946 0.980

HR_Q67.4 vs. HR_Q10
(Effect of inflow dynamics)

0.540 0.873

HR_Q67.4 vs. HR_Q5
(Effect of inflow dynamics)

0.431 0.698

SR_1 vs. HR_1
(Simulated with 1 breach)

0.147 0.318

SR_7 vs. HR_7
(Simulated with 7 breaches)

0.367 0.480

SR_all vs. HR_7
(Effects of breach locations)

0.372 0.480
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Extruded Buildings vs. Building Resistance

The modelling of the inundation in the Test Area does not involve extruding the build-
ings at a 1 m grid resolution. Instead, a spatially variable Manning’s roughness coefficient
is adopted. In the literature [50], the “building resistance” method is employed to assess
the sensitivity of Manning coefficients for flood inundation in idealized urban districts.
To account for the resistance effect of buildings in the simulated area, a significantly high
Manning coefficient value is assigned. The range of Manning coefficients tested in [50]
varied from 100 to 1010 s·m−1/3. Based on this information, we have chosen to utilise
a Manning coefficient of 10 s·m−1/3 over the building footprints in our study given the
sparseness of buildings in the rural study area. In terms of the outlet boundary conditions
and computational time interval used in this simulation (HR_TB1), they are the same as
in simulation HR_TA1. Consequently, the extent of inundation and the simulated water
depths in areas without buildings are very similar between simulations HR_TA1 and
HR_TB1. Based on the FAI values presented in Table 3, it is noteworthy that both HR_TA1
and HR_TB1 are associated with values close to 1 in both the maximum and end scenarios.
This indicates that they are capable of producing similar flooded areas. This finding carries
particular significance in the context of sparsely populated rural areas, where building
density is low. In such scenarios, it can be concluded that HR_TA1 and HR_TB1 can be
used interchangeably, as they yield comparable results.

Impact of Different Inflow Hydrographs

The final set of comparisons in assessing the sensitivity of HECRAS simulations focuses
on the inflow hydrographs. Specifically, we compare the HECRAS output associated with
hydrograph (a), which is used for comparisons in the previous subsections, with the output
resulting from inflow hydrographs (b) and (c). These hydrographs are associated with a
slower breaching mechanism and are depicted in Figure 3a. To conduct these comparisons,
we perform three additional simulations that cover the entire study area. These simulations
are based on the results of the previously described tests and utilise a computational mesh
with a resolution of 5 m and an increased roughness coefficient. Each simulation is named
after the peak inflow of the corresponding hydrograph. Therefore, we have HR_Q67.4,
HR_Q10, and HR_Q5 for hydrographs (a), (b), and (c), respectively. All three scenarios
consider the same breach location, which is breach number 1 as indicated in Figure 3b.
Additionally, the simulations adopt energy gradients of 0.003 and 0.0005 for the outflow
boundary conditions BCL2 and BCL3, respectively, as shown in Figure 3b. For consistency,
the time step for all simulations is set to 15 s.

When examining the pixel-based maximum simulated water depth, the results indi-
cate that HR_Q67.4 is associated with the largest overall inundated area and the highest
simulated water depths. Comparing the HEC-RAS output among the three simulations,
it is evident that the distribution of maximum water depth is similar across all scenarios.
Additionally, simulated maximum water depths exceeding 1 m are primarily concentrated
in a limited portion of the study area, as depicted in Figure 6a. However, if we shift our
focus to the distribution of simulated pixel-based water depths at the end of the simulation,
the differences between the three scenarios become negligible, as shown in Figure 6b.

HEC-RAS Benchmarking Simulations

Based on the results of the aforementioned three preliminary sensitivity analyses,
we decided to utilise a computational mesh with a resolution of 5 m spanning the entire
study region. LiDAR DEM with extruded buildings clearly displays buildings’ function in
flooding and produces a more realistic inundation result, so LiDAR DEM with extruded
buildings is used. Furthermore, all simulations consider inflow hydrograph (a), which is
associated with a rapid breach formation and a 200-year flood volume. This decision is
made as a conservative approach and illustrated in Figure 6. These settings are implemented
to simulate seven inundation scenarios, each corresponding to a synthetic breach. The
locations of these breaches, as well as the lines indicating the outlet boundary conditions,
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can be seen in Figure 3b. The breaches are spaced approximately 1000 m apart. Table 2
provides an overview of the key details for each of the seven HEC-RAS runs, offering basic
information on each scenario.

✁�✂ ✁✄✂

Figure 6. (a) Maximum water depth distribution between HR_Q67.4 and HR_Q10 simulations.

(b) End water depth distribution between HR_Q67.4 and HR_Q5 simulations.

The results of the seven HEC-RAS simulations are combined to generate a unified
inundation scenario known as HR_7 (HR_breach 1-7). This scenario encompasses the entire
study region and represents the potential formation of breaches at any location along the
Pisciatello stream. The HR_7 inundation scenario represents a flood event with a 200-year
return period and includes two types of pixel-based simulated water depths. The first
type consists of the local maximum water depth obtained at the end of the simulation
(end). The second type comprises the local maximum water depth among all simulated
maxima for the seven synthetic breaches (max). By incorporating both end and max water
depths, HR_7 provides a comprehensive representation of the potential flood extents and
depths across the study area. In addition to HR_7, our study also examines a single breach
inundation scenario called HR_1. HR_1 is the HEC-RAS simulation conducted for breach 1,
as illustrated in Figure 3b. This scenario utilises the same settings as described previously
and includes the end and max simulated water depths. Both HR_1 and HR_7 serve as
benchmark scenarios to evaluate the output of Safer_RAIN, allowing for comparison and
assessment of its accuracy and reliability in simulating flood events.

4.1.2. Fluvial Flooding Simulation with Safer_RAIN and Comparison with
Bench-Marking Scenarios

In this study, we use Safer_RAIN to generate inundation scenarios for the study area
resulting from fluvial flooding, originating from the Pisciatello stream. Our focus is on
the entire study area, and we accurately represent its morphology using the available 1 m
resolution LiDAR DEM with extruded buildings. To identify areas prone to flooding, we
pre-process the digital elevation model by identifying “blue spots” and their corresponding
watersheds. In this case, we specifically consider blue spots larger than 300 m2. We further
analyse the morphological characteristics of these blue spots by employing a vertical
discretization (slicing) of 0.05 m. One advantage of Safer_RAIN is that it simplifies the
simulation process by only requiring the inflow flood volume as input. Unlike other
methods, there is no need to select a specific hydrograph shape. Therefore, for each
synthetic breach, generating the inundation scenario using Safer_RAIN simply involves
inputting the overall inflow flood volume, which in this case is 606.600 m3.

We examine three distinct Safer_RAIN scenarios, each focusing on pixel-based inunda-
tion water depth. The first scenario, SR_1, specifically considers the inundation that occurs
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when the inflow flood volume is input at breach 1. The second scenario, SR_7, encompasses
simulated water depths obtained from seven runs of Safer_RAIN, with each run receiving
the flood volume at one of the seven breach locations. Lastly, the SR_all scenario utilises
the input flood volume in all the blue-spot watersheds that share a frontier segment with
the left Pisciatello embankment. While SR_7 and SR_all are similar inundation scenarios,
SR_all is more conservative as it includes all the blue spots adjacent to the Pisciatello stream,
whereas SR_7 may miss some due to the regular spacing of synthetic breaches. To evaluate
these scenarios, we compare the output of SR_1 with the bench-marking end and maximum
scenarios of HR_1, while SR_7 and SR_all are compared with scenarios of HR_7.

As anticipated, when comparing the Safer_RAIN scenarios SR_7 and SR_all, we ob-
serve very similar output with a slightly larger overall inundated area for SR_all. To
assess the performance of Safer_RAIN in comparison to HEC-RAS inundation scenarios,
which serve as a benchmark, we find that the end scenarios exhibit higher Flooded Area
Index (FAI) values relative to the maximum scenarios. This outcome is expected due to
the hydrostatic nature of Safer_RAIN flooding. When comparing FAI indices between
Saf-er_RAIN and HEC-RAS scenarios, the comparisons with end water depth yield values
around 0.5, while the comparisons with maximum water depth reduce to approximately
0.3. The maximum scenarios for HR_1 and HR_7 demonstrate larger overall inundated
areas than their corresponding Safer_RAIN counterparts (i.e., SR_1, SR_7, and SR_all in
this order). Figure 7 provides examples of raster maps utilised for computing FAI indices,
highlighting areas where the two approaches align and areas where they differ. Addition-
ally, a pixel-based comparison between simulated water depths reveals that Safer_RAIN
values are either equal to or smaller than the corresponding values simulated by HEC-RAS
(maximum scenarios). Some examples are shown in Figure 8 for further clarification.

✁�✂ ✁✄✂

Figure 7. (a) Pixel-based comparison between inundated areas according to Safer_RAIN scenario

SR_all and HEC-RAS inundation scenarios HR_7 max; (b) pixel-based comparison between inundated

areas according to Safer_RAIN scenario SR_all and HEC-RAS inundation scenarios HR_7 end.

However, it is important to note that areas that are flooded only in HEC-RAS scenarios
tend to have simulated water depths that are generally smaller than 1.0 m. Additionally,
the majority of pixel-based differences between Safer_RAIN(SR) and HEC-RAS (HR) simu-
lated water depths fall within the range of 0.1 m to 1.0 m. In terms of inundation ex-tent,
Safer_RAIN and HEC-RAS scenarios, particularly the HR end scenarios, exhibit rather
similar results (refer to Figures 7 and 8). It is worth mentioning that Safer_RAIN simula-
tions tend to show larger inundations and accumulated flood volumes than HEC-RAS in
the easternmost portion of the study area, which corresponds to the downstream section.
Furthermore, more flood volume is accumulated at the bottom of the study area in the
Safer_RAIN simulations. Finally, in Figure 9, a representation of water depth distribu-
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tions and water depth differences between Safer_RAIN and HEC-RAS simulations for all
breaches is reported.

✁�✂ ✁✄✂ ✁☎✂

Figure 8. (a) Safer_RAIN simulated water depth at breach 1 (SR_1); (b) HEC-RAS maximum sim-

ulated water depth at breach 1 (HR_1, max); (c) HEC-RAS final simulated water depth at breach 1

(HR_1, end).

✆✝✞ ✆✟✞

✆✠✞ ✆✡✞

Figure 9. (a) Simulated water depth distributions between HR_7_max, SR_all and SR_7. (b) Water

depth differences between SR_all and HR_7_max. (c) Simulated water depth distributions between

HR_7_end, SR_all and SR_7. (d) Water depth differences between SR_all and HR_7_end.

4.2. Urban Inundations from Drainage System Outflows

To address urban inundations caused by drainage system outflows, our study focuses
on evaluating the concurrence between two modelling methodologies. We achieve this by
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comparing the simulated water depth distributions from both models and analysing the
corresponding differences in water depth across the computational domain. We evaluate
the concurrence between the two modelling methodologies by comparing simulated water
depth distributions from both models and analysing the corresponding differences in water
depth across the computational domain. We illustrate these comparisons using scatterplots
and maps. For each scenario (20, 50, 100-year return period), we consider two distinct
outputs from Hydro_AS-2D: the local maximum value of simulated water depth (max.
scenario), which represents the highest recorded water depth regardless of the time step,
and the simulated water depths at the end of the 5 h simulation (end scenario) to ensure
that the entire outflow volume has reached its final destination. Both models do not account
for infiltration, resulting in conservative inundation scenarios. Figure 4c illustrates the
differences in water depths obtained by Hydro_AS-2D after a 5 h simulation and computed
by Safer_RAIN. In this illustration, red areas indicate an overestimation of Safer_RAIN,
while blue areas indicate where water depths simulated by Safer_RAIN are lower than
those simulated by Hydro_AS-2D.

The scatterplot density diagram in Figure 10a compares the water depths simulated
with Safer_RAIN to the corresponding water depths obtained from Hydro_AS-2D for both
the max and end inundation scenarios. The diagrams use a logarithmic scale to provide
better visualization of the entire range of simulated data, which spans across two orders of
magnitude. The bisecting line, also known as the 1:1 line, in the first quadrant, represents
the line of perfect fit. As observed in the scatterplot density diagrams, the points are
distributed around the 1:1 line. However, there is a significant scatter around the line
itself, indicating only a fair agreement between the two models. It is worth noting that the
agreement is noticeably better when considering the end scenario, which represents the
water depths after 5 h from the start of the event.

� ✁ ✂✄✄ ☎✆✝✞✟

✠✡☛ ✠☞☛ ✠✌☛

Figure 10. (a) Comparison between pixel-based water depths simulated by Safer_RAIN and

HYDRO_AS-2D for max and end (300 min) scenarios; (b) non-exceedance probability of simu-

lated water depth (positive and negative) differences in 100-year return period under max and end

(300 min) scenarios; (c) water depth distribution between water depth and flooded area in terms of

Hydro_AS-2D (300 min and max) and Safer_RAIN simulations.

Figure 10b,c depict the distribution of simulated water depth and differences in
simulated water depth across the study area. These differences are calculated on a pixel-by-
pixel basis, distinguishing between positive and negative variances. Each graph represents
the area (in hectares) where simulated water depths or their differences are greater than or
equal to a certain value. Figure 10c contrasts the simulated inundation water depths for a
100-year event produced by Safer_RAIN and Hydro_AS-2D five hours into the inundation
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event, as well as the maximum values generated by the hydrodynamic model. Focusing on
water depths over 20 cm, a common threshold of uncertainty in hydrodynamic simulations,
the distributions of simulated water depths are strikingly alike, including the overall extent
of inundation. The output from Safer_RAIN is nearly identical to Hydro_AS-2D in terms
of water depth distribution. This similarity extends to the distribution of differences in
simulated water depths. However, Figure 10b,c reveal that despite the overall similarity
of simulated water depth distribution between the two models, there can be considerable
local variations. It is also important to note that differences greater than 1 m are quite rare
across the study area. The results obtained for a return period of 20 years are very similar
and are not reported here for the sake of conciseness.

5. Discussion

5.1. Rural Inundations from Minor Streams

The differences between the inundation scenarios generated from the two algorithms,
Safer_RAIN and HEC-RAS, are expected to give the different nature of the two approaches:
hydrostatic for the former, and hydrodynamic for the latter. Safer_RAIN cannot simulate
back-water effects and hydrodynamic routing [26]. Based on the analysis of FAI values in
the comparison of Safer_RAIN and HEC-RAS simulations, it is evident that the end water
depth scenarios consistently exhibit higher FAI values when compared to the maximum
water depth scenarios. This suggests that the extent of flooding is greater in the end
scenarios as predicted by both models. Furthermore, the level of flooded area agreement
between Safer_RAIN and HEC-RAS varies depending on the water depth scenario. In
the end water depth scenarios, there is a satisfactory level of agreement between the
two approaches. However, in the maximum water depth scenarios, the agreement is
weaker, suggesting some discrepancies between the models. In terms of water depth and
inundation area results, it is important to note that Safer_RAIN, being a hydrostatic model,
tends to underestimate water depth when compared to the hydrodynamic model HEC-RAS.
Additionally, the overall inundated areas tend to be underpredicted by Safer_RAIN. This
limitation is inherent in the hydrostatic nature of Safer_RAIN [26] and we are currently
working on empirical strategies to address and reduce this constraint. However, the
agreement between Safer_RAIN and HEC-RAS end inundation scenarios is encouraging
and indicates that the current version of the simplified inundation algorithm is already
capable of providing useful information for rural flood risk mitigation and civil protection
activities (e.g., rural land management to the alleviation of flood risk) [51]. Also, the flatter
the area, the more accurate and reliable Safer_RAIN simulated water depths are.

There is an unexpectedly larger inundation simulated by Safer_RAIN in the down-
stream portion of the study area compared to HECRAS in the end water depth scenario
(see Figure 9). This can be attributed to two factors. Firstly, the hydrodynamic nature of
HEC-RAS simulations results in the production of outflowing water volumes through the
outlet boundary condition line BCL2 (as depicted in Figure 9b). In contrast, Safer_RAIN,
being hydrostatic in nature, does not generate such outflow volumes (as indicated in Table 1,
where HEC-RAS simulation for breach 1 produces outflow volumes). As a result, this
water will not propagate towards the downstream section of the study area in Safer_RAIN
simulations. Secondly, Safer_RAIN does not inundate dike areas that may be flooded by a
hydrodynamic numerical scheme like the one employed by HEC-RAS [52]. This is particu-
larly relevant when the height of the embankment is limited. An example can be observed
in the upper corner of the study area, where HEC-RAS only simulates a large “F” shaped
area of flooding. However, these water volumes will not reach the downstream portion of
the study area in HEC-RAS simulations. Nevertheless, it is worth noting that Safer_RAIN
has the capability to simulate the potential flooded area resulting from breaches, providing
valuable information that is essential for rural communities [29]. This information helps
them understand and effectively address the challenges associated with flooding incidents.

It is important to highlight that HEC-RAS hydrodynamic simulations come with high
computational costs, which forced us to significantly reduce the mesh resolution. For
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instance, a single simulation at a resolution of 5 m (or 1 m) can take more than 6 h (or half
a day) to complete. This factor emphasizes the computational efficiency and simplicity
of Safer_RAIN in comparison. In this study, all simulations are conducted on a computer
with 64 bytes, a 3.4 GHz CPU, 8 MB cache, and 16 GB RAM. The HEC-RAS simulations
took a maximum of 13 h and a minimum of 4 h to obtain results with a 5 m resolution. If
the HEC-RAS simulations are conducted with a 1 m resolution, it would take weeks to
complete the computation. On the other hand, all Safer_RAIN simulations, encompassing
various scenarios, are completed within half a day. This clearly demonstrates the efficiency
and simplicity of Safer_RAIN in computational terms. Therefore, Safer_RAIN can be
utilised for near real-time flood detection in rural areas by leveraging the combined use of
high-resolution remote sensing data [53].

5.2. Urban Inundations from Drainage System Outflows

In the context of our application in urban inundations, there are some restrictions
concerning the data integration of the hydrodynamic model from MM Spa. This model
is privately owned, so the underlying data and details of the model structure are not
freely accessible. The proposed integration between Safer_RAIN and the MM Spa model
consists of a model cascade rather than a model coupling, the output of the MM Spa
model is fed into Safer_RAIN. This means that feedback and interactions between different
hydrologic components of the two models are not accounted for (see e.g., [54]). Although
this schematization is suitable for a preliminary analysis like the one we present here,
we acknowledge that future studies and research are needed to address the impact of
this simplification and to investigate viable solutions. Although a local comparison of
simulation results from Safer_RAIN and Hydro_AS-2D reveals some significant differences
in simulated water depths, the overall representations of inundation, including inundation
extent and water depth distributions, are in good agreement between the two models.

Hydro_AS-2D is a hydrodynamic model that operates fully in two dimensions,
whereas Safer_RAIN is an algorithm that uses DEM to simulate the filling and overflowing
of water, using the mass balance equation for modelling [26]. The urban drainage network
system is widely recognized as a major contributor to urban inundations [33,34]. Numerous
studies have indicated that inadequate planning or insufficient capacity of the drainage
system can lead to urban flooding, primarily due to excessive discharge volumes [35–37].
To address this issue, our study focuses on demonstrating the effectiveness of Safer_RAIN
in simulating urban flooding caused by water volume overflow from manholes during
drainage network surcharges. This simulation proves valuable, particularly when a reliable
numerical model of the drainage network is available. By utilising Safer_RAIN, we aim to
bridge the existing gap and provide insights into managing and mitigating urban flooding
risks effectively.

It is worth noting here that also, in this case, hydrodynamic modelling proved to be
highly intensive; Hydro_AS-2D requires 5 h to simulate the entire study area, which is
equivalent to 40 min on a high-performance computer with an Intel Xeon W-2400 CPU.
Safer_RAIN completes the Flooding Phase in just 20 s on the same hardware. Furthermore,
the analysis of drainage system outflows using our application, Safer_RAIN, has revealed
its exceptional capabilities in terms of fast processing and computation [45]. This means
that Safer_RAIN can perform calculations and predictions in real time, even at high resolu-
tions, making it highly suitable for nowcasting applications [55]. This feature provides a
significant advantage in civil protection activities and emergency management. In critical
situations such as severe weather events or natural disasters, having access to up-to-date
and accurate information is crucial for making informed decisions and taking prompt
action to ensure the safety and well-being of affected communities. With Safer_RAIN’s fast
processing and computation, civil protection agencies and emergency management teams
can effectively monitor and analyse drainage system outflows in real time.



Sustainability 2024, 16, 875 18 of 21

6. Conclusions

Our study focuses on Safer_RAIN, a fast-processing inundation algorithm available on
the SaferPlaces web-based platform (see https://saferplaces.co/ (accessed on 15 Janunary
2024)) [26]. Safer_RAIN, originally designed for high-spatial-resolution simplified mod-
elling and mapping of flood hazards in urban areas affected by severe rainstorms, is used
in our study to simulate inundation and flooding scenarios resulting from point-source
water volumes with two different origins: (a) flooding from small stream breaching levee
systems in rural and predominantly flat peri-urban areas, and (b) stormwater volumes
overflowing from urban drainage systems during extremely severe rainfall events that
exceed the drainage system’s capacity.

Concerning application (a), we focus on simulating levee breaching and floodplain
inundation in one of the floodplains of the Pisciatello stream in Northern Italy. We use
a fully 2D hydrodynamic model (HEC-RAS) and Safer_RAIN for this simulation. In
application (b), we focus on a district in the city of Milan, Italy, which is prone to pluvial
flooding. We compare the inundation simulated by Safer_RAIN with the output from
a fully 2D hydrodynamic model. Although there are differences between the results of
Safer_RAIN and the two hydrodynamic models, which are expected due to the different
approaches (hydrostatic for Safer_RAIN vs. hydro-dynamic for the benchmarking models),
our application shows that Safer_RAIN is a valuable and effective tool for mapping rural
and urban inundation caused by point-source volumes at a high horizontal resolution of
approximately 1 m.

In conclusion, our application and tests demonstrate the versatility and flexibility
of the Safer_RAIN module, even when used in contexts beyond its intended application
domain (i.e., mapping inundation caused by severe rainstorms), proving to be useful
for modelling the effects of insufficiencies in rural small stream levee systems or urban
drainage systems. Safer_RAIN performs exceptionally well in predominantly flat terrain,
making it particularly effective in scenarios where immediate response after a flooding
event is crucial, such as managing evacuation logistics and rescue operations.
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