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ABSTRACT The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical
approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical
subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization
procedure to fulfill this optimization task, and we investigate its performance in comparison with other global
optimizers.We show that our approach allows for a significant reduction in the number of calls to the quantum
circuit, which is typically the most expensive part of the QAOA.We demonstrate that our method works well
also in the regime of slow circuit repetition rates and that a few measurements of the quantum ansatz would
already suffice to achieve a good estimate of the energy. In addition, we study the performance of our method
in the presence of noise at gate level, and we find that for low circuit depths, it is robust against noise. Our
results suggest that the method proposed here is a promising framework to leverage the hybrid nature of
QAOA on the noisy intermediate-scale quantum devices.

INDEX TERMS Bayesian optimization, quantum approximate optimization algorithm (QAOA), quantum
optimization.

I. INTRODUCTION
Hybrid quantum-classical variational algorithms [1], [2],
[3] play a central role in the current research on noisy
intermediate-scale quantum (NISQ) devices [4]. In a hybrid
variational setting, a classical computer is entrusted with the
nontrivial task of optimizing the parameters of a quantum
state. These algorithms implement a heuristic protocol to
approximately solve variational problems including combi-
natorial optimization tasks, which are ubiquitous and have
great practical importance [5], and are, indeed, one of the
main drivers of the industry interest toward quantum com-
puting applications. Unfortunately, the problems belonging
to this class are hard to solve with classical methods [6].
In this article, we focus on the Max-Cut and the max in-
dependent set (MIS) problems defined on specific graph
instances.
Among the hybrid variational algorithms, the quantum ap-

proximate optimization algorithm (QAOA) [7] is extensively
studied [8] as a promising algorithm to investigate quantum
speedups on NISQ devices and has been implemented
on several experimental platforms, such as Rydberg atom

arrays [9], superconducting processors [10], trapped-ions
simulators [11], as well as simulated on classical
devices [12].
Similarly to other hybrid variational algorithms, QAOA

consists of a sequence of parametrized quantum gates applied
to a wavefunction, on which an expectation value of some
operator, typically the Hamiltonian, is reconstructed from
measurements. The task of the classical subroutine is to op-
timize the gate parameters in order to minimize such expec-
tation value. Every variational quantum algorithm, therefore,
requires the estimation of the expectation value of a Hamilto-
nian [13]. Moreover, the interplay between the classical and
quantum parts of the algorithm entails to run the quantum
circuit a large number of times, thus being expensive in terms
of resources. Finally, there is the notorious problem of barren
plateaus (BPs), which are large portions of the optimization
landscape in which the gradient becomes exponentially small
with the number of qubits and layers [14]. This phenomenon
was proven to be caused also by the presence of noise
[15] or by the use of a cost function depending on global
observables [16].
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To overcome these issues, in fact, an efficient classical op-
timization routine is crucial. Different techniques have been
proposed for optimizing variational quantum circuits, e.g.,
Nelder–Mead [17], machine learning [18], gradient descent
[19], iterative schemes [8], [20], [21], Gaussian processes
[22], [23], and Bayesian methods [15], [24], [25], [26], [27].
In particular, to tackle the problem of BPs, it might seem log-
ical to avoid the calculation of the gradient. However, in [28],
it was shown that gradient-free optimizers such as COBYLA,
Powell, and Nelder–Mead suffer from BPs too. Here, we fo-
cus on a Bayesian optimization framework, which is suitable
for gradient-free global optimization of black-box functions
[29], [30]. We explore its behavior in comparison with other
global optimizers and we show that the convergence rate to
a local minimum is faster. We demonstrate that the Bayesian
approach is efficient in terms of a number of circuit runs and
is robust against noise sources.
The rest of the article is organized as follows. In Section II,

we introduce the QAOA algorithm. In Section III, we
give a detailed presentation of the Bayesian algorithm. In
Section IV, we present the result of applying this method
to QAOA, compare it to other global optimization methods,
and evaluate its performance with a limited number of circuit
runs and against simulated quantum noise. Finally, Section V
concludes this article.

II. QAOA FOR COMBINATORIAL PROBLEMS
The QAOA is a variational quantum algorithm that per-
forms hybrid quantum-classical optimization [7]. Given a
cost function C(z) with z = (z1, . . . , zi, . . . , zN ) with zi ∈
{0, 1}, QAOA aims at finding the bitstring z⋆ that minimizes
the cost. In order to do so, the cost function is translated into a
quantum operator HC. This is done by replacing each binary
variable zi with a two-level quantum state |zi⟩ and each zi
term appearing in the cost function with a Pauli matrix Zi.
Since Zi is diagonal on the qubit |zi⟩, HC is diagonal in the
computational basis |z⟩ = |z1 . . . zi . . . zN⟩ for N qubits. This
means that applying HC to |z⟩ gives the classical costC(z) of
such string, i.e.

HC |z⟩ = C(z) |z⟩ . (1)

The QAOA circuit consists of preparing an initial state of
N qubits, usually |+⟩ =

∑
z |z⟩/

√
2N , and then applying two

unitary operators alternatively: one generated by HC and the
other generated by HM =

∑
i Xi, where Xi is the flip (not)

operator acting on the ith qubit. The two unitaries together
form one layer of the circuit and the operation is iterated for
a number of layers p, which is called the depth of the circuit.
The problems that we consider in this work (see Section IV)
have a cost function at most quadratic in the binary variables.
This means thatHC comprehends only Zi and ZiZ j terms. For
this reason, we can implementHC by applying only rotations
e−itZ on the qubits and gates e−itZiZ j on the pairs of qubits.

Putting all together, the QAOA circuit prepares the state

|θ⟩ =
p∏

l=1

e−iβlHMe−iγlHC |+⟩ (2)

where θ = (γ,β) are 2p parameters. By measuring the state
|θ⟩ in the computational basis, we obtain the probability
amplitudes of each bitstring. In this way, by using relation
(1), an estimate of the energy E(θ) = ⟨θ|HC|θ⟩ is obtained.
This energy is then fed to a classical routine, which looks for
the set of angles θ⋆ = (γ⋆,β⋆) that minimizes E(θ). Several
strategies have been proposed for finding the optimal param-
eters θ⋆. In this work, we rely on Bayesian optimization.

III. BAYESIAN OPTIMIZATION
Bayesian optimization is a global optimization strategy,
which allows us to find within relatively few evaluations the
minimum of a noisy, black-box objective function f (θ) that
is, in general, expensive to evaluate [31]. The algorithm can
be summarized as follows.

1) It treats the objective function f as a random function
by choosing a prior (also called surrogate model) for
f . Several choices for the surrogate model are possible
[29]; in this work, we adopt the so-called Gaussian
process [32].

2) The prior is then updated through the likelihood func-
tion by gathering observations of f and, therefore,
forming the posterior distribution.

3) The posterior distribution is finally used to construct an
auxiliary function, called the acquisition function, that
is, in general, cheap to evaluate.

The point where the acquisition function is maximized
gives the next point where f will be evaluated [30]. See
Appendix A for an overview of Bayesian terminology.
Since Bayesian optimization requires no previous knowl-

edge on f , it appears to be a well-suited technique for op-
timizing the parameters of a variational circuit running on
NISQ devices.
In the following sections, we describe the Gaussian pro-

cess, the optimization routine, and the acquisition function
in detail.

A. GAUSSIAN PROCESS
Since the function f (θ) (θ ∈ A ⊂ Rd) to be optimized is un-
known, we may think of it as belonging to a random process,
i.e., an infinite collection of random variables defined for
every point θ ∈ A. A random process is called Gaussian if
the joint distribution of any finite collection of those ran-
dom variables is a multivariate normal distribution defined
by a mean function µ(θ) and covariance (or kernel) function
k(θ, θ′) [32]. The mean function is the expected value of the
function f while the kernel estimates the deviations of the
mean function from the value of f

µ(θ) = E[ f (θ)] (3)
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Algorithm 1: Pseudocode For Bayesian Optimization.

k(θ, θ′) = E[( f (θ) − µ(θ))( f (θ′) − µ(θ′))] (4)

where E denotes the expectation w.r.t. the infinite collection
of functions belonging to the random process. Conceptually,
the mean encloses the knowledge of the function f to re-
construct while k represents the uncertainty we have on such
reconstruction.
Since we assume f to be smooth, we choose for k the

Matérn kernel, a stationary kernel [32] that depends on the
distance between the points θ and θ′, defined as

k(θ, θ′) = σ 2
(
1 +

√
3∥θ − θ′∥2

ℓ

)
e−

√
3∥θ−θ′∥2

ℓ (5)

where ∥ · |∥2 is the 2-norm and σ 2 and ℓ are two hyperparam-
eters characterizing the Gaussian process. The hyperparam-
eter σ 2 defines the variance of the random variables whereas
ℓ is a characteristic length-scale which regulates the decay
of the correlation between points: in the limit of ℓ → ∞
all points are equally correlated, for ℓ → 0 all points are
uncorrelated.

B. BAYESIAN OPTIMIZATION ALGORITHM
The main steps of the algorithm for Bayesian optimization
can be summarized in the pseudocode in Algorithm 1 (see
also Appendix B for details).
The optimization starts with a warmup phase where a

number NW of evaluations of the objective function f is
performed. These evaluations take place at randomly chosen
values of the points θi and are collected in the training set
D = {(θi, yi = f (θi))}NWi=1 of the optimization. Given the set

D, we define the design matrix $ = (θ1, . . . , θNW ) with the
points and the vector y ∈ RNW with the observations via y =
(y1, . . . , yNW ). We form the covariance matrix K ∈ RNW×NW

by evaluating the covariance function in (4) for each pair of
points θi, θ j ∈ $ via

Ki, j = k(θi, θ j ) (6)

whereKi, j denotes the (i, j) element of the matrixK. The hy-
perparameters entering the kernel function (5) are optimized
at this step, as explained in Section III-D.

The training set will be used at each step of the opti-
mization to incorporate the acquired knowledge in the Gaus-
sian process. This happens in two steps. First, the Gaussian
process prior is conditioned on the observations in D [32].
Conditioning is equivalent to a Bayesian step in which we
multiply the prior with the likelihood, thus obtaining a pos-
terior distribution (see Appendix A). Thanks to the properties
of Gaussian distributions, the posterior is still described by
a Gaussian process multinomial distribution but it is charac-
terized by a posterior mean µ′ and covariance k′ given by

µ′ = κT · K−1 · y (7)

k′ = k(θ, θ) − κT · K−1 · κ. (8)

Here, θ is a generic point inA and κ is a column vector formed
by evaluating the covariance function k between the generic
point θ and all the points in $, i.e., its jth element is κ j =
k(θ, θ j ). Equation (7) shows that the new mean is a linear
combination of the observations y.

C. ACQUISITION FUNCTION
The next step in the Bayesian optimization involves comput-
ing the acquisition function, whose maximum gives the next
point at which to evaluate the objective function. A common
choice of an acquisition function is the expected improve-
ment (EI): this function suggests which points, on average,
improve on fm the most [30]. This choice corresponds to
defining the acquisition function EI(θ) = E[u(θ)] as the av-
erage value of the utility function u(θ) = max[0, fm − f (θ)]
such that the lower f (θ) is with respect to the current mini-
mum, the larger the utility u(θ) will be.
By considering that f (θ) is a Gaussian process, we can

obtain an analytical expression for EI(θ) as

EI(θ) = ((z)( fm − µ′) + φ(z)k′ (9)

where µ′ and k′ are obtained for the point θ by using (7)
and (8); ((·) and φ(·) are, respectively, the cumulative dis-
tribution function and the probability density function of the
standard normal distribution and the quantity z is defined as
z = ( fm − µ′)/k′. The two terms in (9) represent the tradeoff
between exploitation and exploration: The first term, being
proportional to the difference between the current minimum
and the mean value of the posterior, brings the optimiza-
tion toward points with lower µ′, whereas the second one
promotes points with larger k′, i.e., with higher uncertainty.
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The point θ̃ that maximizes the acquisition function is then
added to the training set D and the algorithm’s loop is re-
peated (as written in Algorithm 1). Its value is found by using
the differential evolution algorithm [33], a population-based
metaheuristic search algorithm (see Appendix C for details).

D. HYPERPARAMETERS
We are now only left with the task of picking the best
hyperparameters σ, ℓ for the Matérn kernel. This is typi-
cally done by considering the marginal likelihood [32] (and
Appendix A)

p(y|$) =
∫

p(y| f ,$)p( f |$)d f (10)

where the prior p( f |$) and the likelihood p(y| f ,$) are
Gaussian and the marginalization is done over the function
values f . Given the Gaussian nature of the likelihood and
the prior, a closed form of the log marginal likelihood can be
obtained (for the standard derivation of this formula see, for
example, [32])

log p(y|$)= − 1
2
yT · K−1 · y− 1

2
log detK−N

2
log 2π (11)

where N is the number of observations in the design matrix
$. In (11), the first term specifies how well the process fits
the data and the second term instead acts as a regularization
factor on the elements of the kernel matrix. When fitting the
Gaussian process to a new set of points, the best hyperparam-
eters (σ̃ 2, ℓ̃) can be found by maximizing the log marginal
likelihood in (11). For the optimization of log p(y|$), we
use the quasi-Newton method L-BFGS [34] with multiple
restarting points, which proved to be efficient on the flat
landscape of the likelihood (see Appendix B for details).

IV. RESULTS
In this section, we apply the Bayesian optimization to the
QAOA parameters. We consider two well-known combina-
torial problems defined on graphs: 1) the Max-Cut and 2) the
MIS.
Max-Cut: Given a graph G = (V,E ) where V is the set of

nodes and E the set of edges, the Max-Cut problem consists
of finding a partition of the graph’s vertices V , P = {V0,V1},
such that the number of edges betweenV0 and its complement
V1 is as large as possible. It is known to be a NP-hard problem
[35]. We can define the assignment of the nodes to the sets
V0 and V1 by labelling with the label “0” the nodes v ∈ V0
and with the label “1” the nodes v ∈ V1. In these terms,
the Max-Cut consists of finding the largest number of edges
connecting the bits labeled with “0” to the bits labeled with
“1.” On a quantum computer, the labels 0 and 1 are replaced
by the computational basis states |0⟩ and |1⟩, and the cost
Hamiltonian can be written as

HMC
C = −

∑

(i, j)∈E
(1 − ZiZ j )/2. (12)

FIG. 1. Energy distributions of graphs. (a) MIS: Distribution of the
energies of the possible bitstrings for the graph of 6 nodes (shown in the
inset, nodes in red correspond to one solution). The red bar to the left
highlights the two solution bitstrings of the MIS problem on such a
graph. (b) Max-Cut: Distribution of the energies of the possible bitstrings
for the graph of 10 nodes (shown in the inset, nodes in red correspond
to one solution). The red bar highlights the two solution bitstrings of the
Max-Cut problem on such a graph.

The states with minimum energy then represent the bitstrings
that maximize the number of edges with two opposite values
on their vertices.
MIS:TheMIS problem consists of finding the largest num-

ber of graph nodes, which are not adjacent. The correspond-
ing cost Hamiltonian in its classical formulation [36] is

C(x) = −
∑

i∈V
xi + ω

∑

(i, j)∈E
xix j (13)

where xi = 0, 1, and ω is a parameter that balances the effect
of the first term (which maximizes the number of bits in
|1⟩) and the second one (which prevents neighbor bits to be
activated at the same time). In order to translate the problem
into its quantum version, we make the variable substitution
xi = (1 − zi)/2 so that zi = +1,−1. Then, we replace each
zi with Zi and obtain the quantum Hamiltonian (discarding
constant terms)

HMIS
C =

∑

i

Zi
2

+ ω
∑

(i, j)∈E

ZiZ j − Zi − Zj
4

. (14)

During the optimization process, we monitor the approx-
imation ratio R = E(θ)/EGS [7] where EGS is the energy of
the solution bitstring. Since EGS < 0 [due to our definition of
the problems Hamiltonians (12), (14)], |E(θ)| ≤ |EGS|, and
thus, R is upper bounded by 1. We also look at the fidelity de-
fined as F = | ⟨θ|z⋆⟩ |2 where |z⋆⟩ is the state that encodes the
solution. The following results are obtained on two 3-regular
graphs of 6 and 10 nodes, which are plotted in the insets of
Fig. 1(a) and (b).
QAOA at Low Versus Large Depth: We start by looking

at the QAOA at depth p = 1 for the 6 nodes graph. It cor-
responds to a shallow circuit that depends only on two pa-
rameters θ1 = (γ1,β1). We consider the MIS problem, and
we plot the landscapes of both the energy E(θ1) and the
fidelity F (θ1) [see Fig. 2(a) and (b), respectively] for values
of γ1,β1 ∈ [0,π ] due to the symmetry of the problem. We
see that the landscape of the energy, which is the function to
minimize, is rather flat with two global maxima and minima,
corresponding to the best solutions possible at p = 1.

3102611 VOLUME 4, 2023
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FIG. 2. QAOA at p = 1. (a) Landscape of the energy E (θ1) obtained on the
6 nodes graph solving the MIS problem. The red cross indicates the
angles corresponding to the final state |θF ⟩ with the largest fidelity. (b)
Landscape of the fidelity F (θ1). (c) Squared amplitudes of the two states
|θE ⟩, |θF ⟩. The solution bitstrings are highlighted in red. Values of the
qubits are given in the order shown in the inset of Fig. 1(a).

Interestingly, we find that the QAOA state |θE⟩ =∑
z αz,E |z⟩, corresponding to the parameters that minimize

the energy, is not the state |θF⟩ =
∑

z αz,F |z⟩with the largest
fidelity. To see how they differ, we plot the squared am-
plitudes |αz,E |2 and |αz,F |2 of both states in Fig. 2(c) as
histograms. The fidelity of |θF⟩ w.r.t. the solution |z⋆⟩ is,
as expected, much larger than that of |θE⟩, yet the latter
has a lower energy because it has many nonzero amplitudes
along excited states with low energy. This unravels the prob-
lem of optimizing the QAOA parameters by only looking at
the energy E(θ). There is a large concentration of excited
states with energy comparable to the energy of the ground
state, as shown in the histograms of panels (a) and (b) of
Fig. 1. It is difficult to increase the amplitude corresponding
to the solution when many other states can contribute with
low values of the energy.
The difference between the lowest energy and highest

fidelity points is guaranteed to disappear theoretically for
p → ∞. For this reason, we apply Bayesian optimization to
the problem and we show in Fig. 3 that the approximation
ratio and fidelity both tend to 1 for p ∼ 12. Yet, we already
see a good performance at p = 4 where R ∼ 0.7 and we
have F ∼ 0.5 meaning about a 50% chance of measuring the
solution on the state obtained with QAOA.
Comparing Resources: Increasing the depth of a varia-

tional circuit increases the number of parameters that must
be optimized. In turn, this is expected to increase the number
of calls to the quantum circuit needed to reach a good ap-
proximate solution, which is a problem in the current NISQ
era, since running a quantum circuit can be costly due to both
state preparation routines and recalibrations of the device.

FIG. 3. Results increasing depth. Average approximation ratio (plotted as
1 − R) and fidelity F for increasing values of circuit depth from 1 to 12
over 50 runs. Shaded areas correspond to one standard deviation.
Results were obtained on the 6 nodes graph of Fig. 1(a).

FIG. 4. Comparison among optimizers. (a) Plot shows the average
number of calls NC to the quantum circuit of each optimizer in order to
obtain the same approximation ratio as the Bayesian optimization. (b)
and (c) Average approximation ratio (plotted as 1 − R) and fidelity during
the optimization with the different methods at p = 7 over 30 runs.
Shaded areas correspond to one standard deviation. Results are
obtained on the 10-node graph of Fig. 1(b).

Bayesian optimizationmitigates such problems and allows
us to achieve a good approximate solution within relatively
fewer calls to the circuit compared to other global optimiza-
tion methods. To show this, we ran differential evolution,
basin-hopping, and dual annealing (see Appendixes C and
D for details) on the 10-node graph of Fig. 1(b) for the Max-
Cut problem at different depths. Fig. 4(a) shows the average
number of calls to the circuit that the other optimizers need
in order to reach the same approximation ratio of Bayesian
optimization. To gain more insight, we plot in panels (b) and
(c) of Fig. 4, the average approximation ratio and fidelity
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FIG. 5. Slow measurements. (a) Average approximation ratio (plotted as 1 − R) and fidelity (F ) as a function of the number of shots NS . The 1/NS = 0
points indicates the exact evaluation of the energy E (θ). Shaded areas correspond to one standard deviation. (b) Kernel noise σ2

N learned by fitting the
data at each step of the optimization for different numbers of shots NS . (c) Average kernel noise learned by the Gaussian process as a function of NS
(blue circles). The plot also shows a linear fit (∼ 1/N1.1, orange line) of the logarithm of the data.

during the run of the algorithm for each method at p = 7.
We see that Bayesian optimization stops at a lower R than
basin-hopping and dual annealing, but it reaches a value of
R = 95% with ∼ 500 runs of the circuit compared to the
other two methods which take, in order, 1400 and 10 800.
For the noiseless circuit, it is very clear (see Fig. 4) that the

Bayesian approach can mitigate this problem better than any
other tested techniques, from different points of view (such
as the number of calls, number of steps, and number of mea-
surements). Let us stress that this approach gives a fidelity
that is always higher than the other methods at a fixed number
of steps [and fixed p, see Fig. 4(c)]. All the simulations were
run on Python. The quantum circuit was simulated using the
qutip package [37], the Bayesian optimization part was
built by expanding the class GaussianProcessRegressor of
scikit-learn [38], and the other global optimizers were
implemented using the standard scipy.optimize class
[39].
SlowMeasurements: The energy E(θ) is obtained by mea-

suring the QAOA state after running the circuit: We refer
to these two operations combined together as a “shot.” By
measuring on the Z basis at each shot, we get a bitstring,
and we calculate its classical energy associated with the
combinatorial problem. The precision in the reconstruction
of E(θ) depends on the number of shots NS. Since we con-
sider this as a multinomial sampling problem, we expect the
variance of the reconstructed energy to depend on N−1

S . In
many scenarios of NISQ devices, it is necessary to balance
NS with the desired standard deviation. For this reason, we
compare the average approximation ratio obtained with the
exact energy (simulated) with the energy reconstructed with
a limited number of shots.
We show in Fig. 5 such a comparison with a number of

shots NS equal to 1024, 128, 64, 16, and 4. Looking at the
approximation ratioR [see Fig. 5(a)], we see that takingNS =
128 shots reduces R by 5% w.r.t. NS = 1024 and going to
NS = 64 reduces it by a further 5%. This behavior then stops
and even reverses its trend. In fact, we even see an average in-
crease going fromNS = 16 to 4. This is understandable since

the reconstruction of the energy with as little as 4 shots is not
indicative of the real energy of the state. Specifically, from a
final QAOA state, wemight sample the solution bitstring 2, 3,
or even 4 times out of 4 and the expectation of the energy on
these three samplings would be very different. This behavior
is, indeed, confirmed also by the fidelity in Fig. 5(a), which
follows the same trend as the approximation ratio.
To have a better understanding of how the algorithm adapts

to the sampling noise, we look at the kernel noise parameter
σ 2
N , which is learned by the Gaussian process during the

fitting at each step of the optimization (see Appendix B for
details on the noise hyperparameter). The plot in Fig. 5(b)
shows that, after an initial phase, the kernel noise sets at a
specific value at around 400 steps. In addition to that, the
lower the number of shots, the larger the noise parameter
learned. In fact, by fitting the average kernel noise found
at the end of the training [see Fig. 5(c)], we obtain that σ 2

N
follows a power law with N−1.1

S . This trend is comparable to
the expected trend for the variance N−1

S of the reconstruction
of the energy. This shows that the Gaussian process adapts to
sampling noise.
Simulation of Noise: Another relevant issue in the state-

of-the-art NISQ devices is the sources of quantum noise,
which can interfere with the quantum circuit. Every device
has different sources of noise depending on the underlying
technology. In order to simulate it without specifying the
device technology, we add random noise on every QAOA pa-
rameter. In this way, (2) for theMax-Cut problem is modified
as

|θ⟩ =
p∏

l=1

e−i
∑

i β
i
l Xi ei

∑
⟨i, j⟩ γ

(i, j)
l ZiZ j |+⟩ (15)

where β il and γ
(i, j)
l act differently on every qubit/edge of the

graph at every layer because they are affected by Gaussian
random noise with mean zero and standard deviation σQN.
The noise model we are considering, although very simpli-
fied, can be considered as an example of coherent control
errors that can be caused, e.g., by gate overrotations due to
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FIG. 6. Approximation ratio R for different values of the quantum noise
σQN. The noise is simulated by adding random Gaussian noise with mean
zero and standard deviation σQN to the variational parameters (γ, β). The
plot shows the effects of the noise σQN on the final obtained
approximation ratio R (fidelity F ) as a function of the QAOA depth p for
different σQN. Shaded areas correspond to one standard deviation. The
results are obtained on the graph with 10 nodes in Fig. 1(b).

gate-time miscalibrations. In Fig. 6, we plot R and F as a
function of depth at different values of σQN on the 10-node
graph for the Max-Cut problem.
By increasing σQN and p, we expect to obtain a worse

approximation ratio R because the error accumulates along
the circuit as the number of parameters grows. Indeed, as we
can see in the figure, from p ≥ 5 the obtained R decreases
w.r.t. the noiseless case, decreasing even by 20% for p = 9
with σQN = 0.1. Considering σQN = 0.001, 0.01, both R and
F grow/remain stable up to p = 7, which indicates that,
for shallow circuits, Bayesian optimization is robust against
noise.
We care to stress that the case σQN = 0.1 was considered

in order to show the effect of an exponential growth of ma-
chine noise. Realistically, a Gaussian white noise with vari-
ance 0.1 affecting each of the parameters (in range [0,π ], see
Appendix B) would completely destroy the state preparation.
In fact at p = 9, the fidelity F is the same as p = 1 (see
Fig. 6).

We compare the results of our algorithm with the sec-
ond best-performing algorithm of Fig. 4, basin-hopping. It is
clear that when subjected to noise, this algorithm performs
poorly: considering the approximation ratio, basin-hopping
shows barely any improvement with respect to the depth of
the circuit with the results starting to plummet from p = 3
(see Fig. 6). Most importantly, the fidelity peaks at p = 3
with F ≃ 0.15 (see Fig. 7) and then remains contained un-
der this value. About the seemingly increase in fidelity with
the noise that can be seen at p = 3, we also notice that the
behavior inverts going up to p = 7 so we do not consider
it relevant and assume that this means that the results are
too randomic and basin-hopping is, thus, nonreliable. The

FIG. 7. Fidelity F for different values of the quantum noise σQN. The plot
shows the effects of the noise σQN on the final obtained fidelity F as a
function of the QAOA depth p for different σQN. Shaded areas correspond
to one standard deviation. The results are obtained on the graph with 10
nodes in Fig. 1(b).

poor performance in terms of fidelity confirms that basin-
hopping while being an effective algorithm in the noise-free
scenario—visible thanks to the high, yet costly, performance
at σQN = 0 (cf. Fig. 4)—is not apt for optimization in the
presence of noise. This is probably due to the fact that basin-
hopping is a global optimizer that exploits a local gradient-
based optimization routine (see Appendix D). Calculating
gradient in the presence of noise is in fact nonoptimal since
even a small variation of the parameters can impact greatly
the evaluation of the function, returning a gradient that does
not represent the local structure of the landscape.

V. CONCLUSION
In this article, we have presented the Bayesian optimization
algorithm as a subroutine to optimize the variational param-
eters of the QAOA.We have applied it to find the solutions to
two combinatorial optimization problems, the Max-Cut and
the MIS on two graph instances.
After introducing the QAOA and the details of the

Bayesian optimization algorithm, we have focused on its
capability to adapt to the data and to predict new possible
optimal points by exploiting both the accumulated knowl-
edge from the previous observations and the uncertainty with
respect to the optimization landscape.
We have analyzed some details of the QAOA at low circuit

depth with the purpose of presenting some of the issues re-
lated to the optimization of a variational quantum algorithm.
These include the flatness of the energy landscape and the
limited information that we can retain from the energy of
the QAOA state compared to its overlap with the ground
state. After that, we have compared the Bayesian optimiza-
tion with other global optimization methods, and we have
shown that they require more calls, in the order of tens or
hundreds, to the quantum circuit with respect to the Bayesian
optimizer. This is the first sign that this method responds
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more efficiently to the requirements from the quantum part
of the QAOA. With this analysis, we explored the scenarios
of low-depth circuits and did not test our algorithm at higher
depths for mainly two reasons: it is well known that Bayesian
optimization presents particular challenges for higher di-
mensions [30]. Moreover, considering the NISQ devices
where those algorithms could, in principle, be executed, large
depths constitute yet an obstacle for running QAOA on real
devices.
We have also considered the effects of a finite number of

measurements for the reconstruction of the energy landscape.
We have shown that the results are slightly altered by a 5%
decrease in the approximation ratio by using 1024 measure-
ments compared to the optimization with the exact energy.
A lower number of measurements will result in a decreasing
approximation ratio. We have also shown that the Gaussian
process learns to add a noise hyperparameter, which is pro-
portional to the variance expected from the reconstruction of
the energy. This can be seen as a further example of adapta-
tion of the Bayesian algorithm to the data.
Finally, we have simulated a noisy algorithm and we have

shown that for shallow circuits, with depth p ∈ [1, 3, 5, 7],
approximation ratio, and fidelity are improved even for
reasonable values of the noise. For deeper circuits, up to
p ≥ 9, the intensity of noise sensibly affects the final ap-
proximation ratio, as expected. Eventually, we compared
it to basin-hopping, which uses a local gradient-based op-
timizer, and shown that it performs very poorly, suggest-
ing that a gradient-free optimizer is, indeed, the better
choice.
These findings show that Bayesian optimization is a robust

method that can account for both quantum and sampling
noise. For this reason, it represents a valid tool for solving
optimization problems via hybrid algorithms to be run on an
NISQ device.
Code and Data Availability: Code and data are available

from the corresponding author, upon reasonable request.

APPENDIX
A. DETAILS ON THE BAYESIAN OPTIMIZATION
In this appendix, we give a general overview of the Bayesian
terms used in the article and a detailed review of the
algorithm, we used in this work to perform the Bayesian
optimization for the QAOA.

1) OVERVIEW OF BAYESIAN TERMINOLOGY
The Gaussian process is a surrogate model, which aims at
reconstructing the landscape of optimization of an unknown
function f (θ). It is one of the two main ingredients of the
Bayesian optimization algorithm, along with the acquisi-
tion function. We can now define the Bayesian terms used
throughout the article.

1) Prior p( f ): This distribution encapsulates the previous
knowledge we have about the target function f . Typi-
cally, it consists of a multivariate normal distribution

centered around 0 in which the covariance between
points is assigned by a kernel function like (5)

p( f ) = N (0, k(x, x′)). (16)

To make an initial guess on our function, we can sam-
ple a function f∗ from this distribution. To do so, we
choose a set of points $ and evaluate

f∗ ∼ N (0, k($,$)). (17)

2) Likelihood p(y| f ): This distribution represents the
compatibility between the prior p( f ) and the obser-
vations y. In the context of Gaussian processes, it is
defined by another Gaussian distribution.

3) Posterior p( f |y): This describes the knowledge we
have about f after having collected some observations
y = f ($). The aim of the Gaussian process is to make
the posterior generate functions as similar as possible
to f . It is related to the prior and likelihood through the
Bayesian theorem

p( f |y) = p(y| f )p( f )
p(y)

(18)

which states that a posterior distribution is proportional
to their product. In the context of Gaussian processes,
the posterior is calculated from the prior by an opera-
tion, which is called conditioning, resulting in

p( f |y) ∼ N (µ′, k′) (19)

where the new mean and covariance are defined in the
text (7), (8). From (19), we see that the posterior is
itself a Gaussian multivariate distribution. Therefore,
we can sample functions f∗ as we do with the prior
(17) but now their values will coincide with y at every
point $ where we sampled f .

4) Marginal likelihood p(y): Also called evidence, it is
the normalization term in (18). In Bayesian inference,
it represents the total probability of generating the ob-
served samples f from the prior. It is, indeed, obtained
integrating over all possible function values f

p(y) =
∫

p(y| f )p( f )d f . (20)

Like the posterior distribution, it has a closed form
in term of a multivariate normal distribution. Thus,
the maximization of its logarithm is used in Gaussian
processes to pick the best hyperparameters (as done in
Section III-D).

2) BAYESIAN OPTIMIZATION ALGORITHM
This algorithm is made out of three phases, i.e., 1) warmup,
2) kernel optimization, and 3) acquisition function maxi-
mization, and is summarized in Algorithm 1.
Warmup: In the warmup phase, we start with a set of

NW = 10 points X = {θ j}NWj=1 with θ j ∈ Rd where d = 2p
and p is the depth of the QAOA circuit. Each point θ j is
a set of angles (γ,β). These points are sampled from the
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Latin hypercube of bounds [0,π ]d . For each set of angles,
we estimate the energy of QAOA y j and we create the design
matrix $ = (θ1, . . . , θNW ) and the observation vector y with
the energies of the points θ j. We also store the point with the
lowest energy as (θm, fm). At this step, there is no calculation
involving the Gaussian process which is currently set to its
prior: a multinomial Gaussian distribution centered around
zero.
Kernel Optimization: In this part, we look for the hyper-

parameters (σ̃ , ℓ̃), which maximize the marginal likelihood
function p(y|$) (11). This optimization is performed by re-
peating the L-BFGS [34] minimization on −p(y|$) for 10
times and selecting the best parameters found. The param-
eters found at every step of the optimization are plotted in
panels (c) and (d) of Fig. 9.
Acquisition Function Maximization: Once the hyperpa-

rameters are set the algorithm exploits its knowledge and
uncertainty of the data to propose a new point θ′ with the
new parameters where we evaluate the QAOA circuit. This
is done by maximizing the expected improvement in (9).

The new point θ′ maximizing the expected improvement is
then added to the datasetD and the algorithm is repeated. The
procedure stops after NBAYES iterations. Fig. 8 provides an
illustrative example (with p = 1,NW = 5, andNBAYES = 20)
of how the Bayesian method operates and moves through the
landscapes.

B. BAYESIAN OPTIMIZATION WITH NOISE
In this article, we consider two scenarios in which the energy
E(θ) is affected by a source of noise: 1) the finite number of
samplings and 2) the quantum noise at the gate level. In the
context of Bayesian optimization, we can account for noise
modifying the kernel function by adding a term σ 2

NI like so

k(θ, θ′) = σ 2
(
1 +

√
3∥θ − θ′∥2

ℓ

)
e−

√
3∥θ−θ′∥2

ℓ + σ 2
NI. (21)

This is usually called a white kernel and it is a parameter
added to the diagonal to account for random fluctuations
around the true value of f (θ). In this way, the new predicted
mean and covariance for a set of data $ can be easily calcu-
lated to be

µ′ = κT · (K + σ 2
NI)−1 · y (22)

k′ = k(θ, θ) − κT · (K + σ 2
NI)−1 · κ. (23)

The constant σ 2
N belongs to the list of hyperparameters

(along with σ 2 and ℓ) that are optimized with the log
marginal likelihood, which now takes the form

log p(y|$) = −1
2
yT · (K + σ 2

NI)−1 · y

−1
2
log det(K + σ 2

NI) − N
2
log 2π .

We show how the hyperparameter σ 2
N is learned during train-

ing in the text in Fig. 5(b).

FIG. 8. Posterior and acquisition function during optimization. Here, we
plot the posterior and the acquisition function at three different steps of
the optimization: (From left to right) At warmup, after 10 steps and after
20 steps. In rows (a) and (b), we plot, respectively, the mean µ′(θ) and
the variance k′(θ) of the posterior while, in row (c), the acquisition
function EI(θ) [see (7)–(9) in the text]. These data, obtained running the
Bayesian optimization on QAOA with p = 1 on the graph of Fig. 1(a), are
shown as a function of the two variational parameters θ = (γ1, β1). The
red dots indicate the warmup points (NW = 5, in this case) while the
crosses are the points that have been selected by subsequents Bayesian
optimization steps as new candidate solutions [with a color scale from
first (orange) to last (pink)]. At every Bayesian optimization step, µ′(θ)
encodes the knowledge of the landscape of the function to optimize
while k′(θ) contains the uncertainty. The acquisition function EI(θ)
combines the information from µ′ and k′ and the position of its
maximum proposes the next possible optimal point. From these
considerations, we see that after 20 steps, the mean µ′(θ) [row (a)]
recreates the landscape (our knowledge of E (θ1)) with more precision
than at warmup [compare with the real energy landscape in Fig. 2(a)]. In
addition to that, EI(θ) becomes more and more flat in all the landscape
except for a small area in the top right corner on the right panel of (c).
This means that the Gaussian process has acquired enough knowledge
from the data to converge to the energy minimum.

C. DIFFERENTIAL EVOLUTION
Finding the point θ̃ of the parameter space that maximizes
the expected improvement EI(θ) (9) is not an easy task since
EI(θ) can show a fairly flat landscape [31], in particular after
many optimization steps [for example, see Fig. 8(c)].

To compute the maximum of EI(θ) in this work, we use the
differential evolution algorithm [33]. This is an evolutionary
method in which populations of points {θ}, called genera-
tions, are iteratively obtained from the previous ones until
convergence. The algorithm starts by initializing (a) a gen-
eration, and then, the population is updated following three
main steps: (b) mutation, (c) cross-over, and (d) selection.

a) We choose as starting population NP = 15 · 2p points
{θi,1} where the index i ∈ {1, . . . ,NP} uniquely iden-
tifies the point within the belonging population while
the index 1 indicates that the point belongs to the first
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FIG. 9. Parameters of Bayesian optimization at p = 2, 7. Plots of the parameters changing during Bayesian optimization for two runs with NBAYES = 600
steps. (a) Approximation ratio R. (b) Fidelity F . (c) Kernel constant σ2. (d) Kernel correlation length ℓ. (e) Standard deviation of the expected
improvement. (f) Average distance of the points of differential evolution at the last generation NT .

generation g= 1. These points are randomly generated
on the Latin 2p-cube of bounds [0,π ]2p, and to each
point, there is an associated expected improvement
EI(θi,1).

b) For each θi,g (called parent point) in the population,
the differential evolution picks three random points,
different from θi,g, labeled by r0, r1, r2 within the cor-
responding population, and creates a new point as

vi,g = θr0,g +M(θr1,g − θr2,g) (24)

whereM ∈ (0.5, 1) is a hyperparameter that is selected
randomly at every generation. Through (24), the dif-
ferential evolution mutates and recombines the popu-
lation to create another set of parent points vi,g.

c) A new point ui,g (offspring point) is created from θi,g =
(θ1i,g, . . . , θ

2p
i,g ) and vi,g = (v1i,g, . . . , v

2p
i,g) choosing ran-

domly between their coordinates θ
j
i,g and v

j
i,g for every

j = 1, . . . , 2p.
d) Finally, if EI(ui,g) ≥ EI(θi,g), the algorithm replaces

θi,g with ui,g in the next generation; otherwise, θi,g is
kept.

Steps (b)–(d) are repeated for NT generations g. The al-
gorithm stops when two convergence criteria are fulfilled:
1) the standard deviation σEN of the population’s expected
improvement [see Fig. 9(e)] and 2) the average distance D
among the population points [see Fig. 9(f)] is below a certain
threshold (we set σEN = D = 10−3). When this happens, the
point in the population with themaximum expected improve-
ment is selected as θ̃. We notice that the criterion on the
distance guarantees that in a flat landscape like the one of
EI(θ), the points do not get stuck on a plateau and concen-
trate closer to a unique candidate maximum. Although the
algorithm requires many evaluations of EI(ui,g) (as shown
also in the main text), it is a valid algorithm for finding

the maximum within the flat landscape of the acquisition
function.

D. OTHER OPTIMIZERS
Basin-Hopping: Basin-hopping is a global stochastic op-

timization algorithm [40]. It combines two steps: 1) a local
optimization that proposes a candidate solution and 2) a per-
turbation of such candidate in order to make it hop to other
basins, which might contain a global optimal point. The new
point is accepted or rejected according to a probability, which
depends on a “temperature” parameter. The “temperature”
parameter decreases with the iteration number so that, at the
beginning, new proposals are easily accepted while, at larger
iterations, the algorithms become more and more selective.
The algorithm runs for a fixed number of iterations and the
local optimizer used in this context is the gradient-based
BFGS algorithm.
Dual Annealing: This global optimization algorithm is the

generalized form of the simulated annealing and it is paired
with a local optimization, which is performed at the end of
the annealing to refine the solution [41]. It is a variation of a
hill climbing algorithm in which a solution is randomly per-
turbed and the new proposed point is accepted with a prob-
ability that depends on the difference in energy between the
two points. This probability also depends on a “temperature”
parameter that, like in the basin-hopping case, decreases with
the number of iterations in order to converge to a candidate
solution.
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