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Abstract: In recent years, probiotics have been emerging as an attractive therapeutic strategy for
several diseases. In orthopedics, probiotics seem to be a promising supplementation for treatment of
osteoporosis, osteoarthritis, muscle loss-related disease, wound and ulcer issues, and prevention of
surgical antibiotic prophylaxis side effects. Although probiotics are still not included in guidelines for
these conditions, several studies have reported theoretical benefits of their administration. Further
high-level clinical trials are necessary to convert research into solid clinical practice. However,
probiotics represent a cost-effective future perspective and may play a role in association with
traditional orthopedic therapies.
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1. Introduction

Probiotics were defined in 2013 by an expert panel convened by the International
Scientific Association for Probiotics and Prebiotics (ISAPP) as “live microorganisms that,
when administered in adequate quantities, confer a health benefit on the host” [1]. This
definition includes a broad range of applications that exploit the effects of some probiotics
on human health: antimicrobial properties, inhibition of pathogen adhesion and cellular
invasion, occupation of space otherwise occupied by pathogens, and growth limitation by
bacterial competition [2].

The most studied species include Bifidobacterium, Saccharomyces, and Lactobacillus (as
defined before the taxonomy’s reorganisation in 2020) [3]. High-quality evidence studies
show the efficacy of probiotic administration for gastrointestinal disorders, particularly
for the treatment of acute infectious diarrhoea, antibiotic-associated diarrhoea, Clostridium
difficile-associated diarrhoea, hepatic encephalopathy, ulcerative colitis, irritable bowel
syndrome, functional gastrointestinal disorders, and necrotising enterocolitis [4].

The effect of probiotics can also be extended to other areas: in neurology for the
prevention and treatment of neurodegenerative and demyelinating diseases [5,6]; in pain
control, as probiotic supplementation appears to increase pain thresholds [7]; in psychiatry,
for the treatment of stress- and depression-related behaviours [8] and obsessive-compulsive
behaviours [9]; in dermatology, for the treatment of neurogenic skin inflammation, acne
vulgaris, acne rosacea [10,11], psoriasis and atopic dermatitis [12], and aging skin [13].
Probiotics may also be used in orthopedics for the treatment of various pathological
conditions. This narrative review aims to investigate the literature regarding preclinical
studies, current applications, and future perspectives for probiotics in orthopedics. In
particular, the following topics will be analysed: bone and cartilage defects, muscle diseases,
chronic wounds, and surgical antibiotic prophylaxis.
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2. Bone

Bone is a specialised connective tissue that consists of the calcified extracellular sub-
stance, the bone matrix, and the cell component (osteocytes, osteoblasts, and osteoclasts).

Bone tissue is always in the balance of bone formation and resorption [14]. This
mechanism, so-called bone remodeling, is responsible for the formation and maintenance
of bone functionality, and it is regulated by different stimuli. Bone remodeling is able to
replace around 5–10% of existing bone every year [15]. Osteoclasts and osteoblasts form
the so-called bone remodeling unit (BRU). Osteoblasts produce the organic bone matrix
and facilitate bone mineralisation, whereas osteoclasts are responsible for the degradation
of bone and extracellular matrix. Dysregulation in ion numbers and the imbalance between
osteoclast and osteoblast action can lead to bone disorders, such as osteoporosis, Paget,
osteogenesis imperfecta, rickets, ostheomalacia, renal osteodystrophy, and hyperparathy-
roidism [16]. Osteoporosis is by far the most frequent bone metabolic disorder, affecting
nearly 22% of women and 7% of men (older than 50) in 27 European countries, as reported
by the World Health Organization (WHO) [17]. Risk factors include non-modifiable in-
trinsic factors, such as genetic factors and aging, and extrinsic modifiable factors, such
as drugs. Drugs that could interfere with bone health include glucocorticoids, aromatase
inhibitors (i.e., anastrozole and letrozole), medroxyprogesterone acetate, thiazolidinediones,
proton pump inhibitors (PPIs) and antiepileptics, heparin, and serotonin-selective reuptake
inhibitors [18].

In addition, the gastrointestinal system plays a crucial role in maintaining bone health
by absorbing calcium, phosphorus, and magnesium, which are fundamental elements for
bone mineralisation, and by producing endocrine factors such as incretin and serotonin,
which are signal molecules that can interact with receptors of bone cells. For this reason,
the gut microbiota has been proposed as a regulator of bone health [19].

The main treatment for osteoporosis is pharmacological, including bisphosphonates
(such as alendronate or ibandronate), hormone therapy (estrogens), calcitonin, denosumab
(RANKL/RANK inhibitor), parathyroid hormone (PTH), and analogs. Nevertheless, the
implication of the microbiota as a regulator of bone health may suggest a possible use of
probiotics in the treatment and prevention of bone disease [20].

Several preclinical studies have been conducted to analyse the probiotic pathway
of action on bone health, focusing on the RANKL/RANK/OPG pathway and histone
methylations [21,22]. Amin et al. [21] investigated the RANKL/RANK/OPG pathway,
responsible for regulating osteoclast activity, but found no evidence of probiotic efficacy
through this pathway. Behera et al. [22] reported promising results evaluating the effects of
probiotic supplementation on mitochondrial biogenesis and bone homeostasis through the
histone methylation mechanism in obese mouse models. Osteoporosis may be related to at-
tenuation of osteoblast differentiation through hypermethylation of the H3K27me3 mark at
the Tfam promoter. Inhibition of Tfam due to hypermethylation exacerbated glycolysis rate
and mitochondrial bioenergetics metabolism and subsequently inhibited osteogenesis and
bone formation, causing obesity-induced metabolic osteoporosis. The study reported that
probiotic treatment increased mitochondrial Tfam expression in osteoblasts and promoted
Kdm6b/Jmjd3 histone demethylase, which inhibits H3K27me3 epigenetic methylation at
the Tfam promoter.

Concerning animal studies, in a 2021 review, Malmir et al. [23] found 37 animal studies
analysing probiotic effects on bone. The main probiotics administered were L. reuteri (ATCC
PTA 6475), L. casei (KFRI-127), L. paracasei (NTU 101, NTU 102, HII01), L. plantarum (DSM
15312, DSM 15313, NK3), L. acidophilus (ATCC 4356), B. bifidum (NCIM 5697), B. longum
(NCIM 5672, NK49), B. subtilis (C-3102), L. helveticus (LBK-16H, ATCC 27558), L. bulgaricus,
Entrococcos faecium, L. rhamnosus, B. breve (NCIM 5671), B. animalis, Streptococcus thermophilus,
Pediococcus acidilactici, Escherichia coli, Lactococcus lactis (H61, G50), Bacillus licheniformis,
Clostridium butyrium, Bacillus coagulans, and Pasteurized Akkermansia muciniphila. Some stud-
ies in this review reported an increase in calcium, phosphorus, 25-OH-D, PTH, osteocalcin
(OC), and alkaline phosphatase (ALP) levels after probiotic feeding, while others reported
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a decrease in ALP, acid phosphatase (ACP), and urinary calcium and phosphorus levels.
Improvements in bone mass density and bone mineral content were reported after probiotic
supplementation in most studies but only in eight trials of the examined review study.

Clinical trials seem to confirm what was found in preclinical and animal studies.
However, the bacteria varied between trials and probably worked through different or
overlapping mechanisms.

L. reuteri 6475 acts by suppressing the gene expression of pro-inflammatory and pro-
osteoclastogenic cytokines, both in the gut and bone marrow [24–26], as well as lactobacilli
such as LGG and VSL#3 [27]. The anti-inflammatory effect on the gut may improve calcium
transport across the intestinal barrier, while bifidobacteria produce short-chain fatty acids
(SCFAs) that can lower the pH of the intestinal tract and subsequently increase mineral
absorption [28].

L. helveticus LBK-16H acts via two mechanisms to improve bone mineral density
(BMD): by increasing calcium absorption and by producing the bioactive forms of isoleucyl-
prolyl-proline (IPP) and valyl-prolyl-proline (VPP), two peptides capable of inhibiting
angiotensin-converting enzyme (ACE), thereby preventing the formation of angiotensin II
(Ang II), a stimulator of OC resorption [29]. Always with BMD in mind, Takimoto et al. [30]
studied the effects of Bacillus subtilis C-3102 (C-3102) in seventy-six healthy postmenopausal
Japanese women for 24 weeks. Compared to placebo, C-3102 significantly increased total
hip BMD (placebo = 0.83 ± 0.63%, C-3102 = 2.53 ± 0.52%, p = 0.043). In addition, the effect
on gut microbiota was analysed and showed a significant increase in Bifidobacterium and a
significant decrease in Fusobacterium in the C-3102 group at 12 weeks compared to baseline.
It is likely that C-3102 improves BMD by inhibiting bone resorption and modulating the
gut microbiota in healthy postmenopausal women.

However, after administration of probiotics to the gut, such as Lactobacillus acidophilus
DDS-1, Bifidobacterium lactis UABla-12, Bifidobacterium longum UABl-14, and Bifidobacterium
bifidum UABb-10, and with the abundant presence of gut bacteria associated with beneficial
health effects, especially Bifidobacterium and Lactobacillus, there is not always correlation
with a change in terms of bone mineral content [31].

Regardless of the action mechanism, some high-evidence studies showed promising
metabolic effects. Narva et al. [29] studied the effect of milk fermented with L. helveticus on
acute changes in calcium metabolism in postmenopausal women, reporting a reduction
in serum parathyroid hormone (PTH) and an increase in serum calcium. Again, Jones
et al. [32], in a double-blind, placebo-controlled, randomised, parallel-arm, multicenter
study, investigated the changes in serum low-density lipoprotein cholesterol over a 9-week
administration of Lactobacillus reuteri NCIMB 30242. Authors reported an increase in cir-
culating 25-hydroxyvitamin D in response to oral probiotic supplementation, suggesting
a possible way for the prevention of low serum 25-hydroxyvitamin D-related osteoporo-
sis [32]. Also, Nilsson et al. [33] reported a reduction in loss of total BMD in patients
treated daily with L. reuteri 6475 in a double-blind, placebo-controlled study. Jafarnejad
et al. [34], in a randomised, double-blind, placebo-controlled clinical trial, supplemented
postmenopausal women patients with GeriLact containing seven probiotic bacterial species,
plus 500 mg calcium and 200 IU vitamin D daily for 6 months. The multi-species probi-
otic significantly reduced bone-specific alkaline phosphatase (p = 0.03), collagen type 1
cross-linked C-telopeptide (p = 0.04), and serum PTH (p = 0.01) and TNF-α (p = 0.02) in the
intervention group compared with the placebo group but had no effect on spine and total
hip BMD.

Some studies have suggested the addition of probiotics to traditional drugs for os-
teoporosis treatment. Jia et al. [35] conducted a randomised, placebo-controlled clinical
trial in which zoledronic acid and calcitriol were administered together with bifidobacteria
quadruple viable tablets and reported an improvement in bone metabolism and intestinal
flora in patients with osteoporosis. Similarly, Lambert et al. [36] administered a red clover
extract rich in isoflavone aglycones and probiotics to simultaneously promote absorption
and a favourable intestinal bacterial profile to enhance isoflavone bioavailability for the
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treatment of postmenopausal osteopenic women supplemented with calcium (1200 mg/d),
magnesium (550 mg/d), and calcitriol (25 µg/d). This study showed that one year of
red clover extract supplementation effectively attenuated estrogen deficiency-induced
BMD loss, improved bone turnover, promoted a favourable estrogen metabolite profile
(2-OH:16α-OH), and stimulated equol production.

In summary, clinical and animal studies have shown promising effects of probiotics
on bone with varying mechanisms of action. Probiotics have been mainly associated with
improvements in bone mineral density and metabolic effects. Some studies also suggest
combining probiotics with traditional osteoporosis drugs for better outcomes [23,29,35,36]
(Table 1).

Table 1. Summary of the reviewed studies concerning bone.

Study Study Population Probiotic Strain Duration of the
Treatment Results

Narva et al. [29]
Randomised
double-blind

crossover study

20 postmenopausal
women (mean age

65, range 50–78)

L. helveticus-fermented
milk and

L. helveticus-derived
peptides

2 study days and
6 days washout
between each

study day

L. helveticus-fermented milk
reduced serum PTH and
increased serum calcium.

L. helveticus-derived peptides
had no significant acute effect.

Jones et al. [32]
Double-blind,

placebo-controlled,
randomised,
parallel-arm

multicenter study

127 healthy hyperc-
holesterolemic

adults (ages 20–75)
L. reuteri capsules 13 weeks Serum 25-hydroxyvitamin D

increased by 25.5%.

Nilsson et al. [33]
Double-blind placebo-

controlled study

70 women with low
bone mineral

density

1010 colony-forming
units of L. reuteri 6475

12 months
L. reuteri 6475 reduced loss of

total bone mineral density
compared to placebo.

Jafarnejad et al. [34]
Randomised,
double-blind,

placebo-controlled
clinical trial

50 women (ages
50–72) with mild

bone loss

Multispecies probiotic
capsules (GeriLact) 6 months

Decrease in bone-specific
alkaline phosphatase and in
collagen type 1 cross-linked

C-telopeptide in serum PTH and
TNF-alfa.

Takimoto et al. [30]

76 healthy,
postmenopausal

women
(50–69 years)

Bacillus subtilis C-3102
(C-3102) 24 weeks

Significant increase in total hip
bone mineral density. Significant

decrease in bone
resorption markers.

Jia et al. [35]
Placebo-controlled

intervention
clinical trial

126 elderly
hospitalised
patients with

primary
osteoporosis

Bifidobacterium
quadruple viable that

comprises four
components of

bifidobacterium,
Lactobacillus acidophilus,

Enterococcus faecalis,
and Bacillus cereus

24 months

Decrease in bone Gla protein,
total propeptide of type I

procollagen, and β-crosslaps.
Decrease in phosphate, IL-6 and

TNF-α serum levels. Increase
in IGF-1.

Lambert et al. [36]
Parallel-design,

placebo-controlled,
double-blind,
randomised

controlled trial

85 postmenopausal
women

Heterogeneous culture
of probiotic lactic

acid bacteria
12 months

Attenuation of bone mineral
density loss. Decrease in plasma
concentrations of collagen type 1
cross-linked C-telopeptide. No
significant effect on other bone

turnover biomarkers.

3. Cartilage

Cartilage is a type of connective tissue with highly specialised cells called chondro-
cytes, which are embedded in a matrix of collagens, proteoglycans, and non-collagenous
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proteins that protect the cells from normal use. The cartilage of the joints is called articular
cartilage, which allows low-friction movement of the synovial joints [37]. During life,
articular cartilage undergoes internal remodeling as cells replace matrix macromolecules
lost to degradation. With age, the ability of chondrocytes to maintain and rebuild articular
cartilage decreases, increasing the risk of articular cartilage surface degeneration. Progres-
sive degeneration of articular cartilage, also known as osteoarthritis (OA), is characterised
by joint pain and dysfunction [38].

OA is the most common disabling disease in older people [39]. Due to their beneficial
properties, probiotics may represent a valid adjunct to traditional OA treatment. Despite
this, no human studies have been reported investigating the effect of probiotics on OA. To
date, only preclinical in vitro and in vivo studies have been conducted, with promising
and encouraging results (Table 2).

Table 2. Summary of the reviewed studies concerning cartilage.

Study Study Population Probiotic Strain Duration of the
Treatment Results

Korotkyi et al. [40]
Double-controlled

intervention
clinical trial

90 white male
Wistar rats

Chondroprotector and the
probiotic separately

and alongside
30 days

Separate chondroprotector
and probiotic application

seems to prevent
cartilage destruction.

Sophocleus et al. [41]
Placebo-controlled

clinical trial

21 male C57BL/6
mice underwent

antibiotic-induced
ablation of the

microbiome and
osteoarthritis

induced

Lacticaseibacillus paracasei 8700:2
(DSM13434), Lactiplantibacillus

plantarum HEAL9 (DSM 15,312),
and Lactiplantibacillus plantarum
HEAL19 (DSM 12,313) in equal

amounts (n = 11)

10 weeks

Inhibition of DMM-induced
cartilage damage and

impacts on the structure of
subchondral bone.

Korotkyi et al. [40] investigated the chondroprotective effect of probiotics in OA-
induced knee joints in rats. The study analysed the use of chondroprotectants and probiotics
separately and in parallel. Separate use of chondroprotectants and probiotics had a positive
effect on preventing cartilage destruction. Therefore, the use of a chondroprotectant
enhances the positive effect of probiotic microbiota in anti-inflammatory processes [40].

A study tried to evaluate the role of the microbiome in the pathogenesis of OA [41].
The authors performed antibiotic-induced ablation of the microbiome followed by reconsti-
tution and administration of probiotics in a mouse model of 21 male C57BL/6 mice with OA
induced. Then, a mixture of probiotic strains Lacticaseibacillus paracasei 8700:2 (DSM13434),
Lactiplantibacillus plantarum HEAL9 (DSM 15312), and Lactiplantibacillus plantarum HEAL19
(DSM 12313) in equal amounts (n = 11), or vehicle (glycerol) (n = 10) was administered for
10 weeks. Knee joints were scanned by MicroCT for quantitative and qualitative changes in
subchondral bone, followed by histological examination of cartilage to quantify severity.
Osteoarthritis Research Society International (OARSI) scores at the medial femoral condyle
(MFC) were significantly lower in the faecal microbial transplant and probiotic-treated mice
compared to the control group (4.64 ± 0.32 compared to 6.48 ± 0.53). There were no signifi-
cant differences in inflammation scores and circulating inflammatory cytokines between the
two groups [41]. This finding could suggest that the anti-inflammatory probiotic effects may
differ relative to tissue type, such as bone or cartilage. Thus, the action mechanism should
be investigated to understand the pathway of the probiotic chondroprotective effects.

Although no human studies have been reported, preclinical studies in rats and mice
demonstrated the chondroprotective effects of probiotics and their role in reducing cartilage
destruction and improving OA severity.
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4. Muscles

Skeletal muscle represents 40% of the total mass of the human body and can be
considered a reservoir of protein to be used in catabolic situations. Daily cycles of dietary
anabolism/catabolism can be modified in the long term by age, physiological status,
lifestyle and fitness, resulting in muscle mass gain (recovery after exercise and endurance)
or loss (sarcopenia and cachexia) [42].

Microbiota may interfere with the regulation of skeletal muscle responsiveness to
anabolic stimuli. For this reason, protein supplementation and micronutrients are used
to improve or limit the loss of muscle mass. Recently, scientific research has included
pro-biotics as a supplement to target muscle mass and function [43].

For a long time, marketed probiotics were mainly lactic acid bacteria (LAB) and
bifidobacterial strains of human or food origin, but current strategies focus more on using
bacteria of human origin [44].

Applications focus on both muscle gain and muscle loss, studying athletes or cachectic
and sarcopenic patients (Table 3).

Table 3. Summary of the reviewed studies concerning muscles.

Study Study Population Probiotic Strain Duration of
the Treatment Results

Hsu et al. [45] 32 male mice

Lactobacillus fermentum
DSM 32784 (LF26),

L. helveticus DSM 32787
(LH43), L. paracasei DSM

32785 (LPC12),
L. rhamnosus DSM 32786

(LRH10), and
Streptococcus thermophilus

DSM 32788 (ST30)

4 weeks

Supplementation alters the gut
microbiota composition, improves

performance, and combats
physical fatigue.

Toohey et al. [46]

23 female athletes
(19.6 ± 1.0 years,
67.5 ± 7.4 kg, and

170.6 ± 6.8 cm)

Bacillus subtilis 10 weeks No effect on physical performance
but may improve body composition.

Chen et al. [47] 24 mice L. plantarum TWK10
(LP10) 6 weeks

LP10 significantly decreased final
body weight and increased relative

muscle weight, strength, and
endurance. Moreover, a decrease in
lactate, ammonia, creatine kinase,

and glucose serum levels after acute
exercise challenge was observed.

Prokopidis et al. [48]
Systematic review
and meta-analysis

/ / /
Probiotic supplementation enhances
muscle mass and strength; no effects

on total lean mass.

De Pavia et al. [49]
Systematic review / / /

Not enough evidence to support that
probiotics can improve performance
in endurance and aerobic exercises.

Chen et al. [50]
18 female

senescence-
accelerated

mice

Lactobacillus paracasei
PS23 (LPPS23) 12 weeks

Significant attenuation of
age-related decrease in muscle mass

and strength.

Lee et al. [51] young mice and old
mice L. plantarum HY7715 5 weeks Inhibition of the sarcopenic process

in skeletal muscle.

Bindels et al. [52] mouse model of
leukemia

L. reuteri 100–23 and L.
gasseri 311,476 / Reduction in the expression of

atrophy markers in muscles.

Varian et al. [53]

ApcMin/+ mice and
wildtype littermates

for experiments
involving cancer

cachexia

Lactobacillus reuteri
ATCC-PTA-6475 /

Symbiotic bacteria through FoxN1
and thymic stimulation provide

possible alternatives for cachexia
prevention.
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4.1. Muscle Mass Gain

In 2019, the International Society of Sports Nutrition (ISSN) published an objective
and critical review of the mechanisms and use of probiotic supplementation in improv-
ing the health, performance, and recovery of athletes based on the currently available
literature, reporting the following sentence as a conclusion: “The administration of se-
lected anti-inflammatory probiotic strains has been associated with improved recovery
from muscle-damaging exercise” [54]. In fact, probiotic supplementation may have the
potential to remove and utilise blood lactate produced after exercise. Hsu et al. [45] ob-
served that consuming a kefir LAB strain containing Lactobacillus fermentum DSM 32784
(LF26), L. helveticus DSM 32787 (LH43), L. paracasei DSM 32785 (LPC12), L. rhamnosus DSM
32786 (LRH10), and Streptococcus thermophilus DSM 32788 (ST30), every day over 4 weeks,
swimming time-to-exhaustion was significantly longer, forelimb grip strength was higher,
and serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase levels were
lower after the swimming test.

Moreover, probiotic supplementation could also have benefits for an athlete’s body
composition, decreasing levels of fat mass and increasing fat-free mass [46,55,56]. Nowa-
days, this is only demonstrated in animal models. Chen et al. [47] orally administered
L. plantarum TWK10 (LP10) to mice for six weeks and examined the relative muscle weight,
measured by combining the gastrocnemius and soleus muscles. This study observed that
the relative muscle weight was significantly increased, with a marked gain of the type I
muscle fibre number.

A recent systematic review and meta-analysis of clinical trials [48] investigated the
effect of probiotic supplementation on muscle mass, total lean mass, and muscle strength
in both young and older adults. The study reported that muscle mass was improved by
probiotics compared to placebo (SMD: 0.42, 95% CI: 0.10–0.74, I2 = 57%, p = 0.009), but no
changes were demonstrated in relation to total fat-free mass (k = 12; SMD: −0.03, 95% CI:
−0.19–0.13, I2 = 0%, p = 0.69). A significant increase in global muscle strength was also
observed (SMD: 0.69, 95% CI: 0.33–1.06, I2 = 64%, p = 0.0002).

Conversely, another systemic review [49] found no evidence to support the hypoth-
esis that probiotics can improve endurance and aerobic exercise performance, but the
analysis focused on cardiorespiratory fitness markers without considering muscle mass
and strength.

4.2. Prevention of Muscle Mass Loss (Sarcopenia and Cachexia)

Sarcopenia is a progressive skeletal muscle disease associated with an involuntary
accelerated loss of muscle mass and an increase in adverse events such as falls, functional
decline, frailty, and mortality, especially in older adults [57] and sometimes in younger
patients [58]. The prognosis depends on several factors, including physical inactivity,
hormonal imbalances, sleep disturbances, and malnutrition [59–62]. Although this topic
may seem distant from the orthopedic field, it is becoming increasingly important, as it
has been demonstrated to impact the outcomes of major orthopedic surgeries such as hip
arthroplasty and spinal surgery [63].

A multidisciplinary approach that includes orthopedic consideration of sarcopenia
and any treatment that may be able to reduce it can, therefore, be crucial in enhancing
postoperative recovery for patients.

Sarcopenic patients are susceptible to loss of strength due to muscle fibre loss caused
by overproduction of reactive oxygen species and pro-inflammatory mediators, immune
senescence, and anabolic resistance status [64–67]. The main treatments for sarcopenia are
nutritional therapies aimed at achieving a caloric intake of 24–36 kcal/kg body weight/day
and a protein intake of 1.0–1.5 g/kg body weight/day [68,69] and supplementation with
antioxidants [70], protein and essential amino acids (EAA) [71], omega-3 fatty acids, and
creatine monohydrate [72].

Probiotics have been proposed as a potential nutritional supplement in sarcopenia
therapy. In vivo studies in mice supplemented with Lactobacillus showed an increase
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in muscle mass preservation, a reduction in low-grade inflammation, and an increase in
mitochondrial function [47,50–52,73]. Fielding et al. [73] reported an increase in muscle
strength but not muscle mass.

Cachexia, which is partly related to sarcopenia, is also a muscle wasting disease caused
by a multifactorial disorder and characterised by generalised fatigue, loss of body weight,
skeletal muscle and fat mass, and reduced food intake. Cachexia is often associated with
cancer [74,75] and a systemic inflammatory state, with high pro-inflammatory markers
such as C-reactive protein (CRP) [76].

An altered microbiota was obserrved in cancer cachexia, associated with a decrease in
Bifidobacterium, Lactobacillus, and Faecalibacterium genera and an increase in Enterobacteriaceae
and Enterococcus [77,78].

LAB were tested in two studies using cancer-induced cachexia rodents. Bindels
et al. administered Limosilactobacillus reuteri 100–23 and Lactobacillus gasseri 311,476 to
leukemic mice for 2 weeks. They found a decrease in the levels of markers associated with
muscle atrophy and in the release of systemic inflammatory cytokines. Nonetheless, it
was hypothesised that the observed beneficial effects might be specific to certain species
because the same study did not show these effects for Lactobacillus acidophilus [52]. In
another study, Varian et al. administered L. reuteri ATCC-PTA-6475 for 3 months to mice
affected by colorectal cancer. The study revealed a rise in muscle mass and a decline in
muscle atrophy. Additionally, there was a decrease in the activity of a gene linked to
systemic inflammation [53].

The microbiota has been found to influence skeletal muscle responsiveness to anabolic
stimuli, and probiotic supplementation has been explored to improve muscle mass and
function. Studies have shown that several specific probiotic strains can aid in muscle
recovery after exercise and enhance endurance. However, the evidence is limited. Probiotics
have shown potential in the treatment of conditions like sarcopenia and cachexia. Animal
studies have demonstrated that probiotic supplementation can preserve muscle mass,
reduce inflammation, and enhance mitochondrial function. However, the effects on muscle
strength and muscle mass preservation may vary.

5. Skin

The skin on the surface is colonised by bacteria, fungi, viruses, micro-eukaryotes
(mites), archaea, and sweat, sebaceous glands, and associated hair follicle phages [79].
The microbiome composition depends on several factors, including age, gender, genetics,
immunity, hormonal balance, sleep routine, stress, metabolic factors, hygiene and skin care
routine, chemical or ultraviolet radiation exposure, physical activity, climate, environmental
pollution, and nutrient availability [80]. Most of the skin microbiome is made of bacteria;
of these, Staphylococcus epidermidis, Cutibacterium acnes, and Corynebacterium are the most
represented [81].

Antibiotic therapies, whose side effect could be the dysbiosis of the gut microbiome’s
composition [82], could probably also interfere in the skin microbiome by reason of an
interaction between the gut microbiome and the skin microbiome, which is actually not
fully understood [83].

Probiotics modifying the gut microbiome may be used for targeting orthopedic skin-
related problems, such as chronic wounds [84–86] and diabetic foot ulcers (DFU).

Chronic wounds are defined as a pathological condition with a lack of clinical im-
provement within four weeks from the beginning of treatment and the absence of healing
after a period of three months [87]. Microbial infections are among the main causes of
delayed wound healing [88]. An exposed epithelial barrier with devitalised tissue, a moist
nutrient-rich environment, and dysregulated inflammatory processes are all conditions
that create a favourable environment for microbial proliferation [88]. The first microbial
contamination is reversible, but after a while a biofilm is produced, conferring functional
resistance to antibiotics and the immune system [87]. It is reported that around 60–90%
of chronic wounds contain biofilm-forming bacteria [88], and the most common isolated
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bacteria are Staphylococcus aureus, Pseudomonas aeruginosa and β-hemolytic Streptococci, Ente-
rococcus spp., Klebsiella pneumoniae, Acinetobacter baumanii and Enterobacter spp. (ESKAPE
pathogens), coagulase-negative Staphylococci, and Proteus spp.

In chronic wounds, a reduction in migratory and proliferative capability of ker-
atinocytes and fibroblasts was observed. The presence of those bacteria seems to stimulate
the influx of immune cells, such as neutrophils and macrophages, but with reduced chemo-
tactic, antimicrobial, and phagocytic activities [88]. This leads to biofilm growth and
dysfunctional immune cell infiltration, resulting in a pro-inflammatory state due to ex-
cessive toll-like receptor signaling, with a massive release of cytokines, chemokines, and
growth factors [89].

Conventional treatment of chronic wounds is based on the use of antimicrobials
and antibiotics [90], consisting of local antiseptics and topical and systemic antibiotics.
Nevertheless, the bacterial biofilm makes chronic wounds become highly resistant to
antimicrobials and antibiotics [88].

The topic of probiotics use seems to be an emerging and interesting option in chron-
ically infected wound management [91]. Topical probiotics penetrate the intercellular
lipid matrix, and when they reach the dermis, they activate toll-like receptors. Toll-like
receptors are type 1 transmembrane proteins that act as a major signaling receptor for
pathogen-associated molecular patterns. Toll-like receptors upregulate collagen and elastin
and improve skin clarity, texture, and appearance. Then, probiotic bioactivities throughout
toll-like receptors lead to beta-defensin production, which raises the skin’s immune func-
tions [88,92,93]. This might lead to the healing of diabetic ulcers and to the prevention of
diabetic foot infections.

In a randomised, double-blind, placebo-controlled trial [92], a series of 60 patients
(aged 40–85 years old) with grade 3 DFU were administered L. acidophilus, L. Casei, L. fer-
mentum, and B. bifidum for 12 weeks. Significant improvements were seen in DFU length
(−1.3 ± 0.9 vs. −0.8 ± 0.7 cm, p = 0.01), width (−1.1 ± 0.7 vs. −0.7 ± 0.7 cm, p = 0.02),
and depth (−0.5 ± 0.3 vs. −0.3 ± 0.3 cm, p = 0.02). Improvements in glycaemic control,
total cholesterol, high-sensitivity C-reactive protein, plasma nitric oxide, total antioxidant
capacity, and malondialdehyde levels were also reported.

In a prospective uncontrolled study [93], L. plantarum was administered to 14 patients
with diabetes and 20 patients without diabetes for chronic venous leg ulcers. After 30 days
of follow-up, ulcer size was reduced by 90% in 43% of the diabetic patients and 50% of the
non-diabetic patients. These results may suggest that probiotics break down biofilm, control
IL-8 levels produced by polymorphonuclear leukocytes, and regulate the immune system.

In a study [94], the outcomes of burn healing in eight burned patients treated with
L. plantarum were compared to sulphadiazine treatment for 10 days of daily treatment. In
delayed second-degree burns, the administration of L. plantarum was as effective as the
SD-Ag relative to the decrease in bacterial load, the promotion of granulation tissue, and
wound healing. In delayed third-degree burns, results suggested a better outcome for
L. plantarum treatment [94].

In summary, probiotics can be used topically to improve chronic wound healing and
DFU through the effects of the immune function’s activation, bacterial load reduction, and
collagen production promotion. Although probiotics are primarily used in chronic wounds,
their ability to modulate the host’s immune response and exhibit antimicrobial activity
could potentially extend their role in enhancing wound healing even in acute settings, such
as acute post-traumatic and post-surgical wounds (Table 4).
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Table 4. Summary of the reviewed studies concerning skin.

Study Study Population Probiotic Strain Duration of the
Treatment Results

Brognara et al. [90]
Systematic review

12 in vitro, 8 in vivo
studies and

2 human studies
/ /

Preliminary evidence supports the
use of specific strains of probiotics
in certain clinical settings, such as

infected chronic wounds.

Mohsemi et al. [92]
Randomised,
double-blind,

placebo-controlled trial

60 subjects
(40–85 years) with

grade 3 diabetic
foot ulcer

Lactobacillus acidophilus,
Lactobacillus casei,

Lactobacillus Fermentum
and Bifidobacterium

bifidum
(2 × 109 CFU/g each)

12 weeks
Probiotic supplementation led to

significant reductions in ulcer
length, width, and depth.

Peral et al. [94] 80 burned patients L. plantarum /

In second-degree burns,
L. plantarum was as effective as the
SD-Ag one. In third-degree burns,
L. plantarum was more effective.

6. Prevention of Side Effects of Surgical Antibiotic Prophylaxis

In orthopedics, as in surgery in general, surgical site infections (SSIs) are among the
most common healthcare-associated infections (HAIs), with a prevalence of 31.0% of all
HAIs in hospitalised patients [95]. Guidelines from the Centers for Disease Control and
Prevention (CDC) recommend surgical antibiotic prophylaxis (SAP) to reduce the risk of
SSIs [96].

However, SAP has some side effects, such as allergy, anaphylaxis, nausea, emergence
of antibiotic resistance, and antibiotic-associated diarrhoea due to Clostridioides difficile in-
fection (CDI). The incidence of CDI is high in elderly orthopedic patients and has increased
significantly in Europe, North America, and Asia since 2000 [97].

Co-administration of probiotics and SAP may be a potential strategy to prevent both
CDI and Clostridium difficile-associated diarrhoea (CDAD) in orthopedic patients. Probiotics
have been shown to produce bacteriocins and defensins, compete with pathogenic bacteria
for resources, interfere with bacterial attachment or translocation, reduce luminal pH, and
improve intestinal barrier function by increasing mucus production [98].

Two systematic reviews with meta-regression analysis showed that administering
probiotics closer to the first dose of antibiotics reduced the risk of CDI by more than
50% in hospitalised adult patients [99] and reported a significant reduction in the rate of
developing CDAD in patients receiving antibiotics [100].

Nagamine et al. [101] reported a CDI incidence reduction (95% CI: 0.010–0.565; p = 0.002)
in elderly orthopedic patients treated with a combination of antibiotics and probiotics,
including Streptococcus faecalis 2 × 108 CFU/day, Bacillus mesentericus 1 × 107 CFU/day, and
Clostridium butyricum 5 × 107 CFU/day (Bio-Three tablets®, Toa Pharmaceutical Co., Ltd.,
Tokyo, Japan).

In a randomised controlled study, Kaku et al. [102] tried to explain the probiotic effect
against SAP side effects, showing that SAP did not influence the entire gut microbiome
composition. The authors observed a relative abundance of S. gallolyticus after SAP, while
probiotics administration significantly reduced the relative abundance of S. gallolyticus.
Considering the pathogenicity of S. gallolyticus and the relationship with SAP, it could
be supposed that some SAP side effects are linked to S. gallolyticus; thus, probiotics may
prevent SAP side effects after surgery (Table 5).
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Table 5. Summary of the reviewed studies concerning SAP side effects.

Study Study Population Probiotic Strain Duration of the
Treatment Results

Shen et al. [99]
Systematic reviews 19 studies / /

Administration of probiotics closer
to the first dose of antibiotic reduces

the risk of CDI by >50% in
hospitalised adults.

Kaku et al. [102]
Placebo-controlled trial

33 patients who
underwent

spinal surgery

Enterococcus faecium
129 BIO 3B-R 5 days

Streptococcus gallolyticus and
Roseburia were significantly

decreased in the probiotics group.

Lau et al. [100]
Systematic review and

meta-analysis
/ / /

Significant risk reduction in
Clostridium difficile-associated
diarrhoea in patients receiving

antibiotics associated
with probiotics.

Nagamine et al.
Retrospective

case-control study [101]

29 cases and
120 control

Streptococcus faecalis,
Bacillus mesentericus,

and Clostridium
butyricum

more than
14 days

Risk reduction in Clostridium
difficile infection.

7. Discussion

In recent years, probiotics have emerged as an attractive therapeutic strategy in modern
medicine for several diseases. Although probiotics are not yet included in guidelines for
the treatment of orthopedic pathologies, several studies have been conducted to evaluate
the possible benefits of their administration. In orthopedics, probiotics have potential
applications in bone, cartilage and muscle diseases, wounds and ulcers, or SAP side effects.

The probiotic effect is expressed at the level of the gut microbiota, which is considered
to be an organ capable of regulating bone metabolism through modulation of the immune
system, endocrine organs, and calcium activity [2].

Osteoporosis is a widespread disease that may benefit from this treatment; in various
studies, probiotics have shown an improvement in bone mineral density and metabolic
effects without side effects [20]. For this reason, probiotics could be a safe and effective
alternative for preventing bone loss, possibly in combination with traditional therapies [19].

However, most of the papers in the literature were preclinical in vitro and in vivo
studies. Few clinical trials in the literature evaluated probiotic effects, and most did
not use randomisation or blinding, had participants with different health statuses and
comorbidities, and used different probiotic species and doses.

Another common disease is OA, the conservative treatment of which is hotly debated.
The use of probiotics in the treatment of OA has been reported, both as a single dose
and in combination with chondroprotective drugs [38,39]. However, no human studies
have been reported in the literature that investigate the effect of probiotics on OA. To date,
only preclinical in vitro and in vivo studies have been conducted, with promising results.
Further human studies should be conducted to confirm the therapeutic potential of this
intervention in the treatment of OA.

Probiotic supplementation may be beneficial for body composition and strength,
particularly for improving muscle mass gain and preventing muscle mass loss in sarcopenic
and cachectic patients [31]. The effect of probiotics on muscles may be important in terms
of functional recovery and in the possibility of early rehabilitation in post-traumatic and
post-operative patients, especially the elderly. The use of probiotics limited the loss of
skeletal muscle mass in in vivo animal studies. Again, human studies should be carried out
to confirm these results in order to include probiotic administration in treatment guidelines
for sarcopenia and cachexia [53,77,78].

Probiotics have shown beneficial effects on diabetic ulcers and chronic wounds, partic-
ularly against some types of pathogens. Preliminary evidence supports the use of specific
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strains in the management of infected chronic wounds [82]. However, it is important to
consider the possibility of allergic reactions and local infections due to probiotics becoming
pathogens, especially in immunocompromised patients [82]. Incidentally, there is a lack of
reported adverse events in most probiotic clinical trials.

Finally, many high-quality studies have shown that probiotic supplementation may be a
cost-effective strategy for preventing CDI in hospitalised adults receiving antibiotics [90–92,94].

Probiotics cannot replace conventional orthopedic therapy. Current human studies
looking at the effects of probiotics are small and show limited evidence. This is probably
due to the difficulty in designing an appropriate trial, including ethical issues.

Probiotics are cost-effective, and all studies, although not always achieving statistical
significance, reported promising results after probiotic supplementation in major ortho-
pedic conditions, suggesting that probiotics may play a conventional role in the future
in conjunction with traditional therapies. Among these, bone infections could also be
included; however, currently, there are no clinical studies on this matter, but only a few
data derived from animal studies [103].

Exploring modulation of the gut microbiota, regulation of the immune system, and
other relevant pathways would be an intriguing avenue to pursue. Additionally, investigat-
ing the impact of probiotic bacteria on receptors in human cells and their interaction with
other organ systems—especially in terms of whether these effects are direct or mediated by
changes in the overall composition of the microbiota following probiotic intervention—is
significant for understanding the mechanisms described in this paper.

8. Conclusions

Probiotics appear to be a readily available, cost-effective, and promising adjunct for the
treatment of osteoporosis, OA, muscle wasting disorders, wound and ulcer problems, and
the prevention of SAP side effects. Modulation of the microbiota by probiotics represents
a future perspective for the development of routine nutritional or pharmaceutical tools.
However, further high-level clinical trials are needed to translate research into clinical
practice and to refine the clinical indication of specific probiotic strains.
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