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Abstract: Foot and ankle injuries are common in many sports. One of the main athletes issues is
the time for sport resumption after trauma. Recently, extensive efforts have been made to speed up
the athletes’ return-to-sport and to prevent joint degeneration. Among the conservative treatment
options, biophysical stimulation with pulsed electromagnetic fields (PEMFs) is listed. This narrative
review aims to outline current applications of PEMFs in main foot and ankle sport-related injuries, in
particular in the treatment of bone marrow edema, osteochondral defects, fractures, and nonunions.
Despite further high-quality studies on foot and ankle injuries are needed, PEMFs seem to be a valid
aid to enhance the endogenous osteogenesis, to resolve the bone marrow edema, to inhibit the joint
inflammation, preserving articular cartilage degeneration, and to relieve pain.

Keywords: pulsed electromagnetic fields; pain; bone marrow edema; fractures; nonunion; physical
therapy; sport; foot and ankle

1. Introduction

Foot and ankle injuries are common in many sports [1]. These injuries often lead
to a significant time to sport resumption and a variable rate of sequelae with persisting
symptoms.

Extensive efforts have been made to improve the management of sports injuries,
to speed up the athletes’ return-to-sport, and to prevent pathological conditions: nons-
teroidal anti-inflammatory drugs, Hyaluronic-acid, Platelet Rich Plasma (PRP), different
formulations of stem cells’ injection, and biophysical stimulation [2,3].

Several biophysical stimulation devices have a consolidated role in the treatment of
many musculoskeletal disorders, and already shown positive effects on articular cartilage,
subchondral bone, and synovium [4]. These devices are classified into electrical energy
applied directly to the skin by adhesive electrodes (capacitively coupled electric field,
CCEF), by ultrasound probe (low-intensity pulsed ultrasound system, LIPUS), by tran-
sient pressure disturbances (extracorporeal shock wave therapy, ESWT), by low-frequency
continuous laser (Low-Level Laser Therapy LLLT), or by pulsed electromagnetic energy
applied by coils (pulsed electromagnetic fields, PEMFs) [4].

Among these conservative treatment options, biophysical stimulation with PEMFs
consists in the application of nonionizing physical energy to a biological system in order to
exert an anti-inflammatory effect and anabolic activity, acting mainly at the level of the cell
membrane, and to increase and facilitate tissue regeneration [4].
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PEMFs have shown positive effects on articular cartilage, bone, and synovium, as the
musculoskeletal system is highly responsive to its physicochemical environment [4].

Thanks to these features, PEMFs have found several applications in sport-related
injuries, in order to reduce joint inflammation and swelling, resolve bone marrow edema
(BME), limit cartilage degeneration, and promote tissue healing. In addition, PEMFs may
play a role as a post-surgical treatment to avoid chronic pain, and functional limitations, to
enhance tissue regeneration, and to preserve the mechanical and biological properties of
the repaired cartilage. PEMFs are also used as an adjuvant surgical treatment to initialize
and finalize the osteogenic process in cases of fractures, delayed union, and nonunions [5].

This narrative review aims to outline current applications of PEMFs in foot and ankle
sport-related injuries.

2. Applications

Current PEMFs applications derived from several laboratory and clinical investiga-
tions. Different studies reported the use of PEMFs therapy in the treatment of various
pathological conditions. Regarding foot and ankle sport-related injuries, main applica-
tions of are represented by BME, osteochondral defects (OCD), fractures, and nonunions.
Moreover, other conditions such as fasciae and tendon pathologies appear to theoretically
benefit from PEMFs therapy.

2.1. BME

BME is defined as a condition characterized by an area of low signal intensity in
T1- weighted and high signal intensity findings on T2-weightd on Magnetic Resonance
Imaging (MRI) [6]. In the foot and ankle, the talus is the most affected foot bone [7].

This condition represents a nonspecific finding with multiple etiologies. Under physi-
ological circumstances, high-intensity exercise triggers bone remodeling process. However,
a repeated mechanical overload beyond a certain intensity can result in an incomplete
remodeling process, and in an imbalance between bone apposition and absorption, with
an alteration of the physiological trabecular bone architecture. This bone stress reaction
results in pain and disability [8].

If adequately treated, BME resolves; in other conditions, it can also evolve towards
bone necrosis.

The rational for the use of PEMFs in the treatment of BME are based on two fundamen-
tal mechanisms of action: (1) PEMFs can play a role in the local inflammation control [9,10]
and (2) can enhance the healing process by stimulating neovascularization and new bone
formation [11,12].

Martinelli et al. [7] investigated the effectiveness of PEMFs on patients with talar BME,
determining their effect on MRI findings. BME reduced after 1 month of treatment and
completely resolved within 3 months. Normal signal intensity and no signs of progression
to avascular necrosis were reported, associated with a significant decrease in pain after
3 months. The mean American Orthopaedic Foot and Ankle Society (AOFAS) score im-
proved from 59.4 (range, 40–66) before treatment to 94 (range, 80–100) at the last follow-up.
The Visual Analog Scale (VAS) score decreased significantly from 5.6 (range, 4–7) before
treatment to 1 (range, 0–2) at the last follow-up.

This study confirms the evidences already reported on other joints. At the hip level,
different authors described the use of PEMFs in the management of avascular necrosis
of the femoral head in adults with positive results [13]. Results were evaluated using the
Ficat classification. The Ficat classification stages osteonecrosis of the femoral head using
a combination of plain radiographs, MRI, and clinical features: five different stages of
bone necrosis are recognized, from Stage 0 to Stage 4 [14]. Al-Jabri et al. [13] performed a
systematic review reporting that early Ficat stages show the best responses to treatment via
PEMFs with improvements in both clinical and radiographic parameters.

Similarly, good outcomes were reported at the knee level: Marcheggiani Muccioli [15]
et al. reported the results on spontaneous osteonecrosis of the knee in the early stage.
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Twenty-eight patients suffering from symptomatic Koshino I spontaneous osteonecrosis of
the knee, confirmed by MRI, were treated with local PEMFs (6 h daily for 90 days). Pain,
measured using the visual analog scale (VAS) (a 100-mm horizontal line, where the left end
represents no pain, and the right end maximum possible or unbearable pain), significantly
reduced at 6 months (from 73.2 ± 20.7 to 29.6 ± 21.3, p < 0.0001), which remained almost
unchanged at the final follow-up (27.0 ± 25.1). Knee society score (KSS) significantly
increased in the first 6 months (from 34.0 ± 13.3 to 76.1 ± 15.9, p < 0.0001) and was slightly
reduced at the final follow-up (72.5 ± 13.5, p = 0.0044). Tegner median level increased
from baseline to 6-month follow-up (1 (1–1) and 3 (3–4), respectively, p < 0.0001) and
remained stable. EQ-5D (a standardized measure of health-related quality of life developed
to provide a simple, generic questionnaire for use in clinical and economic appraisal and
population health surveys) improved significantly throughout the 24 months (0.32 ± 0.33,
baseline; 0.74 ± 0.23, 6-month follow-up (p < 0.0001); 0.86 ± 0.15, 24-month follow-up
(p = 0.0071)). Significant reduction in the total Whole-Organ Magnetic Resonance Imaging
Score (WORMS) mean score (p < 0.0001) and mean femoral bone marrow lesion’s area
(p < 0.05) were observed. This area reduction was present in 85% and was correlated to
WORMS grading both for femur, tibia, and total joint (p < 0.05). Four failures (14.3%) at the
24-month follow-up were reported.

Current applications of PEMFs for BME and osteonecrosis are summarized in Table 1.

Table 1. Summary of studies related to BME.

Disease Study Characteristics Results

BME Martinelli et al. [7]

Talar BME.
Duration: 8 h/d for 30 days.
Time of pulse (rise time): 1.3 ms
Frequency: 75 Hz.
Induced voltage of 3.5 ± 0.5 mV.

Significant BME area reduction
associated with a significant decrease in
pain within 3 months of
beginning treatment

J.L. Cebrián et al. [16]

Osteonecrosis of the head in pre-collapse
bone stages
Duration: 8 h/d for 6 months.
Time of pulse (rise time): 1 at 3 ms
Frequency: 75 Hz
Intensity: 400 mA

PEMFs reduce the incidence of
radiographic progression of symptomatic
osteonecrosis of femoral head in early
stages and provide successful
clinical results

Marcheggiani
Muccioli et al. [15]

Spontaneous osteonecrosis of the knee.
Duration: 6 h/d for 90 days.
Frequency: 75 Hz
Duty-cycle: 10%.
Peak magnetic field: 1.5 mT

PEMFs stimulation significantly reduced
knee pain and necrosis area in Koshino
stage I spontaneous osteonecrosis of
the knee

L. Massari et al. [17]

Osteonecrosis of the femoral head.
Duration: 5 ± 2 months.
Time of pulse (rise time): 1.3 ms.
Frequency: 75 Hz
Induced voltage: 2 ± 0.5 mV

The study confirms that PEMFs treatment
may be indicated in the early stages of
osteonecrosis of the femoral head

C. Windisch et al. [18]

Osteonecrosis of the femoral head
Duration: 6- and 12-month postoperative
follow-up
Frequency: ~20 Hz
Flux density: ~5 mT
Induced voltage: ~700 mV

No better clinical results and does not
offer better prophylaxis for the avoidance
of total hip arthroplasty over all
ARCO stages
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Table 1. Cont.

Disease Study Characteristics Results

Bassett et al. [19]

Femoral head osteonecrosis.
Helmholtz-aiding coils
Duration: 8–10 h/day
Frequency: 15 Hz
Single pulse frequency: 72 Hz

PEMF patients have experienced
long-term improvements in symptoms
and signs, together with a reduction in
the need for early joint arthroplasty

R.K. Aaron et al. [20]

Osteonecrosis of the femoral head.
Duration: 8 h/day
Single pulse
frequency: 72 Hz 380 ms

Exposure to pulsing electromagnetic
fields appears to be more effective in hips
with Ficat II lesions than in hips with
more advanced lesions.

2.2. OCD

ODC are focal areas of damaged articular cartilage and subchondral bone. OCD are
common sport-related injuries and can often deeply affect the patient’s quality of life [21].

Intra-articular injuries are known to occur more frequently in an athletic population:
compared with the general population, athletes place a higher demand on the joint surfaces
and, as a result, are more likely to develop pathological conditions.

Repetitive high-intensity loading during pivoting and twisting and acute contact
trauma, especially in association with joint instability or deformities, can lead to OCD
and/or rapid progression of cartilage injury [22].

This might explain why it is reported that osteoarthritis has a higher prevalence in
former athletes [23].

Due to its poor restorative capacity, articular cartilage should be preserved in all its
components: cells and extracellular matrix, together with subchondral bone.

The primary treatment for talar OCD up to 1.5 cm in diameter is surgical [24]: even if
well treated, these lesions may require as much as one year to obtain clinical improvement
in the symptomatology. PEMFs can support surgical treatment to speed up functional
recovery and achieve better outcomes.

At the joint level, PEMFs perform a strong anti-inflammatory action and have a
chondroprotective effect. In human osteoarthritic synovial fibroblasts, PEMFs inhibit the
release of prostaglandin E2 (PGE2) and the pro-inflammatory cytokines interleukin-6 (IL-6)
and interleukin-8 (IL-8), while stimulating the release of interleukin-10 (IL-10), an anti-
inflammatory cytokine. These effects are mediated by the PEMFs-induced up regulation of
adenosine A2A, 3 adenosine receptors [25]. Moreover, PEMFs counteract the interleukin-
1β (IL-1β) effect, thus increasing the synthesis of proteoglycans and proliferation of chon-
drocytes acting in concert with insulin-like growth factor-1 (IGF-1) present in both synovial
fluid and articular cartilage; this plays a key role among the anabolic growth factors that
control articular joint metabolism [26]. In addition, in human articular chondrocytes [27],
PEMFs stimulation increase extracellular matrix component synthesis, such as collagen II
(COLL II), glycosaminoglycan (Gags), and proteoglycans (PGs) [28].

Several studies have been published specifically reporting the use of PEMFs in surgi-
cally treated OCD.

Cadossi et al. reported the results of a prospective comparative study on patients with
grade III and IV Outerbridge talar OCD managed with a collagen scaffold seeded with bone
marrow-derived cells who randomly received postoperative biophysical stimulation with
PEMFs (1.5 mT, 75 Hz, 4 h/day). Only one stimulation regime was used. A superior and
significant clinical outcome was found in the PEMF group, with more than 10 points higher
AOFAS score at the final follow-up. Authors concluded that PEMFs started soon after
surgery-aided patient recovery, leading to pain control and better clinical outcomes [29].

Reilingh and colleagues in a double-blind, randomized controlled trial evaluated the
use of PEMFs (1.5 mT, 75 Hz, 4 h/day) after arthroscopic debridement and microfracture
of talar OCD in athlete patients [30]. Although no differences in sport resumption one year
after surgery between the treated and control groups were reported, in the PEMF-treated
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group, 96% of patients returned to sport by week 30, while in the control group the same
percentage was achieved at week 52 [31].

These findings are in agreement with other papers in which the use of PEMFs in other
anatomical districts after surgery was related to a faster functional recovery [29,32–34].

When dealing with PEMFs, exposure time in terms of hours/day, intensity peak value
of the magnetic field, and frequency of pulses are essential in order to obtain satisfactory
results. Schmidt-Rohlfing and colleagues used a physical signal with different physical
parameters (magnetic field peak intensity, frequency, signal waveform) and dosage and
suggest that PEMFs and sinusoidal magnetic fields have no effect on the cellular metabolism
of human osteoarthritic chondrocytes cultivated in a collagen gel in vitro [35]. However,
researches performed ex vivo on bovine articular cartilage explants made it possible to
identify the most effective parameters and treatment conditions to be used in in vivo and
clinical studies for the joint: 1.5 mT, 75 Hz, 4 h/day [36].

Current applications of PEMFs for OCD are summarized in Table 2.

Table 2. Summary of studies related to OCD.

Disease Study Characteristics Results

Osteochondral defects Cadossi et al. [29]

Peak intensity: 1.5 mT
Frequency: 75 Hz
Duration: 4 h/day for 60 days
starting within 3 days after surgery

Pain control and a better clinical
outcome after surgery

Reilingh et al. [30]

Peak intensity: 1.5 mT vs. placebo
peak\0.05 mT
Frequency: 75 Hz
Duration: 4 h/day for 60 days

Earlier resumption of sports after
arthroscopic debridement and
microfracture of talar OCDs

2.3. Fractures

Sports traumas, because of high-intensity forces, may lead to complex foot and an-
kle fractures.

PEMFs are generally known for accelerating fresh fractures healing by stimulating
growth factors and cytokines production, [36] and increasing angiogenesis and perfu-
sion [37].

Aleem et al. [38] conducted a meta-analysis of randomized controlled trials with
sham group to determine the efficacy of electrical stimulation for bone healing, identifying
only those trials in which patients were randomized into the stimulated or placebo group.
Patients treated with electrical stimulation as an adjunct for bone healing have less pain
(mean difference (MD) on 100-mm visual analogue scale = −7.7 mm; 95% CI −13.92 to
−1.43; p = 0.02) and are at reduced risk for radiographic nonunion by 35% (95% CI 19% to
47%; number needed to treat = 7; p < 0.01).

More recent results were reported in a systematic review and meta-analysis of random-
ized controlled trials performed by Peng et al. [39]. On 1131 participants, PEMF treatment
increased overall healing rate with a risk ratio of 1.22 (95% CI = 1.10–1.35), but only marginal
significance in healing time (SMD = −1.01; 95% CI = −2.01 to −0.00; I 2 = 90%). PEMFs
showed better pain relief (SMD = −0.49; 95% CI = −0.88 to −0.10; I 2 = 60%) [39].

Up today, there are no studies evaluating the role of PEMFs in the setting of acute foot
and ankle fractures.

However, there are studies that have evaluated the role of PEMFs after metatarsal
osteotomies. As a matter of fact, osteotomies can be considered a good repeatable fracture
model in order to reduce variability.

Breccia et al. [40] conducted a study in 60 patients percutaneously treated with os-
teotomies for hallux valgus and metatarsalgia and stimulated with PEMF. The treated
group showed better radiographic healing rates and pain control with less edema. The
author concluded that early application of PEMF would appear particularly beneficial to
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selected patients with high activity levels by reducing pain, disability, convalescence time,
and return to work after surgery. A faster recovery could be also a cost-saving solution.

Despite there is still a moderate quality evidence in the current literature [39], PEMFs
can be beneficial in the treatment of acute fractures regarding time to radiological and
clinical union (Table 3), therefore, should be considered as a valid option, in particular
when dealing with athlete patients [41].

Table 3. Summary of studies related to fractures.

Disease Study Characteristics Results

Fractures Aleem et al. [38] -
(meta-analysis)

Less pain and lower rates of
radiographic nonunion or
persistent nonunion

Peng et al. [39] -
(systematic review and meta-analysis)

Moderate increasing in healing rate
and relieved pain of fracture

Breccia et al. [40]

Peak intensity: 2.5 mT
Frequency: 75 Hz
Duration: 8 h/day until the 42nd
postoperative day

Better radiographic healing rates and
pain control with less edema

2.4. Nonunions

The definition of nonunion is a fracture that persists for a minimum of 9 months
without healing signs for three months [42].

Delayed unions or nonunions have a substantial clinical, economic, and quality of
life impact.

Due to their characteristics, PEMFs have been applied to the treatment of nonunions
Gupta and al. conducted a study on 45 tibial fractures with established atrophic

nonunion treated by PEMFs [43]. All patients had abnormal mobility and no or slight
gap at the fracture site with no evidence of callus formation. PEMFs was given using
above-knee plaster cast (0.008 Weber/m2 magnetic field was created for 12). The average
duration for PEMFs therapy was 8.35 weeks, with the range being 6–12 weeks. About 35%
of cases (n = 16) showed union in 10 weeks, and 85% (n = 38) of cases showed union in
4 months. Authors concluded that PEMFs are a useful noninvasive treatment option for
difficult nonunion of long bones.

As reported by Adie S et al., PEMFs are an effective treatment for delayed unions and
nonunions, but their efficacy in preventing healing complications in patients with acute
fractures is largely untested [44].

In a double-blind randomized trial, 259 participants with acute tibial shaft fractures
were randomized by means of external allocation to externally identical active and inactive
PEMFs devices. Participants were instructed to wear PEMF for 10 h/day for 12 weeks. The
primary outcome was the proportion of participants requiring a secondary surgery because
of delayed union or nonunion within 12 months after the injury. Secondary outcomes
included surgical intervention for any reason, radiographic union at 6 months, and the
Short Form Health Survey 36 (a 36-item, patient-reported survey of patient health), Physical
Component Summary, and Lower Extremity Functional Scales at 12 months. Two hundred
and eighteen patients (84%) completed the follow-up. One hundred and six patients were
allocated to the active device group, and one hundred and twelve to the placebo group.
Compliance was reported to be 6.2 h/day of average. Overall, 16 patients in the active
group and 15 in the inactive group experienced a primary outcome event (risk ratio, 1.02;
95% confidence interval, 0.95 to 1.14; p = 0.72). According to the per-protocol analysis, there
were 6 primary events (12.2%) in the active, compliant group and 26 primary events (15.1%)
in the combined placebo and active, noncompliant group (risk ratio, 0.97; 95% confidence
interval, 0.86 to 1.10; p = 0.61). No differences between-groups were found with regard to
all the considered parameters. Authors concluded that adjuvant PEMFs stimulation does
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not prevent secondary surgical interventions for delayed union or nonunion and does not
improve radiographic union or patient-reported functional outcomes.

For what it may concern foot and ankle nonunions, main applications of PEMs in-
volve proximal fifth metatarsal fractures, especially Jones fractures, and diaphyseal stress
fractures [45].

Holmes et al. [46] treated 9 delayed unions and nonunions of the proximal fifth
metatarsal with PEMFs. All fractures healed in a mean time of 4 months (range 2–8 months),
with no refractures, nor recurrence of symptoms and no further requirements of additional
interventions. Three patients after receiving PEMF fields were placed in a non-weight
bearing cast and healed in a mean time of three months. Authors compared the healing
time of delayed unions and nonunions proximal fifth metatarsal treated in other ways
such as cast with non-weight bearing, bone graft, and screw fixation in other studies and
concluded that the use of PEMFs provided for healing in a comparable or shorter time and
without complications when compared with immobilization alone or surgery [45,47–49].

Adam Streit et al. [50] conducted a prospective, randomized, double-blind trial on
8 patients diagnosed with a fifth metatarsal delayed or nonunion, with no progressive
signs of healing for a minimum of 3 months. Patients were randomized to receive either
an active stimulation or placebo PEMFs device. All patients underwent an open biopsy
of the fracture site and was fitted with the appropriate PEMFs device. The biopsy was
analyzed for messenger-ribonucleic acid (mRNA) levels. The patients were followed at 2-
to 4-week intervals with X-rays and were graded by the number of cortices of healing. After
3 weeks, the patients underwent repeat biopsy and open reduction and internal fixation of
the nonunion site. A significant increase in placental growth factor (PIGF) level was found
after active PEMF treatment (p = 0.043). Authors reported that all fractures healed, with an
average time to complete radiographic union of 14.7 weeks and 8.9 weeks for the inactive
and active PEMF groups, respectively. Results lead to the conclusion that the adjunctive
use of PEMF for fifth metatarsal fracture nonunion produced a significant increase in local
factors and faster average time to radiographic union compared to unstimulated controls.

The characteristics of PEMFs in the treatment of foot and ankle nonunion have been
confirmed by other authors not only in the field of fractures. Martinelli et al. [51] reported
the case of a 42-year-old woman affected by a nonunion of the first metatarsal bone after
percutaneous distal osteotomy for hallux valgus deformity. The patient was surgically
treated with debridement of the fibrous nonunion with plating followed by the application
of PEMFs, and achieved bone consolidation within 3 months.

Current applications of PEMFs for nonunions are summarized in Table 4.

Table 4. Summary of studies related to nonunions.

Disease Study Characteristics Results

Nonunions Gupta et al. [43] Intensity: 0.008 Weber/m2

Duration: 12 h/day, 8.35 weeks
35% (n = 16) of cases showed union in
10 weeks

Holmes et al. [46]

Intensity: burst consisting of
20 magnetic field pulses with
anincreasingphase (0–20 gauss) of 200
psec duration and a decreasing phase
of 20 gsec followed by a 5-psec pause
Frequency: pulse burst of 4.5 msec
duration repeated at 15 Hz
Duration: 8–10 h/day

Healing in a comparable or shorter
time course and with no
complications
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Table 4. Cont.

Disease Study Characteristics Results

Adie S. et al. [44]
EBI Bone Healing
Duration: 10 h/day, within 2 weeks
after the injury

No significant differences in
preventing secondary surgical
interventions for delayed union
or nonunion

Adam Streit et al. [50] EBI Bone Healing
Duration: 10 h/day

Significant increase in local factors
and faster average time to
radiographic union

Martinelli et al. [51]

Intensity: 3.5 ± 0.5 mV for 1.3 ms
Frequency: 75 Hz
Duration: 7 days after surgery and
was maintained until initial
bone consolidation

Bone consolidation within 3 months

3. Discussion

Foot and ankle injuries are common in many sports. The main problem of most
injuries in athletes is represented by the time taken for coming back to sports after trauma
or surgery. In both cases, a possible way to shorten recovery time might be the application
of PEMFs, for their capability of cell stimulation, inflammation reduction, articular cartilage
preservation, and pain relief.

These features seem very important in athletes for an early return to sport and, more-
over, for reducing other possible tissue damages, in particular regarding joints arthritic
evolution.

The aim of this narrative review was to present some possible application of PEMFs in
sport-related foot and ankle injuries, in particular BME, OCD, fractures, and nonunion.

The effect of PEMFs stimulation on BME has been shown to promote osteogenic
activity, preventing trabecular fracture, and subchondral bone collapse.

Similarly, OCD seems to benefit from PEMFs application. In particular, PEMFs started
soon after surgical OCD repair with bone marrow-derived cells transplantation, aided
patient recovery leading to better clinical results.

Bone marrow-derived cells are known to be able to differentiate into mature hyaline
cartilage cells in vitro; however, the effect of microenvironment in vivo may lead to different
results, and PEMFs may play a positive role in this field, in particular by decreasing some
of the most relevant pro-inflammatory cytokines releases [29,31].

It has to be also considered that any surgical procedure activates an inflammatory
reaction, which is different for each patient. When inflammation is not controlled, it may
negatively affect cartilage repair and therefore clinical outcomes.

Future comparative studies using histological analysis would be useful to confirm the
hypothesis that PEMFs can help bone marrow-derived cells in directing toward hyaline
cartilage differentiation.

The same approach seems to be interesting if applied to fractures, and nonunion, were
the role of PEMFs is already well established.

Apart from the above-mentioned sport-related injuries, PEMFs might be also used on
other common athlete’s pathological conditions, such as plantar fasciitis (PF) [52].

PF represent a common condition in athletes, resulting in approximately 8% of all
running-related injuries. While PF treatment is mainly conservative, the period to resolution
can be quite long, in some cases up to 2 years [52]. PEMFs may represent a valid tool in
order to speed up the healing process.

Brook J et al. [52] conducted a multicenter, prospective, randomized, double-blind, and
placebo- and positive-controlled trial to determine the effects of nightly use of a wearable
Pulsed Radiofrequency Electromagnetic Field (PRFE) device (ActiPatch, Bioelectronics) on
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patients diagnosed with plantar fasciitis. Seventy subjects were enrolled and randomly
assigned a placebo or active PRFE device.

The PRFE device was applied overnight, and pain was recorded using a 0- to 10-
point VAS every morning, and evening. A significantly different pain reduction was
registered between the two groups (p = 0.03). The study group (active PRFE device)
showed progressive reduction in morning pain. After 7 days, pain was 40% lower than day
1. On the other hand, the control group showed a 7% pain reduction. Authors concluded
that PRFE therapy represent a simple, drug-free, noninvasive therapy to reduce PF pain.

The data reported in this review article are the result of a solid scientific research, and
highlight the role of PEMFs as a promising approach for different clinical applications.

Although there are many studies concerning preclinical trial [36,53–57], there are less
clinical data, and even fewer regarding foot and ankle injuries management.

Moreover, in the literature, only few studies include exclusively sportsmen or athletes,
who could most benefit from these treatments.

While on the one hand this can represent a limitation, on the other hand it is an
incentive to continue research in this field, and to keep developing possible applications
and treatments.

PEMFs for athletes will need to be evaluated in terms other possible beneficial effects:
injury prevention; lactic acid flush from the cells, and soreness reduction; decrease in
stiffness, cramping, and pain from physical exertion; and better blood oxygenation, cellular
metabolism and hydration.

4. Future Perspectives

Future clinical indications are still at the stage of in vitro studies in particular regarding
the dynamic behavior of cellular structures.

However, current evidence seems to suggest that these treatment approaches will
become increasingly widespread in the clinical setting. These evolutions do not concern
only BME, OCD, fractures, and nonunions, but many other conditions, such as tendons
painful conditions.

PEMFs treatment on BME is known to promote osteogenic activity, and to prevent
subchondral bone collapse. This treatment appears the more effective the earlier BME is di-
agnosed [7,13]. Future perspectives should focus not only on the BME cellular mechanisms
in response to PEMFs, but also on exploring new clinical and imaging tools to make early
diagnosis.

PEMFs seems to play a role in helping stem cells to differentiate into mature hyaline
cartilage cells, in particular by decreasing pro-inflammatory cytokines releases [29,31].
These properties have been reported in vitro with bone marrow-derived mesenchymal
stem cells [29,31], but in the future should be evaluated also in vivo, comparing different
sources of stem cells: bone marrow, adipose tissue, synovial membrane, etc.

The role of PEMFs is well established in the treatment of fractures, and nonunion.
However, future perspectives should focus on histological analysis to better to understand
how the bone healing process works, both in physiological and pathological settings.
Randomized controlled trials would be a worthwhile endeavor.

Tendons, as well as fasciae [52], may benefit from PEMFs therapy.
Tendons painful conditions in response to overuse are known as tendinopathies: in

addition to degenerative aspects, inflammatory mediators have been found to be sometimes
present [57,58].

Colombini et al. [58] studied the interaction between inflammation and matrix remod-
eling in human tendon cells (TCs) and demonstrated that the attempt of TCs to counteract
the catabolic/inflammatory state induced by IL-1β is in part mediated by A2A, Rs and
reinforced by PEMF treatment [58]. These findings demonstrated that A2A, Rs have a role
in the promotion of the TC anabolic/reparative response to PEMFs and to IL-1β.

De Girolamo et al. [59,60] studied the effect of PEMF treatment (1.5 mT, 75 Hz) on
chronic tendinopathy, a degenerative process causing pain and disability [59,60]. PEMF’s
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effect was assessed on primary TCs, harvested from semitendinosus and gracilis tendons
of patients, under different experimental conditions. Authors found that PEMF, in a dose-
dependent manner, enhance the proliferation, tendon-specific marker expression, and
release of anti-inflammatory cytokines and angiogenic factor in a healthy human TCs
culture model.

In tendon regeneration, the use of PEMFs together with mesenchymal stem cells
(MSCs) is another intriguing option, but still investigational. Marmotti et al. [61] investi-
gated the effect of PEMF on MSCs isolated from the human umbilical cord (UC-MSCs) and
found that PEMF exposure generates a biophysical preconditioning effect on UC-MSCs,
promoting the expression of tenogenic markers and anabolic cytokines involved in tendon
regeneration [61].

These results have a clinical relevance, suggesting a possible large-scale clinical ap-
plication of this approach as an adjuvant non-invasive therapy in the early postoperative
period of tendon surgical repair.

In addition, a study conducted on culture of tendon derived cells from healthy donors,
who underwent knee anterior cruciate ligament reconstruction with autologous hamstring,
showed that PEMFs may represent a possible tool for enhancing and accelerating the
physiological ligamentization process during the postoperative period of tendon recon-
struction [62].

The role of PEMF in improving the tendon healing process was also evaluated in a
rat model of collagenase-induced Achilles tendinopathy [63,64]. The PEMF group showed
an improvement in the fibers organization, a decrease in cell density, vascularity, and fat
deposition, and a restoration of the physiological cell morphology compared to untreated
groups. The authors concluded that PEMFs exerted a positive role in the tendon healing
process, thus representing a promising conservative treatment for tendinopathies.

As a consequence, hypothetical clinical application of PEMFs in further studies may
regard the role of PEMFs as an adjunctive treatment for different tendon pathologies, which
are particularly common in sportsmen or athletes.

5. Conclusions

Sport-related foot and ankle injuries are common. Extensive efforts have been made
to speed up the athletes’ return-to-sport and to prevent joint degeneration. Among the
conservative treatment options, PEMFs represents a well-established therapeutic approach.
This narrative review aimed to outline current applications of PEMFs in main foot and
ankle sport-related injuries. Currently, BME, OCD, fractures, and nonunions represent
the main application areas. PEMFs stimulation on BME has shown to promote osteogenic
activity, thus preventing subchondral bone collapse. OCD repair with bone marrow-
derived cells transplantation seems to benefit from PEMFs application, due to a reduction
in pro-inflammatory cytokines release. PEMFs can also be helpful in the treatment of acute
fractures and nonunions, in particular regarding time to radiological and clinical union.
Further high-quality studies in terms of patients and methods are needed to draw stronger
conclusions. However, PEMFs achieved promising results so far, with many possible fields
of application, also in athlete patients with foot and ankle sport-related injuries.
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