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Abstract: The treatment landscape for hematologic malignancies has changed since the recent
approval of highly effective chimeric antigen receptor T-cell therapies (CAR-T). Moreover, more
than 600 active trials are currently ongoing. However, early enthusiasm should be tempered since
several issues are still unsolved and represent the challenges for the coming years. The lack of
initial responses and early relapse are some hurdles to be tackled. Moreover, new strategies are
needed to increase the safety profile or shorten the manufacturing process during CAR-T cells
therapy production. Nowadays, most clinically evaluated CAR-T cells products are derived from
autologous immune cells. The use of allogeneic CAR-T cells products generated using cells from
healthy donors has the potential to change the scenario and overcome many of these limitations. In
addition, CAR-T cells carry a high price tag, and there is an urgent need to understand how to pay
for these therapies as many of today’s current payment systems do not feature the functionality to
address the reimbursement gap. Finally, the clinical experience with CAR-T cells for solid tumors has
been less encouraging, and development in this setting is desirable.

Keywords: CAR-T; manufacturing; toxicities; solid tumor; DRG; cost

1. Introduction

Chimeric antigen receptor T-cell therapy (CAR-T) is a type of immunotherapy in which
a patient’s T cells, immune cells with anti-cancer activity, are collected and genetically
engineered to improve their tropism and promote the elimination of cancer cells [1–4]. The
modified cells are expanded in the laboratory and then returned to the patient to fight
cancer. The year 2018 represents a milestone in the history of medicine: the Food and Drug
Administration (FDA) [5,6] and the European Medicines Agency (EMA) [7] approved the
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first two products containing autologous T cells genetically modified ex vivo, tisagenlecleu-
cel and axicabtageneciloleucel, for commercial use, revolutionizing the treatment landscape
for relapsed or refractory (R/R) ALL and R/R non-Hodgkin lymphoma (NHL). However,
history goes on, and in the last year, the FDA approved lisocabtagenemaraleucel in R/R
NHL [8] and idecabtagenevicleucel in R/R multiple myeloma (MM) [9–11]. In addition,
brexucabtageneautoleucel has been approved for treating adult patients with R/R mantle
cell lymphoma [12] and is now being studied in patients with R/R B-ALL [13]. Moreover,
the rolling submission of a biologics license application has been completed to support the
approval of the investigational ciltacabtageneautoleucel in R/R MM [14]. Researchers also
published data about an autologous CAR-T that uses a novel binding domain to target
a B-cell maturation antigen (CARTddBCMA) in R/R MM, designed to reduce the risk of
immunogenicity, while increasing stability [15]. The main characteristics of the constructs
and the clinical indications are summarized in Table 1.

Table 1. Main characteristics of the CAR-T constructs and clinical indications.

Name General Description Therapeutic Indications

Tisagenlecleucel

Immunocellular therapy containing tisagenlecleucel,
autologous T cells genetically modified ex vivo using a

lentiviral vector encoding an anti-CD19 chimeric antigen
receptor.

Pediatric and young adult patients up to and
including 25 years of age with B-cell acute

lymphoblastic leukemia that is refractory, in
relapse post-transplant, or in second or later

relapse.
Adult patients with R/R diffuse large B-cell

lymphoma after two or more lines of systemic
therapy.

Axicabtageneciloleucel

A CD19-directed genetically modified autologous T-cell
immunotherapy. T cells are genetically modified ex vivo by

retroviral transduction to express a chimeric antigen receptor
comprising a murine anti-CD19 single-chain variable fragment

linked to the CD28 co-stimulatory domain and CD3-zeta
signaling domain.

After two or more lines of systemic therapy,
adult patients with R/R diffuse large B-cell
lymphoma and primary mediastinal large

B-cell lymphoma.

Lisocabtagenemaraleucel

Anti-CD19 single-chain variable fragment (scFv) targeting
domain for antigen specificity, a transmembrane domain, a
4-1BB costimulatory domain hypothesized to increase T-cell

proliferation and persistence, and a CD3-zeta T-cell activation
domain.

After two or more lines of systemic therapy,
adult patients with R/R large B-cell

lymphoma, including diffuse large B-cell
lymphoma, not otherwise specified,

high-grade B-cell lymphoma, primary
mediastinal large B-cell lymphoma, and

follicular lymphoma grade 3B.

Brexucabtageneautoleucel

Autologous peripheral blood T-lymphocytes (PBTL) that have
been transduced with a retroviral vector expressing a chimeric
antigen receptor (CAR) consisting of an anti-CD19 single-chain
variable fragment (scFv) coupled to the zeta chain of the T-cell
receptor (TCR)/CD3 complex (CD3 zeta) and the costimulatory

signaling domain CD28.

Treatment of adult patients with R/R mantle
cell lymphoma.

Idecabtagenevicleucel Anti B-Cell maturation antigen (BCMA) scFv fused to the
CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains.

Adult patients with R/R multiple myeloma
after four or more prior lines of therapy,

including an immunomodulatory agent, a
proteasome inhibitor, and an anti-CD38

monoclonal antibody.

Ciltacabtageneautoleucel
BCMA-targeted T-cell therapies are directed against two BCMA

epitopes (VH1 and VH2) to confer improved affinity for
BCMA-expressing cells.

Not authorized. Trials ongoing in R/R
multiple myeloma to both immunomodulatory
agents and proteasome inhibitors, or with at

least three prior lines of therapy and
previously exposed to anti-CD38 monoclonal

antibody.

The approval by the FDA and EMA and the available therapies mentioned above have
significantly impacted the treatment of several hematologic malignancies. Moreover, out
of the 600 active trials, ongoing FDA and EMA estimate to approve 10–20 gene therapy
products per year by 2025. The growth of CAR-T cells therapies mirrors the extraordinary
results of the pivotal studies. In lymphoid malignancies, the overall response rates were
70% to 80%, with complete responses observed in approximately 50% of patients [16–20].
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The BCMA–CAR-T is associated with a median progression-free survival of 8.8 months,
more significant than expected from other available therapies in heavily pretreated R/R
MM [21].

Despite these unprecedented gains, numerous issues must be solved, representing
the goal for the coming years. The significant challenges are the lack of initial responses
and early relapse, driven by antigen escape and T-cell exhaustion. Developing strategies to
increase the safety profile is mandatory to maintain the integrity of CAR-T cells therapy
product manufacturing, resulting in longer gaps in treatment in patients who require urgent
disease control. Novel approaches to shorten the manufacturing process are developing.
Most clinically evaluated CAR-T cells products have been derived from autologous immune
cells. The use of allogeneic CAR-T cells products generated using cells from healthy donors
has the potential to overcome many of these limitations. The clinical experience with
CAR-T cells therapy for solid tumors has been less encouraging, and development in this
setting is desirable. Finally, CAR-T cells carries a high price tag, and there is an urgent need
to understand how to pay for these therapies.

The purpose of this paper is to provide a succinct summary of the CAR-T cells prob-
lems to be solved in the future (Figure 1).
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Figure 1. Future directions for chimeric Antigen Receptor Cell Therapy (CAR-T).

2. Improving Responses

With the longer follow-up reported, we are closer to answering the question of whether
sustained remissions are possible with CAR-T cells monotherapy. Unfortunately, despite
initially impressive in-depth responses, more than half of the patients experienced a relapse.

The failure is primarily mediated by antigen escape and T-cell exhaustion. In total,
33% of the relapses in ZUMA-1 were CD19 negative [22]. Similarly, the loss of BCMA
expression contributes to disease relapse in MM [23].
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One strategy to improve efficacy is finding novel targets and designing constructs
targeting more than one antigen, such as the dual-targeting CD19/CD22 CAR in B-cell
malignancies [24–26], dual CD19/CD20 CAR in lymphomas and leukemia [27,28], and
CD19/BCMA-specific CAR in MM [29].

CD22-directed CAR-T cells have shown efficacy against leukemia [30] and lym-
phoma [31], representing the first alternative CAR target with comparable efficacy to
CD19 CAR-T.

Dual-targeting CARs or combination therapy may prevent relapses due to escape
variants; therefore, they are the way forward.

Other studies investigate the sequential infusion of CD19- CAR-T and BCMA-CAR-Ts
for R/R MM [29]. The preliminary results evidence the tolerability and efficacy of this
approach, and present a simple and safe design applicable for the establishment of multiple
CAR-T cells therapies. In addition, de Larrea and colleagues evaluated strategies for simul-
taneously targeting BCMA and G-protein–coupled receptor class C group 5D (GPRC5D)
with CAR-T cells in MM. Their study demonstrates that it was feasible to simultaneously
target GPRC5D and BCMA, and provides insight into optimal dual targeting designs; thus,
broadening the arsenal and potential efficacy of cellular therapies for MM. Another strategy
is combining CAR-T cells with small molecules to increase surface expression of the target,
as in the clinical trial combining BCMA CAR-T with a gamma-secretase inhibitor, which
blocks BCMA cleavage [32].

It is now recognized that T-cell phenotype and fitness correlate with clinical response.
Several predictive biomarkers of T-cell function (such as LAG3, TIM3, and PD-1 expression)
are being identified [33]. CAR-T cells products with lower naive, central memory phenotype
in lymphoma show worse T-cell responses [34]; similarly, in myeloma, a lower CD4:CD8
ratio and higher terminally exhausted T cells in non-responders [35]. Several strategies are
being pursued to optimize the CAR-T cells product composition, including balancing T-cell
subset ratios [19], combining CAR-T cells with lenalidomide [36,37] or Bruton tyrosine
kinase (BTK) inhibitors [38]. The administration of lenalidomide, in combination with
anti-BCMA CAR-T, may be warranted based on tumoricidal effects, a more permissive
tumor microenvironment for CAR-T function, and the observed intrinsic impact on CAR-T
function. Qin et al. postulated that dosing with a BTK inhibitor before CAR-T cells engraft-
ment could reduce the tumor size, and normalize immune functions and microenvironment
conditions. Concurrent dosing with a BTK inhibitor after administration of CD19-targeted
CAR-T therapy may mitigate potential in vivo CAR-T dysfunctions, delay exhaustion, or
improve CAR-T cells expansion, particularly for CAR-T compositions engineered from
cells with intrinsic inferior performance. Novel CARs with T-cell activating features, such
as placement of the CAR-T cells, construct downstream of the T-cell receptor promoter,
resulting in a more physiologically active and less-likely exhausted phenotype [39].

Combining allo-SCT and CAR-T cells therapy is an attractive area of research to
improve the outcomes further. Allo-SCT has been used in several clinical trials after
CAR-T cells treatment and showed efficacy and favorable prognosis in R/R B-ALL [40,41].
Considering the high heterogeneity among and within patients, different CAR-T cell
products, and continuously improved treatment strategies, consolidative allo-SCT cannot
be generalized; however, it is recommended for high-risk r/r B-ALL patients with no history
of allo-SCT and achieved MRD-negative CR after anti-CD19 CAR-T therapy [41]. Patients
without risk factors could achieve long-term remissions with a continuous expression of
the CAR in durable and functional CAR-T cells [42].

3. Safety Profile

With the available clinical algorithms, multidisciplinary staff must maintain compe-
tency in managing complications. Healthcare institutions must regularly review man-
agement guidelines based on current evidence, and host and product variables. Nurses
play a fundamental role in educating caregivers and patients to identify and initiate early
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management of toxicities. Moreover, collaboration with the Department of Intensive Care
is essential to tackle the most impactful complications.

A higher incidence of cytokine release syndrome (CRS) and immune cell-associated
neurotoxicity syndrome (ICANS) could be associated with several factors, such as construct
with a CD28 co-stimulatory domain [43], CD8+ CAR-T dose [44], bridging therapies in
patients with the more aggressive disease [45], and the use of different grading systems to
classify toxicity. The American Society for Blood and Marrow Transplantation criteria are
the most objective and easy to use [46].

IL-6 released by macrophages and monocytes plays a significant role in the patho-
genesis of toxicities, and extensive research efforts are focused on better understanding
the mechanisms of these toxicities and defining strategies to mitigate them [47]. In addi-
tion, identifying biomarkers that are easily applicable in clinical practice will improve the
treatment of post-CAR-T infusion toxicity [48].

Strategies with a risk-adapted earlier use of corticosteroids and tocilizumab to mitigate
CRS are evolving [49]. The treatment of ICANS has largely been limited to supportive
care and corticosteroids. More recently, some early clinical data investigated the use of
Anakinra as a promising agent in the prevention and treatment of severe ICANS [50]. The
investigation of adding a suicide gene that monoclonal antibodies may trigger, such as
rituximab or cetuximab, or by using the CRISPR/Cas9 genome editing technology to clone
a specific CAR construct to the T-cell receptor α constant (TRAC) locus resulting in uniform
CAR expression and enhanced T-cell potency, needs to be considered in future CAR-T
production [51]. Novel strategies are developing to interrupt these mechanisms without
attenuating CAR-T efficacy. For example, the granulocyte-macrophage colony-stimulating
factor (GM-CSF) is now known to promote the production of proinflammatory cytokines
in CRS. Strategies to reduce GM-CSF production are being explored, such as editing out
GM-CSF from effector CAR-T cells [52].

The long-term incidence of patients presenting with B-cell aplasia and, in general,
patients with leukopenia, thrombocytopenia, and anemia, should not be underestimated.
Therefore, future CAR constructs could target a clonally restricted B-cell marker, such as
a kappa and lambda light chain of immunoglobulins, which could maintain anti-tumor
activity without compromising humoral immunity, preventing B-cell aplasia [53]. Another
strategy could be deleting the target antigen on normal hematopoietic stem cells, as recently
shown by Kim et al. [54].

4. Manufacture Process

One of the future objectives must be the reduction of the production times of the
CAR-T. Three to four weeks is too long for patients with R/R disease, and we highlight
that 18% of patients enrolled in ELIANA could not get the product because of deterioration,
death, or manufacturing failure.

Possible solutions for reducing manufacturing time include novel manufacturing
processes, decentralized manufacturing, and exploring novel non-viral vector approaches
of genetic engineering with a faster turnaround time [55]. For example, Jackson et al.
showed that it is possible to manufacture CAR-T cells within a hospital setting using a
GMP-compliant closed system [56]. As a result, the authors reduced the turnaround cell
manufacturing time to eight days, lowering the cost and expediting patient treatment.
Such a fast turnaround time is one of the main advantages of local manufacturing over
centralized CAR-T manufacturing strategies.

Research is now pushing toward the next generation of CAR-T therapies, allogenic
or off-the-shelf treatments that can be mass-manufactured from a healthy donor (HD)’s
cells and used for multiple patients [57]. Off-the-shelf therapies have the potential to
treat 100 patients per batch of allogeneic CAR-T, similar to a drug product, and have the
advantage of being available immediately with no risk of delay or failed manufacturing.
Although this technology is still being developed, sights are already set on the manufactur-
ing efficiency and how it would compare to autologous CAR-T therapy production. HD
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sources include peripheral blood mononuclear cells, “universal donors” such as umbilical
cord blood, induced pluripotent stem cells, embryonic stem cells, or HLA-silenced CD34+
progenitor stem cells [58]. UCART19 is a product investigated in children and adults with
R/R B-ALL, with a manageable safety profile in heavily pretreated pediatric and adult
patients with R/R B-cell ALL. However, allogeneic cells risk immune rejection by host
T cells and allo-reactivation of the CAR-T cells via the TCR receptor against host tissues,
causing graft versus host disease (GVHD) [59]. Many trials are currently employing off-the-
shelf products, including a few practices with gene-edited deletion of the surface TRAC
molecule to prevent GVHD [60].

5. Solid Tumors

Several small trials on CAR-T cells in solid tumors have been conducted; however, the
research is still in its early stages. Most of the data published so far are small, preliminary
results of clinical trials. No findings have shown sustained, long remissions [61]. Several
factors hinder the effectiveness of cell therapy against solid tumors. First, intra-tumor
heterogeneity is one where cells of a solid tumor do not all present the same mix or
sufficient expression for the antigens at their surfaces; thus, CAR-T cells could spare some
cancer cells that will, later on, induce a relapse [62]. An immune suppressive tumor
microenvironment (TME) is the second factor. Solid tumors can interfere with proper
inflammation, producing immune-suppressing agents such as the checkpoint molecule
PD-L1 that will prevent immune activation. The accessibility of CAR-T cells to the tumor
mass is a third critical factor. A solid group of cells stacked in layers is difficult for T cells to
infiltrate. While some trials deliver the cells systemically, others aim to improve efficacy by
administering CAR-T cells directly to the tumor site [63].

Several studies are underway to combine CAR-T with cytokine administration, check-
point blockade, oncolytic viruses, radiation, and vaccines [64]. In addition, investigators
have explored the use of T cells to deliver viruses into tumors directly. For example,
combining CAR-T infusion with the local delivery of an oncolytic adenovirus encoding
RANTES and IL-15 in preclinical models has improved homing to and the persistence of
CAR-T cells at tumor sites [64].

The composition of immune cells in the tumor microenvironment is an essential ele-
ment for the heterogeneity of tumors, and creates interesting yet challenging complexities
when investigating dynamic interactions between cancer and immune cells [65]. Tumor
transcriptomics data are informative; however, they do not immediately indicate immune
cell compositions, which require computational inference. The computational algorithms
are based on two categories: deconvolution approaches and gene signature [66]. Decon-
volution methods define the problem as mathematical equations that model the gene
expression of a tissue sample as the weighted sum of the expression profiles from the cells
in the population mix. Gene signature-based approaches utilize a list of cell-type-specific
gene sets. These two complementary categories of algorithms have demonstrated variable
performance advantages in estimating specific immune cell types in different tumors [67].
The algorithms could help the user gain more comprehensive and robust results with
CAR-T cells.

6. Cost

Since the first CAR-T cells therapies gained FDA approval in 2017, the one-time
treatments have led to unprecedented response rates in patients with R/R lymphoid
malignancies, with remarkable price tags of about $373,000 for a single infusion.

In the late 1980s, the Italian hospitals developed a calculating tariff method based on
diagnosis-related groups (DRG) [68]. The DRGs have also been applied in North Amer-
ica [69]. DRGs are awarded by a “grouper” program based on International Classification
of Diseases diagnoses, physical characteristics (gender, age), procedures, the presence of
complications or comorbidities, and discharge status. By the DRG identified and the length
of hospital stay, the region pays the cost of hospitalization. DRGs include all the actions
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necessary to treat and diagnose the patient for each treatment because patients within
each category are clinically similar and are expected to employ the same level of hospital
resources (fixed price).

According to DRG, CAR-T cells therapy in Italy is remunerated at $59,806 in most
authorized centers. However, the actual repayment of the DRG does not correspond
to the cost of the CAR-T cells procedure and, in general, of a transplant procedure [67].
Furthermore, the price does not account for manufacturing the product, managing potential
long-term complications, or managing other therapy lines after relapse. The DRG model
finds complex applications in this scenario, and maybe a novel model should be explicitly
applied for cell therapies. For example, activity-based costing (ABC) is a tool developed
to improve efficiency and control cost. The procedure is based on the concept that the
production of a product or the performance of a service spends activities that consume
resources [70,71]. ABC endeavors to assign costs to each of these activities, and resources
so that total costs can be better understood and administrated. Finally, the pharmaceutic
company introduced an outcome-based pricing model: if the treatment does not work, no
one pays for it. That proposal is exciting with many problems, the least of which is that the
definition of “not working” is unclear [68].

7. Conclusions

CAR-T cells therapy has shown unprecedented results in patients without curative
options. Future work focusing on target identification, toxicity management, and manu-
facturing time shortening will broaden this exciting therapy’s clinical applicability and
sustainability, with more prolonged remissions without additional treatment.
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