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Abstract: Cardiovascular diseases (CVDs) are a leading cause of mortality globally. In particular,
ischemic heart diseases (IHDs) and cerebrovascular diseases (CBVDs) represent the main drivers
of CVD-related deaths. Many literature examples have assessed the association between CVD risk
factors and urban greenness. Urban green (UG) may positively affect physical activity, reduce air
and noise pollution, and mitigate the heat island effect, which are known risk factors for CVD
morbidity. This systematic review aims to assess the effects of urban green spaces on CVD morbidity
and mortality. Peer-reviewed research articles with a quantitative association between urban green
exposure variables and cardiovascular and cerebrovascular outcomes were included. Meta-analyses
were conducted for each outcome evaluated in at least three comparable studies. Most of the included
studies’ results highlighted an inverse correlation between exposure to UG and CVD outcomes.
Gender differences were found in four studies, with a protective effect of UG only statistically
significant in men. Three meta-analyses were performed, showing an overall protective effect of UG
on CVD mortality (HR (95% CI) = 0.94 (0.91, 0.97)), IHD mortality (HR (95% CI) = 0.96 (0.93, 0.99)),
and CBVD mortality (HR (95% CI) = 0.96 (0.94, 0.97)). The results of this systematic review suggest
that exposure to UG may represent a protective factor for CVDs.

Keywords: urban green; cardiovascular diseases; ischemic heart disease; cerebrovascular diseases;
residential greenness; CVD; meta-analysis

1. Introduction

The proportion of the population living in urban settings has grown rapidly in recent
decades. By 2050, 68% of the world’s population is expected to live in urban areas [1]. With
the increase in population living in an urban setting, more and more people will be exposed
to cities’ environmental factors, which could impact human health [2].

In recent history, the urbanization process has been addressed as an ameliorative
process for the living conditions of residents, providing more excellent job opportunities,
improved socio-economic status (SES), and greater access to healthcare. However, in recent
years it has become increasingly evident and pressing how certain aspects of urban living
(such as air pollution, noise, and extreme heat) can negatively affect the quality of life of
the citizens [3].

The design of built environment elements has been shown to influence physical and
mental health [4]. Urban living may hinder access to the natural environment and increase
exposure to harmful environmental hazards such as air pollution and heat [5]. Some studies
have suggested that urban green (UG), defined as all urban land covered by vegetation
of any kind, may impact air quality and traffic noise and help mitigate the temperature
rise due to climate change in urban settings [6,7]. Furthermore, the presence of a natural
environment might encourage physical activity among people living nearby, resulting in
several health benefits [8].

Cardiovascular diseases (CVDs) are the leading cause of death globally, accounting for
more than 18 million deaths per year, with ischemic heart diseases (IHDs) and cerebrovas-
cular diseases (CBVDs) representing the main drivers of CVD-related deaths [9]. Many
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modifiable risk factors linked to CVDs have been shown to be connected to green areas in
the urban environment. The implementation of urban green spaces can positively affect
physical activity, air pollution, noise, and heat [7], which are well-known risk factors for
cardiovascular and cerebrovascular morbidity [9]. Therefore, the lack of UG in an urban
environment may pose a threat to citizens’ cardiovascular and cerebrovascular health.
Literature examples have found associations between residential greenness and CVD risk
factors, such as hypertension and diabetes [10]. Moreover, studies have shown that a higher
amount of greenness in a residential area is associated with a lower mortality rate [11].
There is growing evidence in the literature about the associations between green space
exposure and cardiovascular and cerebrovascular health, but no clear effect of UG exposure
on CVDs has been stated yet.

The aim of this systematic review of the literature is to assess the impacts of UG on
cardiovascular and cerebrovascular disease morbidity and mortality.

2. Materials and Methods
2.1. Study Design

The PRISMA statement [12] guidelines were followed while conducting this systematic
review. A comprehensive and systematic literature search was performed through PubMed
and Scopus databases. The search strategy was adapted for each database. Keywords
referring to urban green exposure, cardiovascular, heart, and cerebrovascular diseases were
used in composing the search string. The final search strings for each database were the
following, respectively, for Pubmed and Scopus:

(((Urban[tiab] OR residential[tiab]) AND (green*[tiab] OR forest[tiab] OR park*[tiab]))
OR “green areas” OR “green zones” OR “green spaces”) AND (stroke[tiab] OR cerebrovas-
cular[tiab] OR “Cerebrovascular Disorders”[Mesh] OR cardiovascular[tiab] OR “Cardio-
vascular Diseases”[Mesh]).

((TITLE-ABS-KEY (“urban” OR “residential”) AND TITLE-ABS-KEY (“green” OR
“greenness” OR “forest” OR “park”)) OR TITLE-ABS-KEY (“green areas”) OR TITLE-
ABS-KEY (“green zones”) OR TITLE-ABS-KEY (“green spaces”)) AND TITLE-ABS-KEY
(“stroke” OR “cerebrovascular” OR “cardiovascular” OR “infarction” OR “ischemic”).

The last search was conducted on 18 July 2022. The review protocol was registered on
PROSPERO on 13 July 2022 (ID: CRD42022346328).

2.2. Study Eligibility Criteria and Selection Strategy

Peer-reviewed studies were considered, with no restrictions on the geographic origins
of the articles. However, only studies published in the English language were included.

The following inclusion criteria were applied during the selection process:

• Primary/original research articles;
• Studies involving humans;
• Studies with a quantitative association between urban green exposure variables and

cardiovascular and cerebrovascular outcomes.

The following exclusion criteria were also applied during the selection process:

• Meta-analyses and reviews;
• Non-research articles;
• Non-primary research articles;
• Studies involving animals;
• Articles in languages other than English;
• Studies with no correlation assessed between urban green and cerebrovascular or

cardiovascular outcomes.

Two researchers selected the studies following the inclusion criteria independently
and blindly. AB, AAC, MF, and GL participated equally in the selection process. Each study
was randomly assigned to two researchers. Discordances in the inclusion process were
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resolved by discussion between the two reviewers. In case of persistence of the discordance,
a third reviewer acted as an external and unique arbiter.

The first article selection process analyzed the titles and the abstracts only, considering
pertinence. The second process consisted of a full-text analysis of the eligible studies to
further assess their inclusion appropriateness and pertinent data availability.

A quality assessment of the selected articles after the full-text screening was performed,
assigning a quality score for each article (Table 1). Each article was assessed by two authors
independently. AB, AAC, MF, and GL participated equally in the quality assessment
process. Each study was randomly assigned to two researchers. Disagreement in the
assessment process was resolved by consensus between the two authors involved. As a
consequence of the included studies’ heterogeneity, the current literature was searched
in order to find an existing quality score suitable for this review. The score used by
Gascon et al. was selected as the most suitable [11]. This score, ranging from 0 to 100, was
used to evaluate the quality of the included studies on the basis of the following eight items:
study design, confounding factors, statistics, potential bias, multiplicity, green exposure
assessment, effect size, and participants have been living at least 1 year in the studied
area [11].

After discussion among all the authors, a template for data extraction was chosen
including title, journal, author(s), year of publication, country, study design, study pop-
ulation, sample size, urban green exposure variable (i.e., the quantity of green coverage
at residential level), outcome variable (i.e., general CVD or specific disease prevalence or
mortality), type of estimate and estimate of association, and confounding variables (Table 1
and Supplementary Material).

2.3. Meta-Analysis

Meta-analyses were performed for each outcome evaluated in at least three studies
with matched study design, choice of exposure variable, and effect measure. Statistical
heterogeneity was tested in order to determine if it was appropriate to combine the studies
for meta-analysis. Heterogeneity was calculated using the I2 statistic, and resulting values
greater than 40% were considered substantially heterogeneous, according to the Cochrane
Handbook for Systematic Reviews of Interventions [13]. In cases where the number of
studies was less than 5 and/or studies were substantially heterogeneous, a random-effects
model was always chosen [13]. Forest plots were created to display effect estimates with
95% CIs for individual studies’ effect estimates and pooled results. Sensitivity analyses
were conducted for each meta-analysis. Funnel plots were created in order to assess
the presence of publication bias. Data analyses were performed using RevMan Software
(Review Manager, Version 5.4, The Cochrane Collaboration, Copenhagen, Denmark, 2020).

3. Results

Applying the search queries, a total of 349 articles were selected in PubMed and
470 articles in the Scopus database. A total of 221 articles were removed after duplicate
comparison. After screening the titles and abstracts, 529 articles were excluded. A total
of 69 articles were assessed for eligibility through full-text evaluation of which 36 were
included in the study (Figure 1) [10,14–48].

The year of publication of the included studies ranged between 2012 and 2022, and
only five studies were published before 2020. Most of the studies were conducted in East
Asia (N = 11), North America (N = 9), Europe (N = 8), and Oceania (N = 5); only a few
studies were conducted in South America (N = 2) and South Asia (N = 1). No studies were
conducted in Africa, Central America, and other macro-regions of Asia.

Fifteen of the studies included were ecological studies, thirteen were cohort studies,
seven were cross-sectional, and one was a case-control study. Quality score assessments
ranged between 20% and 90%, with a median score of 60%.
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Figure 1. PRISMA flow diagram summarizing the process of article search and selection.

The variables of exposure to UG chosen in the included studies were heterogenous,
with the normalized difference vegetation index (NDVI) used in twenty-one studies, rep-
resenting the most frequent variable. NDVI is calculated starting from satellite images
produced by sensors that acquire data in the visible red and near-infrared. It evaluates
photosynthetic activity, and it represents the main satellite indicator of the presence of
vegetation on the Earth’s surface and its evolution over time. Other UG exposure variables,
such as the percentage of green areas at the residential level or the leaf area index (LAI), are
reported in Table 1.

The most evaluated outcome was CVD mortality in eighteen included studies; eight
studies evaluated IHD mortality and six studies evaluated CBVD/stroke mortality. More-
over, eight studies evaluated CVD morbidity, prevalence, or incidence, and six studies
evaluated stroke morbidity, prevalence, or incidence. Other outcomes evaluated in the
included studies were IHD morbidity, prevalence, or incidence (N = 4); AMI morbidity,
prevalence, or incidence (N = 3); HF morbidity, prevalence, or incidence (N = 1); CVD
hospital admission (N = 2); first AMI hospital admission (N = 1); ischemic stroke morbidity
(N = 2); hemorrhagic stroke morbidity (N = 2); CHD and stroke combined prevalence
(N = 1); and CHD and stroke combined hospital admission (N = 1).

The results of each study included are summarized in Table 1.
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Table 1. Data extraction results. Abbreviations: CAU = census area unit; IQR = interquartile range; T3 vs. T1 = third tertile vs. first tertile; Q4 vs. Q1 = fourth quartile
vs. first quartile; Q5 vs. Q1 = fifth quintile vs. first quintile.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

Richardson
et al. [14] 2010 UK Ecological

study

General
population

(aged 16–64)

Not specified,
approximately

28.6 million

% Green space
at CAU level

Four equal groups:
>25%, 25–50%,
50–75%, >75%

(highest vs. lowest)

CVD mortality IRR (95% C.I.) 60

Male 0.95 (0.91–0.98)

Female 1.00 (0.95–1.06)

Richardson
et al. [15] 2010 New Zeland Ecological

study
General

population 1,546,405

% Total and %
usable green
space at CAU

level

Q4 vs. Q1 CVD mortality IRR (95% C.I.) 60

Total green
space 1.01 (0.91, 1.11)

Usable green
space 0.96 (0.90, 1.03)

Richardson
et al. [16] 2012 USA Ecological

study
General

population

Not specified,
approximately

43 million

% Green space
at CAU level T3 vs. T1 CVD mortality

linear
regression

coefficient (β)
(95% C.I.)

40

Male 6.49 (−62.46 to
75.45)

Female 1.90 (−41.96 to
45.76)

Pereira et al.
[17] 2012 Australia Cross-

sectional

General
population

(>18 yrs old)
11,404

NDVI with
1600 m buffer
from residence

address

T3 vs. T1
CHD + Stroke

prevalence,
self-reported

OR (95% C.I.) 0.84 (0.68, 1.03) 60

CHD + Stroke
hospital

admission
0.63 (0.43, 0.92)

Villeneuve
et al. [18] 2012 Canada Cohort

Study

General
population

(>35 yrs old)

Not specified,
approximately

575,000

NDVI with 500
m buffer from

residence
address

IQR CVD mortality HR (95% C.I.) 0.94 (0.92–0.96) 90

IHD mortality 0.96 (0.95–0.98)

Stroke
mortality 0.96 (0.93–0.98)
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

Richardson
et al. [19] 2013 New Zeland Cross-

sectional

General
population

(>15 yrs old)
8157 % Green space

at CAU level
Q3 vs. Q1
Q4 vs. Q1

CVD
prevalence OR (95% C.I.)

0.80 (0.64–0.99)
[Q3 vs. Q1];

0.84 (0.65–1.08)
[Q4 vs. Q1]

70

Tamosiunas
et al. [20] 2014 Lithuania Cohort

study

General
population

(aged 45–72)
5112

Residence
distance from

city parks
larger than
1 hectare

T3 vs. T1 CVD HR (95% C.I.) 1.36 (1.03–1.80) 70

Male 1.51 (1.04–2.19)

Female 1.22 (0.79–1.89)

Bixby et al.
[21] 2015 UK Ecological

study
General

population

Not specified,
approximately

11 million
people

% Green space
of total city

area
Q5 vs. Q1 CVD mortality RR (95% C.I.) 50

Male 0.95 (0.86–1.05)

Female 0.94 (0.83–1.07)

Massa et al.
[22] 2016 Brazil Cross-

sectional

General
population

(>60 yrs old)
1333 % Green space

at CAU level Q4 vs. Q1
CVD

morbidity (self
reported)

OR (95% C.I.) 0.48 (0.42–0.54) 50

Xu et al. [23] 2017 Hong Kong Ecological
study

General
population

58,854
CVD-related

deaths

NDVI at CAU
level IQR CVD mortality RR (95% C.I.) 0.88 (0.80, 0.98) 60

Male 0.83 (0.74, 0.93)

Female 0.94 (0.84, 1.05)

Wang et al.
[24] 2017 China Cohort

Study

General
population

(>65 yrs old)
3544

% Green space
in 300 m buffer
from residence

address

10% increase CVD mortality HR (95% C.I.) 0.888 (0.817 to
0.964) 90

IHD mortality 0.912 (0.805 to
1.033)

Stroke
mortality

0.658 (0.519 to
0.833)

Crouse et al.
[25] 2017 Canada Cohort

study

General
population

(≥19 yrs old)
1,265,515

NDVI with
250 m buffer

from residence
address

IQR CVD mortality HR (95% C.I.) 0.911 (0.894–0.928) 90

IHD mortality 0.904 (0.882–0.927)

CBVD
mortality 0.942 (0.902–0.983)
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

da Silveira
et al. [26] 2017 Brazil Ecological

study
General

population 6,320,446 NDVI at CAU
level Q4 vs. Q1 IHD mortality

Coefficient of
the Bayesian
CAR model

(β) (95% C.I.)

−0.069
(−0.101–−0.038) 50

CBVD
mortality

−0.048
(−0.083–−0.012)

Vienneau
et al. [27] 2017 Switzerland Cohort

study

General
population

(>30 yrs old)
4,284,680

NDVI in a
500 m buffer

from residence
address

IQR CVD Mortality HR (95% C.I.) 0.93 (0.92–0.94) 80

IHD mortality 0.95 (0.93–0.97)

Stroke
mortality 0.93 (0.89–0.96)

Servadio
et al. [28] 2019 USA Ecological

study
General

population

Not specified,
almost

6 million
inhabitants

% Tree canopy
cover at CAU

level

CHD
prevalence

Coefficient of
the Bayesian
CAR model
(95% C.I.)

0.3600 (p < 0.05) 30

Stroke
prevalence 0.2012 (p < 0.05)

Orioli et al.
[29] 2019 Italy Cohort

Study

General
population

(>30 yrs old)
1,263,721

NDVI in 300 m
from residence

address
IQR CVD mortality HR (95% C.I.) 0.984 (0.975, 0.994) 90

IHD mortality 0.985 (0.968, 1.001)

CBVD
mortality 0.965 (0.944, 0.986)

Stroke
incidence 0.976 (0.960, 0.993)

Seo et al.
[30] 2019 South Korea Cohort

study
General

population 351,409

% Green space
of total district
area, limited to

built
environment

Q4 vs. Q1 CVD HR (95% C.I.) 0.85 (0.81–0.89) 80

Male 0.86 (0.80–0.92)

Female 0.85 (0.79–0.91)

Under 40 yrs
old 0.88 (0.73–1.05)

40–60 yrs old 0.81 (0.75–0.87)

Over 60 yrs old 0.89 (0.84–0.95)
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

CHD 0.83 (0.78–0.89)

AMI 0.77 (0.68–0.88)

Total stroke 0.87 (0.82–0.93)

Ischemic
stroke 0.86 (0.80–0.94)

Hemorrhagic
stroke 0.98 (0.86–1.12)

Wang et al.
[31] 2019 USA Ecological

study
General

population 1,530,981 % Green space
at CAU level CVD mortality

Negative
binomial

coefficient
(95% C.I.)

−0.0041 (−0.0092,
0.0010) 60

Jennings
et al. [32] 2019 USA Ecological

study
General

population 335,327
% Tree canopy
cover and LAI
at CAU level

CVD hospital
admission OR (95% C.I.) 50

Tree canopy
cover 0.98 (0.97–1.01)

LAI 2.28 (0.91–5.74)

Astell-Burt
et al. [10] 2019 Australia Cross-

sectional
General

population 46,786

% Total green
space and %

tree canopy in
1600 m buffer
from residence

address

CVD
prevalence OR (95% C.I.) 60

Total green
space 0.999 (0.996–1.002)

Tree canopy
cover 0.996 (0.993–0.999)

Kim et al.
[33] 2019 South Korea Ecological

study
General

population 317,869 NDVI at
district level IQR CVD mortality

Percent
changes in

cause-specific
mortality
(95% C.I.)

−2.56% (−4.68%,
−0.39%) 40

IHD mortality −3.45% (−6.84%,
0.07%)

Paul et al.
[34] 2020 Canada Cohort

study

General
population

(aged 35–85)
4,251,146

NDVI with
500 m buffer

from residence
address

IQR Stroke
morbidity HR (95% C.I.) 0.96 (0.94–0.97) 90
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

Hartig et al.
[35] 2020 Sweden Ecological

study

General
population

(>18 yrs old)
5,498,405

% Green space
and % urban

park at parish
level

CVD mortality IRR (95% C.I.) 50

Green space 0.998 (0.995 to
1.000)

Urban park 1.001 (0.998 to
1.004)

Astell-Burt
et al. [36] 2020 Australia Cohort

Study
Type 2

Diabetes 4166

% of Tree
canopy cover

in 1600 m
buffer from
residence
address

four intervals:
<10% to 11–19.9%,
21–29.9%, or ≥30%
(highest vs. lowest)

CVD mortality HR (95% C.I.) 0.75 (0.47, 1.16) 80

first CVD
hospital

admission
0.92 (0.77, 1.11)

first AMI
hospital

admission
0.77 (0.42, 1.36)

Chen et al.
[37] 2020 Canada Cohort

study

General
population

(>35 yrs old)
1,290,288

NDVI with a
250 buffer

from residence
address

IQR CVD mortality HR (95% C.I.) 0.91 (0.90–0.93) 90

AMI incidence 0.94 (0.92–0.96)

HF incidence 0.95 (0.93–0.96)

Yang et al.
[38] 2020 China Cross-

sectional

General
population

(aged 18–74)
24,845

NDVI and
SAVI with

500 m buffer
from

community
centroid (not
residential)

CVD
prevalence OR (95% C.I.) 0.73 (0.65–0.83) 70

0.74 (0.66–0.84)

Lee et al.
[39] 2020 Taiwan Ecological

study
General

population Not specified NDVI at
township level CVD mortality RR (95% C.I.) 0.903 (0.791, 1.030) 50
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

Bauwelinck
et al. [40] 2021 Belgium Cohort

Study

General
population

(>30 yrs old)
2,185,170

NDVI with
500 m buffer, %

green space
within buffer

of 500 m

IQR CVD mortality HR (95% C.I.) 80

NDVI 0.99 (0.97–1.01)

% Green space 1.01 (1.00–1.02)

IHD mortality

NDVI 1.02 (0.98–1.05)

% Green space 1.03 (1.01–1.05)

CBVD
mortality

NDVI 0.99 (0.95–1.04)

% Green space 1.00 (0.98–1.03)

Padmaka
Silva et al.

[41]
2021 Sri Lanka Cross-

sectional
Working-age

men 5268

NDVI with
400 m from
residence
address

Heart disease,
self reported OR (95% C.I.) 0.80 (0.64, 1.00) 60

Liu et al.
[42] 2021 China Cross-

sectional
General

population 2100

NDVI with
1500 m buffer
from residence

address

T3 vs. T1 CVD
prevalence OR (95% C.I.) 0.618 (0.434–0.879) 70

Male 0.768 (0.663, 0.890)

Female 0.906 (0.805, 1.020)

Under
65 yrs old 0.805 (0.669, 0.969)

Over 65 yrs old 0.836 (0.752, 0.930)

Cheruvalath
et al. [43] 2022 USA Case-control

study

General
population

(>18 yrs old)

5870 (1174 case
and

4696 control
patients)

NDVI with
250 m buffer

from residence
address

IQR Stroke OR (95% C.I.) 0.330 (0.111, 0.975) 70

Ischemic
stroke 0.32 (0.088–1.178)
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Table 1. Cont.

Authors Year Country Study
Design Population Sample Size UG Exposure

Variable Comparison Outcome
Variable

Type of
Estimate

Estimate of
Assosiation Quality Score

Wang et al.
[44] 2022 China Ecological

study
General

population
469 CVD

deaths
NDVI at

district level CVD mortality

Spearman
correlation

coefficient ρ
(p-value)

−0.179 (p < 0.01) 20

Li et al. [45] 2022 China Ecological
study

General
population 6,334,875 NDVI at CAU

level IHD

Coefficient of
the Bayesian
CAR model

(β) (95% C.I.)

−0.0044 (−0.0077,
−0.0010) 40

Li et al. [46] 2022 China Cohort
Study

General
population

(adults)
32,521

NDVI in buffer
of 250 m from

residence
address

IQR IHD incidence HR (95% C.I.) 0.89 (0.81, 0.98) 80

Ponjoan et al.
[47] 2022 Spain Cohort

study

DM type 2
patients

(>18 yrs old)
41,463

NDVI with
buffer of 300 m

around the
census tract

0.01 increase AMI HR (95% C.I.) 0.94 (0.89–0.99) 90

Male 0.91 (0.86–0.97)

Female 0.99 (0.92–1.08)

Ho et al. [48] 2022 Hong-Kong Ecological
study

General
population

8697
hemorrhagic
stroke deaths

and 10,270 non-
hemorrhagic
stroke deaths

NDVI at CAU
level

Two groups: low
exposure (mean
NDVI < 0.1) vs.
high exposure

(mean NDVI ≥ 0.1)

Hemorrhagic
stroke

mortality
OR (95% C.I.) 0.961 (0.890, 1.037) 40

Under
65 yrs old 0.983 (0.844, 1.145)

65 to 79 yrs old 1.006 (0.882, 1.148)

Over 89 yrs old 0.903 (0.801, 1.017)

Non-
hemorrhagic

stroke
mortality

1.066 (0.993, 1.145)

Under
65 yrs old 1.101 (0.871, 1.391)

65 to 79 yrs old 1.091 (0.962, 1.237)

Over 89 yrs old 1.031 (0.940, 1.132)
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3.1. CVD Mortality

The eighteen studies analyzing the correlation between UG and cardiovascular mortal-
ity were heterogenous in study design and choice of UG exposure variable. Eleven studies
found an inverse correlation between the amount of UG exposure and the risk of death by
CVDs, and seven did not find any statistically significant correlation (Table 1).

Six cohort studies analyzing the correlation between NDVI around the residence
address and CVD mortality were included in the meta-analysis. The median quality score
of the included studies was 90%. The results show pooled HR of CVD mortality per IQR
increase in NDVI, indicating an overall reduction in the risk of CVD mortality for each
IQR increase in NDVI (HR (95% CI) = 0.94 (0.91, 0.97)) (Figure 2). NDVI buffers from the
home address of each study were considered comparable by the authors, with all NDVI
buffers ranging between 250 and 500 m from the residential address. The IQR of NDVI of
the included studies ranged between 0.10 and 0.24. Sensitivity analyses were performed
and showed no significant differences in the pooled results. The analysis of the funnel plot
showed no evidence of publication bias. The results of the sensitivity analysis and funnel
plots are reported in the Supplementary Material.
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3.2. IHD Mortality

Eight studies analyzing associations between UG and IHD mortality were included.
The study design and choice of UG exposure variable were heterogeneous. Four studies
found a negative correlation between the amount of UG exposure and risk of death by
IHD, three did not find any statistically significant correlation, and one study found no
statistically significant correlation between NDVI and IHD mortality, but found a positive
correlation between IHD mortality and the percentage of UG nearby the residence address
(Table 1).

Five cohort studies analyzing the correlation between NDVI around the residence
address and IHD mortality were included in the meta-analysis. The median quality score
of the included studies was 90%. The results show the pooled HR of IHD mortality per
IQR increase in NDVI, indicating an overall reduction in the risk of IHD mortality for
each IQR increase in NDVI (HR (95% CI) = 0.96 (0.93, 0.99)) (Figure 3). NDVI buffers
from the home address of each study were considered comparable by the authors, with
all NDVI buffers ranging between 250 and 500 m from the residential address. The IQR of
NDVI of the included studies ranged between 0.10 and 0.24. Sensitivity analyses showed
that by excluding two studies (Vienneau et al. [27] and Villeneuve et al. [18]) from the
meta-analysis, statistical significance was lost. The analysis of the funnel plot showed no
evidence of publication bias. The results of the sensitivity analysis and funnel plots are
reported in the Supplementary Material.
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3.3. CBVD Mortality

Seven studies analyzing associations between UG and CBVD mortality were included.
Six studies found a negative correlation between the amount of UG exposure and the risk
of CBVD mortality, and one did not find any statistically significant correlation (Table 1).

Five cohort studies analyzing the correlation between NDVI around the residence
address and CBVD mortality were included in the meta-analysis. The median quality score
of the included studies was 90%. The results show the pooled HR of CBVD mortality per
IQR increase in NDVI, indicating an overall reduction in the risk of CBVD mortality for
each IQR increase in NDVI (HR (95% CI) = 0.96 (0.94, 0.97)) (Figure 4). NDVI buffers from
the home address of each study were considered comparable by the authors, with all NDVI
buffers ranging between 250 and 500 m from the residential address. The IQR of NDVI of
the included studies ranged between 0.10 and 0.24. Sensitivity analyses were performed
and showed no significant differences in the pooled results. The analysis of the funnel plot
showed no evidence of publication bias. The results of the sensitivity analysis and funnel
plots are reported in the Supplementary Material.
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3.4. Other CVD Outcomes

Eight studies analyzing associations between UG and CVD morbidity were included.
Six studies found a negative correlation between the amount of UG exposure and the risk
of CVD morbidity, one did not find any statistically significant correlation, and one study
found no statistically significant correlation between total UG exposure and CVD morbidity
but found a negative correlation between green canopy exposure and CVD morbidity.
Four studies analyzing associations between UG and IHD morbidity were included. Three
studies found a negative correlation between the amount of UG exposure and the risk of
IHD morbidity, and one found a positive correlation between tree canopy exposure and
IHD morbidity. Three studies analyzing associations between UG and AMI morbidity were
included and all three found a negative correlation between the amount of UG exposure
and the risk of AMI morbidity (Table 1).

Moreover, one cohort study analyzed associations between tree canopy land cover
and CVD or CVD hospital admission in type 2 diabetes patients, finding no statistically
significant correlation for both outcomes. Associations between CVD hospital admission
and tree canopy were also analyzed in an ecological study, which found no significant
correlation between tree canopy land cover and CVD hospitalizations but found a negative
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correlation with tree density. Another cohort study found a negative correlation between
NDVI and HF morbidity. Finally, one study analyzed correlations between UG exposure
and CHD and stroke combined morbidity, finding no statistically significant results, but
found an inverse correlation between UG exposure and CHD and stroke combined hospital
admissions (Table 1).

3.5. Other CBVD Outcomes

Five studies analyzing associations between UG and stroke morbidity were included.
Four studies found a negative correlation between the amount of UG exposure and the risk
of stroke morbidity, and one found a positive correlation between tree canopy exposure
and stroke morbidity (Table 1).

Furthermore, a cohort study evaluated associations between UG exposure and is-
chemic and hemorrhagic stroke, finding a negative correlation for both outcomes. Thus, an
ecological study found no statistically significant correlation between UG exposure and
ischemic or hemorrhagic stroke (Table 1).

3.6. Gender and Age Effects

Eight of the included studies performed stratified analysis by gender. Five of these
studies found a protective effect of urban greenness on CVD outcomes that were statistically
significant only in men. The other three studies found no statistically significant effect
differences in males and females (Table 1).

Three studies included in the review performed stratified analysis by age. One study
found an inverse correlation between UG exposure and CVD morbidity in individuals
aged between 40 and 59, and for individuals aged more than 60, but loses the statistical
significance for adults aged less than 40 years old. The other two studies found no effect
modifications by different age groups (Table 1).

4. Discussion
4.1. Summary of the Results

The results of the present systematic review show that in most of the studies exposure
to UG is correlated to a decreased risk of CVD and CBVD outcomes, suggesting an overall
protective effect of UG on nearby residents’ cardiovascular health. The pooled results of
the meta-analyses support this thesis, finding a reduction in CVD mortality, IHD mortality,
and CBVD mortality in people living in areas with higher levels of NDVI.

This review highlights the lack of studies in low- and middle-income countries. Low-
and middle-income countries are more susceptible to the dangerous effects of urbaniza-
tion. The rate of urbanization and sprawl is higher in these territories than in others [49].
Furthermore, while CVD-related mortality has shown a dramatic decrease in countries
with a high sociodemographic index (SDI) over the last decades, this cannot be applied to
countries with lower SDI [50].

Several pathways explaining the association between UG exposure and reduced
risk of CVD and CBVD outcomes are suggested in the existing literature. Residing in
greener neighborhoods and living near parks and green areas were shown to incentivize
physical activity [51]. Astell-Burt et al. found a positive association between residing
in greener neighborhoods and a greater incidence of walking and moderate/vigorous
physical activity [8]. Moreover, another study highlighted that the presence of parks in the
residential neighborhood is correlated with an increase in cycling activity during leisure
time [52].

Furthermore, UG spaces, and in particular the tree canopy, may represent a protective
factor against heat stress. A lot of literature examples show how nature-based solutions
(NBS) in urban architecture, from the street canopy to green roofs, have a beneficial effect
in lowering the temperature in built environments [53,54]. NBS is defined by the EU
Commission as “Solutions that are inspired and supported by nature, which are cost-
effective, simultaneously provide environmental, social and economic benefits and help
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build resilience” [55]. This definition applied to the context of urban health refers to all
those interventions of climate change adaptation that involve the use of green and/or blue
infrastructures and may have a beneficial impact on health outcomes. A review showed
that green roofs contribute to a median surface temperature reduction of 30 ◦C in cities with
a hot–humid climate, and 28 ◦C in cities with a temperate climate [56]. A study simulated
that a 50% increase in tree canopy cover over urban roads is correlated to a decrease in air
temperature in urban street canyons of 4.1 K, a decrease in road-surface temperature of
15.4 K, and a reduction in building-wall temperature of 8.9 K [57].

Moreover, the impacts of UG exposure on reducing air pollution and traffic noise are
reported in several studies [51,58–60]. Nature exposure is recognized to have a beneficial
effect on mental health. [7,51] A systematic review showed inverse correlations between
greenness exposure and both perceived and physiological stress indicators [61]. High
temperature, air pollution, environmental noise, and chronic psychological stress represent
well-known risk factors for CVD and CBVD [9,62]. Thus, the impact of UG on these factors
may explain the association between greenness exposure and better cardiovascular and
cerebrovascular health outcomes.

Different types of UG may play a role in understanding the explanatory mechanism
of the results of this study. A cross-sectional study highlighted that total residential
greenness was not associated with a statistically significant reduction in the risk of CVD,
but residential tree canopy density in the same study population showed an inverse
correlation [10]. Different types of UG areas in terms of usability may have different
impacts on cardiovascular and cerebrovascular health. Public green spaces, such as parks
or urban forests, are shown to incentivize physical activity and social aggregation [63,64].
The usability of those public spaces may vary in the presence or absence of sports or social
facilities, perceived social safety, and maintenance state [65].

There is robust evidence in the existing literature supporting an association between
the built environment and socio-economic disparities [66]. More deprived neighborhoods
are most likely to be less green [67,68]. Thus, socio-economic variables, such as residents’
income, may represent an important confounding factor. The majority of the studies
included in this review (n = 31) considered this aspect in their analysis, adjusting their
models for socio-economic variables.

Since urban green environments are experienced differently by men and women [69],
the association between UG exposure and CVD health may be subject to gender differences.
Only eight studies included performed a stratified analysis by gender. Five of them
found a statistically significant protective effect of urban greenness on CVD outcomes
only in men [14,20,23,42,47], while the other three studies found no statistically significant
effect differences in males and females [16,21,30]. These results suggest the existence
of underlying gender-specific mediators on the cardiovascular health effects of UG. The
different utilization of green facilities by men and women may be an explanation. A study
found that public urban green area access is lower in women than men [70]. Moreover,
self-perceived social safety may affect outdoor physical activities in women. Factors related
to visibility, maintenance state, cleanliness, and the presence of viable facilities were shown
to be more impactful on perceived safety in women than in men, suggesting UG design is
an important mediator of gender differences in public green area use [71].

Only three of the included studies addressed age differences by performing a stratified
analysis by age. One of them found an inverse correlation between UG exposure and CVD
morbidity in the 40–59 years age group and for individuals aged over 60 [30], while the
other two found no effect modifications according to age groups [42,48]. These results may
be explained by the fact that the causes underlying CVD morbidity in younger adults are
more likely to be genetic, non-modifiable factors [72].

4.2. Study Limitations

The main limitation of this review is the heterogeneity of the studies included. Dif-
ferent study designs, study populations, and choice of exposure variables restricted the
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quantitative comparability of the studies included. However, the heterogeneity in study
settings may have excluded the possibility that the impact of UG exposure on cardiovascu-
lar and cerebrovascular health was a site-specific effect. Furthermore, the lack of general
population-level experimental studies may limit the robustness of the results. Moreover,
the lack of studies in low- and middle-income countries affects the generalizability of the
results in such settings. Thus, further studies assessing the impacts of UG green exposure
on CVD and CBVD in low- and middle-income settings should be prioritized and may
have an important role in the policy-making process in these settings.

The studies included in the meta-analyses were matched by study design (cohort
studies), choice of exposure variable (NDVI), and effect measure (HR per IQR of NDVI) but
differed by study geographical settings. Thus, populations from different countries were
compared in the meta-analyses. However, all studies took place in high-income countries
(three in Canada, one in Italy, one in Belgium, and one in Switzerland), with a similar
burden of CVDs and CBVDs [9]. Furthermore, statistical heterogeneity was high in the
meta-analyses of CVD mortality and IHD mortality sub-groups (I2 = 97% and I2 = 90%,
respectively), indicating that the pooled results should be interpreted with extreme caution.
While random effect meta-analyses were performed in order to obtain more conservative
pooled results, due to the high heterogeneity, the meta-analyses of CVD mortality and
IHD mortality sub-groups should be interpreted as not conclusive, and the inferences from
the results as being hindered. Sensitivity analyses of the IHD mortality sub-group meta-
analysis showed a loss of statistical significance when the studies by Villeneuve et al. [18]
or Vienneau et al. [27] were excluded.

Another limitation may be that NDVI was used as a UG exposure variable in most of
the studies, including the ones in the meta-analyses. NDVI describes the difference between
visible and near-infrared reflectance of vegetation, and it measures the density of green
space coverage in an area [73]. Thus, NDVI does not describe the characteristics of green
space, i.e., whether it is private or public, or whether it has a good or a bad maintenance
state.

Finally, the impacts of UG exposure on other health outcomes were not analyzed in
this systematic review. High levels of greenness were associated with possible beneficial
effects on gestational, respiratory, and mental health outcomes [40,74,75]. On the other
hand, vector-borne diseases (VBDs) may pose an issue, since some VBDs, such as tick-borne
infections, are related to the presence of green environments [76].

5. Conclusions

Considering all the limitations described, the results of this systematic review suggest
the existence of a beneficial effect of green exposure on cardiovascular and cerebrovascular
health in urban settings. Further studies are needed to fully understand the explanatory
mechanisms confirming the associations found in this review. General population-level
experimental studies represent an opportunity to develop targeted future research projects
aimed at analyzing the beneficial effects of UG-enhancing policies and the effects on human
health. Furthermore, this study highlighted the necessity of re-thinking green areas in
cities, reducing social disparities in the distribution of urban greenness, and designing more
usable, safe, and gender-inclusive public urban green spaces. Policymakers should be aware
of the fact that there is robust evidence of a correlation between UG exposure and lower
risk of CVDs and CBVDs, incentivizing the creation of greener urban environments and
considering the implementation and increase of UG areas as public health interventions.
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