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Abstract
Motivation: methyLImp, a method we recently introduced for the missing value estimation of DNA methylation data, has demonstrated compet-
itive performance in data imputation compared to the existing, general-purpose, approaches. However, imputation running time was consider-
ably long and unfeasible in case of large datasets with numerous missing values.

Results: methyLImp2 made possible computations that were previously unfeasible. We achieved this by introducing two important modifica-
tions that have significantly reduced the original running time without sacrificing prediction performance. First, we implemented a chromosome-
wise parallel version ofmethyLImp. This parallelization reduced the runtime by several 10-fold in our experiments. Then, to handle large datasets,
we also introduced a mini-batch approach that uses only a subset of the samples for the imputation. Thus, it further reduces the running time
from days to hours or even minutes in large datasets.

Availability and implementation: The R package methyLImp2 is under review for Bioconductor. It is currently freely available on Github
https://github.com/annaplaksienko/methyLImp2.

1 Introduction

methyLImp was introduced in Di Lena et al. (2019, 2020) as
a method for missing value imputation specific for DNA
methylation array data. It relies on solving numerous multiple
linear regressions that enhance the high inter-sample correla-
tion observed at the methylation levels. In comparative stud-
ies, methyLImp demonstrated good performances and
computational efficiency, but improvements were required to
reduce the running time in the case of large datasets.
Therefore, with methyLImp2, we introduce two major imple-
mentation changes that, together with other improvements,
decrease the running time significantly. The first one is the
parallelization of the algorithm over chromosomes.
Correlation among CpGs methylation within a chromosome,
owing to the DNA and chromatin spatial distribution, is a
well-known pattern of methylated data (Zhang et al. 2009).
Therefore, we decided to impute missing values on CpGs us-
ing only probes on the same chromosome. We split the data
by chromosomes and run the algorithm independently in par-
allel for each sub-dataset. The second improvement consists
of an optional mini-batch approach to cut down the computa-
tion time further, now sample-wise [inspired by Hicks et al.
(2021), whose approach is based on Sculley (2010)]. Taken
together, these improvements allow using methyLImp2 also
with large EPIC datasets.

methyLImp2 is implemented as an R package methyLImp2,
which is tested on multiple platforms, including Windows, Mac,
and Linux, and is freely available on GitHub (under review for
Bioconductor, unlike the previous version).

2 Materials and methods

2.1 methyLImp

In this section, we briefly describe the original methyLImp
algorithm [Di Lena et al. (2019)], and we highlight the modifi-
cations we have introduced in the further sections.

Methylation levels exhibit high inter-sample correlations
that multiple linear regression models can exploit.
Therefore, methyLImp estimates missing values by perform-
ing simultaneous linear regressions with pseudo-inverse on
the corresponding sets of available data. Assume we have an
n�m input matrix of methylation levels (b-values) with n
observations/samples (in rows) of m CpG sites/probes (in
columns). First, we identify all L variables (i.e. CpG sites)
that contain missing values. Then, we group the variables
with the same pattern of missingness, i.e. those with missing
values for the same observations (samples). We call that set
of r rows RNA and that set of l columns CNA. methyLImp
aims to estimate the missing values simultaneously for each
group of variables, resulting in an r� l submatrix of
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imputed values Imp. To obtain Imp, a linear regression is
applied simultaneously to the whole group of columns CNA

by solving the following:

A � x ¼ logitðBÞ ) x ¼ A�1 � logitðBÞ ) Imp

¼ logit�1ðC � xÞ;

where

• A is the ðn� rÞ � ðm� LÞ submatrix of all non-missing
variables for all the observations not in RNA;

• C is the r� ðm� LÞ submatrix of all non-missing varia-
bles for all the observations in RNA;

• B is the ðn� rÞ � l submatrix of all variables in CNA for
all the observations not in RNA;

• logitðpÞ ¼ logðp=ð1� pÞÞ, p 2 ½0; 1�, and its inverse logis-
tic function logit�1ðqÞ ¼ 1=ð1� expð�qÞÞÞ, q 2 ð�1;1Þ.

The above procedure is applied to each group of columns
with the same NA pattern. Therefore, the algorithm’s compu-
tational costs depend on the number of groups with the same
pattern of missing values (i.e. the number of regression prob-
lems to solve) and the dataset’s dimensions n and m. Those
dimensions get quite large when dealing with genome-wide
methylation data. For example, the HumanMethylation450
BeadChip evaluates over 450 000 probes for each sample,
and the Infinium Methylation EPIC v2.0 BeadChip has over
850 000 sites. Hence, solving all the linear problems can be
computationally intense. Therefore, we thought of two ways
to reduce the dimensionality of the linear systems, both col-
umn-wise—splitting CpG sites and parallelizing the calcula-
tions over chromosomes—and row-wise—implementing a
mini-batch approach that uses a reduced number of samples.

2.2 Parallelization over chromosomes

As mentioned above, methylation data is characterized by the
large number of variables (probes). We assumed that informa-
tion from all 450 000 or, even more, 850 000 probes may be
unnecessary for precise imputation on one probe. Moreover,
it seems plausible that probes on the same chromosome may
provide more valuable input. Therefore, we split the CpG sites
over chromosomes and then apply the methyLImp algorithm
to each chromosome separately. This modification signifi-
cantly reduces the number of columns m in all the matrices of
each regression problem. Although we will show in the next
section that reducing matrices’ dimensions is already enough
to improve the runtime, we parallelize computations for each
sub-dataset and benefit from multiple cores. We implemented
parallelization in methyLImp2 with BiocParallel pack-
age [Morgan et al. (2023), version 1.36.0] and achieved a
greater improvement in the running time. Since chromosomes
differ widely in size, we have used load balancing for parallel
computations. With this approach, the distribution of tasks to
workers (cores) is not pre-determined from the start but is dy-
namic, meaning that the task is assigned to the core that
becomes available first.

2.3 Mini-batch

To further improve the running time of methyLImp2, we
implemented the mini-batch strategy to be used when the
datasets consist of a large number of samples n. To reduce the
dimensions of the matrices A and B, the mini-batch approach

uses only a fraction P of the available samples for each linear
regression. This decreases runtime for all matrix manipula-
tions, especially for heavy operations such as multiplication.
The pseudocode of the algorithm is presented below.Note
that Algorithm 1 focuses only on the mini-batch procedure. In
the actual code, X is first split into matrices A;B;C, as de-
scribed above, and only A and B are subsampled. That is
done independently before each linear regression (i.e. for each
group of columns, CpG sites, with the same missingness pat-
tern). If the number of rows in A is already smaller than n=P �
100 by construction, we do not perform the subsampling.

2.4 Other improvements

We have also introduced a few additional improvements to the
code. For the identification of columns with the same missing-
ness pattern, we used unique and identical base R func-
tions. For faster SVD decomposition, we used fast.svd from
corpcor package [Schafer et al. (2021), version 1.6.10], which
is specifically faster for matrices with a large difference in magni-
tude of the number of samples n and the number of variables m.
To help streamline the analysis process for Bioconductor users,
methyLImp2 now also accepts the SummarizedExperiment
class as an input.

2.5 Practical considerations

The user should consider the following points to benefit from
methyLImp2 fully. According to intuition and best practice,
when a macroscopic characterization of the samples is available
as subgroups, e.g. therapeutic groups, experimental or environ-
mental conditions, we suggest applying methyLImp2 to each
group independently. In methyLImp2, users can specify the
sample groups when multiple conditions are available. The data-
set is then split into sub-datasets with (more) homogeneous con-
ditions, and methyLImp2 (i.e. chromosome-wise probes
splitting, column groups identification, imputation) is applied to
each sub-dataset independently.

The mini-batch procedure is advised for large datasets: e.g.
in the following sections, we demonstrate its advantage with a
dataset with 450þ samples. In general, we suggest considering
mini-batch when the number of samples is on the order of
hundreds, although it can be used for smaller sizes with cau-
tion. However, in such cases, retaining a large proportion of
samples is advisable.

We refer the reader to Supplementary data for some addi-
tional considerations.

2.6 Datasets

We utilized two large datasets to assess the prediction perfor-
mance and running time of methyLImp2.

Algorithm 1. Mini-batch algorithm pseudocode

INPUT: data X, sample size n,
percentage of samples chosen P  10=20=30,

number of repetitions R  1=2=3.

for r ¼ 1 to R do

XP  Random Sample of X of the Size n=P � 100;
Impr  methyLImp(XP );

end for

Average the results over R, Imp 
P

r Impr=R.

OUTPUT: Imputed elements Imp.
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The GSE199057 Gene Expression Omnibus (GEO) dataset
contains 68 mucosa samples from non-colon-cancer patients.
Methylation data intensities were measured on EPIC arrays
and transformed as b-values. We used minfi (Aryee et al.
2014) package to remove SNPs loci. We also removed
unmapped probes and probes mapping to sex chromosomes.
Resulting dataset contains 816 126 probes. There are
2843 NA entries in the dataset, i.e. 0.005%.

The GSE158063 GEO dataset contains EPIC array methyl-
ation measurements of the peripheral blood buffy coat of indi-
viduals at the 26–28 gestational weeks of pregnancy. To
reduce heterogeneity in the dataset, we have limited our focus
to women of Chinese ethnicity, 25 to 40 years of age, who
had spontaneous conception and gave live birth. This dataset
contains b-values for 456 samples and 816 117 probes
(probes filtering performed as described above). There are 11
654 NA entries in the dataset, i.e. 0.003%.

Both datasets had less than 1% of probes containing at
least one missing value. To assess the performance of the
method, we amplified that and randomly chose 3% of m
probes to have artificial NAs. Then, for each probe, we ran-
domly defined the number of NAs from a Poisson distribution
with k appropriate to the sample size of the dataset (see exam-
ples in the next section). Finally, these NAs were randomly
placed among the n samples. With this procedure, most col-
umns had a unique missing values pattern and did not group,
thus providing a worst-case running time due to the high
number of regression problems to solve. If we had more
groups, i.e. fewer individual linear regressions, the running
time reported below would be lower. Ultimately, the missing
values account for approximately �0:4% of entries of the 68
samples dataset and �0:2% of entries of the 456 samples
dataset. Note that this paper does not discuss the maximum
amount of NAs allowed to perform the imputation. We refer
the reader to the previous methyLImp manuscript for perfor-
mance studies with 10, 30, 50, and even 70 % missing values
Di Lena et al. (2019). Although performance unsurprisingly
deteriorates with percentage increase, we note that with
methyLImp it happens at a much slower rate than with its
competitors. Above all, we encourage users to consider

whether a large number of NAs in a sample may indicate low
quality and whether discarding that sample would be wiser.

We store the positions of the artificial NAs to be able to dis-
tinguish them from the “natural” ones for the performance
evaluation later. We refer the reader to methyLImp2 package
for implementation of the NA generation procedure and the
simulation studies code for more details. We repeated the NA
generation procedure 5 times for the 68 samples dataset and 3
times for the 456 samples dataset to get independent datasets
for testing—from here on, running time and accuracy perfor-
mance are reported on averages.

To access the performance, we evaluate root mean square
error and mean absolute error, defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b2NA ðb� bimpÞ2

jNAj

s
;MAE ¼

P
b2NA jb� bimpj
jNAj ;

where b and bimp denote the true and the imputed b-values. Note
that in the NA set only the artificial NAs are taken into account,
as we cannot access the performance for the true ones since their
values are unknown. For additional metrics, such as Pearson cor-
relation coefficient (PCC) and mean absolute percentage error
(MAPE), we refer the reader to the Supplementary data.

Simulations were carried out on an Apple M1 Max 10-core
processor and 64 GB RAM computer. All simulation code
and the datasets are available on Github github.com/anna
plaksienko/methyLImp2_simulation_studies.

2.7 Results

We first compared the performance of original methyLImp
with those of methyLImp2 for various sample sizes n. We
used a subset of the GSE199057 dataset consisting of 68 sam-
ples. We applied methyLImp2 to randomly chosen 9, 17, 34,
51 samples and to all 68 samples with k for Poisson distribu-
tion in NA generation procedure being set to 1, 2.5, 5, 7.5,
and 10, respectively. Results are reported in Panel (a) of
Fig. 1. As we can see, the difference in the running time is dra-
matic: for the entire dataset with 68 samples methyLImp2
requires less than 30 minutes, while methyLImp needs

Figure 1. Running times for methyLImp andmethyLImp2measured under various settings: (a) comparison of the running times for original methyLImp

and for methyLImp2 for different number of samples, (b) running time for methyLImp2 for the varying number of cores and (c) running time for

methyLImp2 with different mini-batch settings.
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approximately three days. Meanwhile, the difference in per-
formance is negligible, and methyLImp2 even performs better
for 9 samples, see Table 1. Although we cannot definitively
account for such performance gap, we can speculate that,
since the number of features is higher in methyLImp than in
methyLImp2 (which splits the probes across chromosomes),
while the number of samples is limited in both cases, back-
ground noise affects methyLImp regressions more than
methyLImp2. As the number of samples increases, overall
prediction performances tend to improve and converge. A
more comprehensive table, which includes standard devia-
tions, is provided in the Supplementary data.

We emphasize that the running time gain in methyLImp2 can
be achieved using a small number of cores and even a single core
since the splitting of probes (columns) over chromosomes allows
to hold matrix operations in smaller dimensions. In Panel (b) of
Fig. 1, we demonstrate the running time of methyLImp2 applied
to GSE199057 dataset with 68 samples, changing the number
of cores from 1 to 9. As we can see, the runtime drops drastically
(from 2 h to around 30 minutes) when increasing the number of
cores. We also emphasize that significant improvement can be
obtained even with only 4 cores, which, nowadays, even simple
laptops have.

Interestingly, running time does not improve further with the
number of cores above 5. One reason for that may be that over-
all running time is often determined by the computations on the
core(s) with the largest chromosome(s), so after some point in-
creasing the number of cores will not affect the time. That is not
always the case, though, since the chromosome running time
also depends on the amount and distribution of NAs. Therefore,
the optimal task allocation and the choice of the number of cores
is not straightforward. The current version of methyLImp2
package by default uses all physical cores except one. However,
the user can change that number if needed.

To assess the advantages of the mini-batch approach, we ap-
plied methyLImp2 to the subset of GSE158063 dataset with
456 samples with and without mini-batch and compared the
running time and accuracy performance. As we can see from
Panel (c) of Fig. 1, for the fastest option—using 10% of the data
in the mini-batch and repeating the estimate only once—
methyLImp2 running time for imputing the entire dataset is
only twenty minutes while without the mini-batch it takes a
whole day (24 h) to process the entire dataset. Even when using
30% of data in the mini-batch and repeating the estimate 3
times, methyLImp2 runs for about 7 h, so still less than for the
entire dataset. Meanwhile, the accuracy performance (see
Table 2) does not significantly decrease when using the mini-
batch. On the contrary, in some cases, the accuracy of
methyLImp2 with the mini-batch is even better than what ob-
served without the mini-batch for the entire dataset.

3 Discussion

In this work, we have enhanced methyLImp computational
efficiency by several orders of magnitude, making it practical
for imputing large datasets. We achieved this by implementing
in methyLImp2 the mini-batch approach and parallelization
of computations over chromosomes.

Although performances in terms of running time are now ac-
ceptable to excellent even with large datasets, future improve-
ments may include the following aspects. First, since
chromosomes differ in sizes and some are very large, it could be
helpful to add further parallelizations over different groups on
the same chromosome, i.e. columns with the same missingness
patterns. It would also be interesting to see what results we could
achieve with random splitting of probes, not by chromosomes.
Finally, parts of the code in C programming language could fur-
ther improve the speed of matrix operations.

Supplementary data

Supplementary data are available at Bioinformatics online.
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