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Abstract: Revolutionary advances in technology have led to the use of functionally graded nanocom-
posite structural elements that operate at high temperatures and whose properties depend on position,
such as cylindrical shells designed as load-bearing elements. These advances in technology require
new mathematical modeling and updated numerical calculations to be performed using improved
theories at design time to reliably apply such elements. The main goal of this study is to model,
mathematically and within an analytical solution, the thermoelastic stability problem of composite
cylinders reinforced by carbon nanotubes (CNTs) under a uniform thermal loading within the shear
deformation theory (ST). The influence of transverse shear deformations is considered when form-
ing the fundamental relations of CNT-patterned cylindrical shells and the basic partial differential
equations (PDEs) are derived within the modified Donnell-type shell theory. The PDEs are solved by
the Galerkin method, and the formula is found for the eigenvalue (critical temperature) of the func-
tionally graded nanocomposite cylindrical shells. The influences of CNT patterns, volume fraction,
and geometric parameters on the critical temperature within the ST are estimated by comparing the
results within classical theory (CT).

Keywords: mathematical modeling; eigenvalue; PDEs; nanocomposites; cylindrical shell; critical temperature

MSC: 74G60; 74H55; 74K25; 74F05; 74A40

1. Introduction

For the development of almost all sectors of the economy, materials with improved
performance properties, high strength and light weight, and that are resistant to abrasion,
pressure, and various types of radiation are needed. For example, in shipbuilding and
civil and mechanical engineering, lightweight and wear-resistant materials are in demand,
which are necessary for the creation of structural cladding elements. Developments con-
tinue for the aerospace and automotive industries, aiming to reduce the weight and fuel
consumption of parts while maintaining the strength of the body and its parts. The nuclear
industry needs new materials for power reactors that can withstand high temperatures,
pressures, and radiation. In modern technology, the above problems can be solved by using
carbon nanotubes or nanocomposites in which they are used as reinforcements. Carbon
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nanotubes (CNTs) are carbon allotropes with a cylindrical nanostructure and are classified
into single-walled and multi-walled carbon nanotubes. Carbon nanotubes, which have
unique electrical, thermal, and mechanical properties with high specific surface areas and
aspect ratios, were discovered by Sumio Ijima in 1993 [1]. Depending on their chirality, both
their metallic and semiconductor properties made it possible to use CNTs in the field of
microelectronics and power engineering, as well as a reinforcing element in the formation
of nanocomposites [2–4].

Nanocomposites are generally divided into three categories depending on the type of
main matrix: ceramic, metal, and polymer-based nanocomposites. Among these nanocom-
posite species, polymer nanocomposites are recently in demand. Polymer-based nanocom-
posites differ from conventional polymer composite materials in lighter weight as well as
higher impact and abrasion resistance as well as good resistance to chemical attack, making
them suitable for use in military and aerospace developments. The automotive industry is a
leader in the growth of the use of nanocomposite materials. Polymer nanocomposites have
become the main composite materials for fuel lines, replacing conventional steel to prevent
static build-up [5–12]. Today, new results are revealed by performing molecular dynamics
(MD) simulations and experimental tests on CNT-reinforced polymers. For example, in
the Duan [13] study, based on the hypothesis that only the tube walls in direct contact
with the polymer matrix carry the external load, the concept of a true volume ratio for
CNT was proposed and a new micromechanical model on the modulus of nanocomposites
was developed based on this concept. All these demonstrate that there are still efforts to
develop theories about nanocomposites and that interest in this field continues to increase.

With superior performance in very high temperature environments, nanocomposites
are among the best new generation composites that can be used as thermal barriers in many
advanced technology areas, typically in nuclear reactors, spacecraft, and aerospace. As
cylindrical shell structures are one of the main structural elements made up of nanocom-
posites, perhaps the first, there is a further need to investigate their buckling behavior in
the thermal environment and under thermal loading. After the first attempt by Shen [14]
on thermal buckling of nanocomposite cylindrical shells, some research has been done on
this topic [15–38]. Most of these studies are related to the buckling problem of FG-CNT-
reinforced structural elements in the thermal environment or thermal loading, and their
solutions have been realized by using various theories and numerical methods.

The literature review revealed that the investigation of the thermal stability behavior
of cylindrical shells based on CNTs is insufficient. In this study, the analytical solution of
the thermal stability problem of composite cylinders reinforced by CNTs under the uniform
thermal loading is presented within different theories. This study will be beneficial in
terms of updating the buckling analysis of cylindrical shells made of carbon nanotube-
reinforced composites in the thermal environment and developing calculation methods
during the design. As one of the main structural elements consisting of nanocomposites
is the cylindrical shell, examining the buckling behavior in the thermal environment and
under thermal loading will help to eliminate the problems that may arise in industries
where advanced technologies are used during the design phase. The analytical solution of
the buckling problem of cylindrical shells made of nanocomposites within the framework
of various theories in the thermal environment and obtaining original formulas is also an
important achievement from a mathematical point of view.

2. Material Methods
2.1. Theoretical Development

Consider the CNT-reinforced composite cylindrical shell of radius a, length l, and
thickness h under the uniform thermal loading. The Oxyz coordinate system is located
at the left end of the mid-surface of the cylinder, and the x, y, z axes are oriented, as in
Figure 1.
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Figure 1. CNT-reinforced composite cylindrical shell and coordinate system.

Three common approaches are used for the modeling of carbon nanotube-reinforced
composites: (1) atomistic modeling, e.g., molecular dynamics (MD) simulations; (2) con-
tinuum mechanics modeling; and (3) multiscale modeling. Besides atomic modeling,
continuum mechanics (or micromechanical models) has been extended to modeling of the
mechanical properties of nanocomposites. Among the micromechanical models, the most
popular are the rule of mixture (RM), the Mori-Tanaka (MT) model, and the representative
volume element (RVE) model. In this study, the effective material properties, such as
Young’s modulus and Poisson’s ratio of nanocomposite cylindrical shells, are obtained
using the RM method and are expressed as follows [14,17,35]:

Y11(z) = η1Vcnt(z)Ycnt
11 + VmYm, η2

Y22(z)
= Vcnt(z)

Ycnt
22

+ Vm

Ym , η3
G12(z)

= Vcnt(z)
Gcnt

12
+ Vm

Gm , G13(z) = G12(z),

G23(z) = 1.2G12(z), ν12 = V∗cntν
cnt
12 + Vmνm, ρ = V∗cntρ

cnt + Vmρm, Vcnt(z) + Vm = 1
(1)

where V denotes the volume fraction, superscript “cnt” and “m” represent the correspond-
ing property for CNT and matrix, respectively, the efficiency parameters are indicated by
ηi (i = 1, 2, 3), and the Young and shear moduli of the polymer (or matrix) and CNTs are
indicated by Ym, Ycnt

kk (k = 1, 2) and Gcnt
12 , respectively. Here ν12 and ρ are Poisson’s ratio

and density, respectively.
The volume fraction of the CNTs changes as a linear function depending on the

dimensionless thickness coordinate (z = z/h) of the cylindrical shell [14–19].

Vcnt(z) =


U at V∗cnt
V at (1− 2z)V∗cnt
O at (1 + 2z)V∗cnt
X at 4|z|V∗cnt

(2)

where
V∗cnt =

mcnt

mcnt

(
1− ρcnt

ρm

)
+ ρcnt

ρm

(3)

in which mcnt is a mass fraction of CNTs.
The use of these relations is based on the following hypotheses: CNTs are reinforced

into the polymer matrix as linear functions and CNTs reinforced into the polymer matrix
carry the charge transferred to the matrix.

While the first line of the Equation (2) shows that the CNT distribution is uniform (U),
the other distributions are in the form of linear functions and are represented by the
symbols V, O, and X, respectively. Based on Equation (2), the patterns formed by the CNT
distribution throughout the thickness of the polymer cylindrical shell are illustrated in
Figure 2.
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In this study, it is assumed that the thermal expansion coefficients, as well as the
material properties, vary with temperature and location [14,16,17,34]:

α11(z) =
αcnt

11 Vcnt(z)Ycnt
11 + VmYmαm

Vcnt(z)Ycnt
11 + VmYm , α22(z) = (1 + νcnt

12 )αcnt
22 Vcnt(z) + (1 + νm)Vmαm − ν12α11(z) (4)

where αcnt
11 , αcnt

22 , and αm are thermal expansion coefficients of CNT and matrix, respectively.

2.2. Governing Equations

If we generalize the ST to the heterogenous nanocomposite cylindrical shells, the
displacement components can be represented as follows [34,37–39]

u1(x, y, z) = u(x, y) + zϕ1(x, y), v1(x, y, z) = v(x, y) + zϕ2(x, y), w1(x, y, z) = w(x, y) (5)

where u and v are the displacements of axial and circumferential directions on the reference
surface, respectively, w is the deflection, and ϕ1(x, y) and ϕ2(x, y) are the transverse normal
rotations about the y and x axes, respectively.

Considering the assumptions of the ST [39], the following relations can be written:

e33 = 0, σ13 =
d f1

dz
ϕ1(x, y), σ23 =

d f2

dz
ϕ2(x, y) (6)

where e33 is the normal strain in the direction z, σi3 (i = 1, 2) are the transverse shear
stresses, and fi(z), (i = 1, 2) are the shape functions of transverse shear deformations
(TSDs) of the CNT-originated cylindrical shells [37–39].

The basic relationships of CNT-originated cylindrical shells under the temperature
field are constructed in the scope of ST as follows [14,17,34,35,40]:

σ11
σ22
σ12
σ13
σ23

 =


A11(z) A12(z) 0 0 0
A21(z) A22(z) 0 0 0

0 0 A66(z) 0 0
0 0 0 A55(z) 0
0 0 0 0 A44(z)




e11
e22
γ12
γ13
γ23

+


σ1T
σ2T
0
0
0

 (7)

where σij (i = 1, 2, j = 1, 2, 3) and eii (i = 1, 2), γij (i = 1, 2, j = 2, 3) indicate stresses and
strains, respectively, and Aij (i, j = 1, 2, . . . , 6) are given as:

A11(z) =
Y11(z)

1−ν12ν21
, A12(z) =

ν21Y11(z)
1−ν12ν21

, A21(z) =
ν12Y22(z)
1−ν12ν21

, A22(z) =
Y22(z)

1−ν12ν21
A44(z) = G23(z) = 2G12(z), A55(z) = G13(z) = G12(z), A66(z) = G12(z)

(8)

in which σ1T and σ2T are defined by

σ1T = −Y11(z)α11(z)T(z)
1− ν12ν21

, σ2T = −Y22(z)α22(z)T(z)
1− ν12ν21

(9)

By using the Equations (6) and (7), the components of the strain field (e11, e22, γ12) at
an arbitrary point of CNT-originated shells can be expressed as those of its mid-surface
(e011, e022, γ012) and its curvature changes as follows:
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
e11

e22

γ12

 =


e011 − z ∂2w

∂x2 + I1(z)
∂ϕ1
∂x

e022 − z ∂2w
∂y2 + I2(z)

∂ϕ2
∂y

γ012 − 2z ∂2w
∂x∂y + I1(z)

∂ϕ1
∂y + I2(z)

∂ϕ2
∂x

 (10)

where

I1(z) =
z∫

0

d f1

dz
1

G13(z)
dz, I2(z) =

z∫
0

d f2

dz
1

G23(z)
dz (11)

The in-plane forces (Nij (i, j = 1, 2)), transverse shear forces (Qi (i = 1, 2)), and the
bending and twisting moments (Mij (i, j = 1, 2)) per unit length are found as follows [37–39]:

(Nij, Qi, Mij) =

0.5h∫
−0.5h

(σij, σi3, σijz)dz (12)

We can also find the thermal forces and moments (NT
11, NT

22, MT
11, MT

22) using the
following integrals [14,17,34,37,41]: NT

11, MT
11

NT
22, MT

22

 =

h/2∫
−h/2

 A11(z), A12(z)

A21(z), A22(z)

 α11

α22

(1, z)∆Tdz (13)

In the cylinder, when the temperature rises evenly, the temperature gradually increases
from the first value to the last value, while the temperature difference ∆T = T − T0
remains constant.

The relationship between stress function (F) and force components is as follows [37–39]:

N11 = h
∂2F
∂y2 , N12 = −h

∂2F
∂x∂y

, N22 = h
∂2F
∂x2 (14)

The membrane form of the equilibrium equations can be written as [14,17,34,35]:

N0
11 = −Ñ = −

h/2∫
−h/2

bA11(z)α11(z) + A12(z)α22(z)c∆Tdz, N0
22 = 0, N0

12 = 0 (15)

where N0
11 and Ñ are the pre-buckling thermal force and thermal parameter.

Substituting the forces, moments, and strains on the middle surface, expressed as
w, F, ϕ1, ϕ2, using relations (7), (10), and (12)–(14) into the governing equations [37–39]:
one gets:

h(c11 − c31)
∂4F

∂x2∂y2 + hc12
∂4F
∂x4 − c13

∂4w
∂x4 − (c14 + c32)

∂4w
∂x2∂y2 + c15

∂3 ϕ1
∂x3 + c35

∂3 ϕ1
∂x∂y2

−I3
∂ϕ1
∂x c18

∂3 ϕ2
∂x2∂y + c38

∂3 ϕ2
∂x2∂y = 0,

hc21
∂4F
∂y4 + h(c22 − c31)

∂4F
∂x2∂y2 − (c32 + c23)

∂4w
∂x2∂y2 − c24

∂4w
∂y4 + c35

∂3 ϕ1
∂x∂y2 + c25

∂3 ϕ1
∂x∂y2

+c38
∂3 ϕ2
∂x2∂y + c28

∂3 ϕ2
∂y3 − I4

∂ϕ2
∂y = 0

hb11
∂4F
∂y4 + h(b12 + b21 + b31)

∂4F
∂x2∂y2 + hb22

∂4F
∂x4 − b23

∂4w
∂x4 − (b24 + b13 − b32)

∂4w
∂x2∂y2 − b14

∂4w
∂y4

+ 1
a

∂2w
∂x2 + b25

∂3 ϕ1
∂x3 + b15

∂3 ϕ1
∂x∂y2 + b35

∂3 ϕ1
∂x∂y2 + b28

∂3 ϕ2
∂x2∂y + b38

∂3 ϕ2
∂x2∂y + b18

∂3 ϕ2
∂y3 = 0,

h
a

∂2F
∂x2 + N0

11
∂2w
∂x2 + I3

∂ϕ1
∂x + I4

∂ϕ2
∂y = 0.

(16)

where bij and cij(i = 1, 2, 3; j = 1, 2, . . . , 8) are described in Appendix A.
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2.3. Solution Method

The CNT-reinforced nanocomposite cylindrical shell is subject to simply supported
boundary conditions at the edges and is mathematically expressed as [39]:

w = 0, M11 = 0, ϕ2 = 0,
∂2F
∂y2 = 0 when x = 0, x = l (17)

The solution of the set of Equation (16), which satisfies the above boundary conditions,
is sought as follows [35,39]:

w = Λ1 sin(λx) sin(µy), F = Λ2 sin(λx) sin(µy),
ϕ1 = Λ3 cos(λx) sin(µy), ϕ2 = Λ4 sin(λx) cos(µy)

(18)

where Λi(i = 1, 2, . . . , 4) are unknown amplitudes, (λ , µ) =
(
mπl−1, na−1), in which

(m, n) is the buckling mode.
To find the expression for the critical temperature, expressions (18) are substituted into

the basic Equations (16) and after applying the Galerkin method, the determinant of the
matrix of coefficients of algebraic equations is equal to zero:

p41D1 − Ñλ2D2 + p43D3 + p44D4 = 0 (19)

where

D1 = −

∣∣∣∣∣∣
p12 p13 p14
p22 p23 p24
p32 p33 p34

∣∣∣∣∣∣, D2 =

∣∣∣∣∣∣
p11 p13 p14
p21 p23 p24
p31 p33 p34

∣∣∣∣∣∣, D3 = −

∣∣∣∣∣∣
p11 p12 p14
p21 p22 p24
p31 p32 p34

∣∣∣∣∣∣, D4 =

∣∣∣∣∣∣
p11 p12 p13
p21 p22 p23
p31 p32 p33

∣∣∣∣∣∣ (20)

in which

p11 =
[
(c11 − c31)λ

2µ2 + c12λ4]h, p12 = (c14 + c32)λ
2µ2 + c13λ4, p13 = c15λ3 + c35λµ2 + I3λ,

p14 = (c18 + c38)µλ2, p21 =
[
c21µ4 + (c22 − c31)λ

2µ2]h, p22 = (c32 + c23)λ
2µ2 + c24µ4,

p23 = (c25 + c35)λµ2, p24 = c28µ3 + c38λ2µ + I4µ, p31 = h
[
b22λ4 + (b12 + b21 + b31)λ

2µ2 + b11µ4],
p32 = b23λ4 + (b24 + b13 + b32)λ

2µ2 + b14µ4 + λ2/a, p33 = b25λ3 + (b15 + b35)λµ2,
p34 = (b28 + b38)λ

2µ + b18µ3, p41 = λ2h/a, p43 = I3λ, p44 = I4µ

(21)

To find the eigenvalue or the critical uniform temperature (CUT) for the CNT patterned
cylinders within ST, Equations (15) and (19) are solved together and the following closed
form solution is obtained:

Tcr
sdt =

p41D1 + p43D3 + p44D4

ηD2λ2 (22)

where

η =

h/2∫
−h/2

bA11(z)α11(z) + A12(z)α22(z)cdz (23)

When TSDs are ignored in the basic relationships, the expression (24) transforms into
the expression for CUT of the nanocomposite cylindrical shells within CT and it is shown
as Tcr

cst.
The critical uniform temperature of nanocomposite cylindrical shells within the ST is

found by minimizing Equation (22) versus the (m, n).

3. Results

In this section, to confirm the accuracy of the analytical solution obtained in this study,
first a comparison is made with an existing and reliable result, and then original analyses
are performed.
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3.1. Comparative Study

In this subsection, the results for the buckling load of cylindrical shells modeled with
different types of CNTs in a thermal environment and under axial load are compared with
solutions of ref. [41] within ST and given in Table 1. As Shen [41] used Ncr

shen = 2πaNcr
sdt, we

use the formula (22) by multiplying 2πa at N0
11 = −N, where N is the uniform axial load.

The nanocomposite cylindrical shell characteristics are: a/h = 30, h = 0.002 m, V∗cnt = 0.17,
l = 10

√
3ah [41]. It is observed from Table 1 that current results for Ncr

shen = 2πaNcr
sdt (in

kN) of the cylinder with U and X profiles are in good agreement with the results of ref. [41]
in the thermal environment.

Table 1. Comparison of critical axial load of cylinders reinforced with U- and X-model in the thermal
environment within ST.

Ncr
shen = 2πaNcr

sdt (m,n)

U X U X

Ref. [41] Current study

122.25 148.06 122.440 (2,4) 148.966 (1,3)

3.2. Analysis and Interpretations

The thermomechanical properties of PMMA and CNT at room temperature, that
is, for T = 300 K, are numerically obtained using the following temperature-dependent
functions. [14,17]:

Ym = (3.52− 0.0034T) = 2.5 GPa, αm = 45(1 + 0.0005∆T)× 10−6 = 45× 10−6/K, νm = 0.34,
Ycnt

11 = (6.18387− 2.86× 10(−3) × T + 4.22867× 10(−6) × T2 − 2.2724× 10(−9) × T3) = 5.6451TPa
Ycnt

22 = (7.75348− 3.58× 10(−3) × T + 5.30057× 10(−6) × T2 − 2.84868× 10(−9) × T3) = 7.0796TPa
Gcnt

12 = (1.80126 + 0.77845× 10(−3) × T − 1.1279× 10(−6) × T2 + 4.93484× 10(−10) × T3) = 1.9466TPa
αcnt

11 = (−1.12148 + 2.289× 10(−2) × T − 2.88155× 10(−5) × T2 + 1.13253× 10(−8) × T3)× 10(−6) = 3.4579× 10(−6)/K
αcnt

22 = (5.43874− 9.95498× 10(−4) × T + 3.13525× 10(−7) × T2 − 3.56332× 10(−12) × T3)× 10(−6) = 5.1682× 10(−6)/K

The efficiency parameters are described by [41]:

η1 = 0.137, η2 = 1.022, η3 = 0.7η2 at V∗cnt = 0.12; η1 = 0.142, η2 = 1.626, η3 = 0.7η2 at V∗cnt = 0.17;
η1 = 0.141, η2 = 1.585, η3 = 0.7η2 at V∗cnt = 0.28

The CNT sizes are as follows: lcnt = 9.26 nm, acnt = 0.68 nm, hcnt = 0.067 nm,
νcnt

12 = 0.175, and f1(z) = f2(z) = z− 4
3h2 z3 [39–41].

Table 2 presents the variation of the critical uniform temperature when the CNT
cylindrical shell parameters are l/a = 1.25, h/a = 0.05, h = 0.002 m. It was determined
that the critical temperature values decrease significantly, while those change irregularly,
as the volume fraction increases. In addition, although the critical temperature decreases
significantly, the number of waves corresponding to the minimum critical temperature does
not change. The highest influence of TSDs on CUT is 22.51%, occurring in the X-pattern at
V∗cnt = 0.28, while the smallest effect is 6.01%, occurring in the O-model at V∗cnt = 0.17. V-,
O-, and X-patterns exhibit different effects compared to the U-model. In the framework of
ST, the largest pattern effect on the critical temperature occurs in the X-model (+24.39%)
for V∗cnt = 0.28, whereas the least influence occurs in the V-model (−10.16%) for V∗cnt = 0.17.
It is observed that the pattern effect on the CUT value in the framework of CT is more
pronounced than ST, between 11% and 13% in the X-pattern, between 3% and 4% in the
O-pattern, and between 3% and 5% in the V-pattern. In addition, among these patterns,
only the critical temperature values in the X-pattern are greater than the values in the
U-pattern, and therefore the (+) sign is placed in front of them.

Figure 3 shows the changes of the critical uniform temperature depending on the a/h ratio
within ST and CT when the CNT cylinder parameters are l/a = 1.25, h = 0.002 m, V∗cnt = 0.28.
It is observed that the magnitudes of the critical temperature continuously reduce with the
increase in the a/h ratio. The influences of TSDs on the critical temperature decrease with
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the increasing of the ratio, a/h. The influences of TSDs on the critical temperature for the
U-, V-, O-, and X-patterns are 14.42%, 9.13%, 8.94%, and 22.51%, respectively, as a/h = 20,
while those effects are 2.04%, 0.72%, 0.78%, and 2.72%, respectively, as a/h = 50 (Figure 3).
For some models, when a/h > 50, CT can be used instead of ST. When compared with the
uniform pattern, the effects of the V- and O- patterns on the CUT decrease from (−11.75%)
to (−4.17%) and from (−16.41%) to (−11.81%), respectively, with the increase in a/h from 20
to 50, while this effect changes irregularly in the X-model, around 24.4–26.6%. In addition,
it is observed that the consideration of transverse shear deformations significantly reduces
the effect of patterns on critical temperatures.

Table 2. Variation of CUT for nanocomposite cylindrical shells with different volume fractions.

Tcr/103(K)

U V O X

V*
cnt CT ST CT ST CT ST CT ST

0.12 0.533 (1,4) 0.472 (1,4) 0.455 (1,4) 0.420 (1,4) 0.415 (1,4) 0.385 (1,4) 0.695 (1,4) 0.574 (1,4)
0.17 0.568 (1,4) 0.512 (1,4) 0.492 (1,4) 0.460 (1,4) 0.449 (1,4) 0.422 (1,4) 0.738 (1,4) 0.625 (1,4)
0.28 0.527 (1,4) 0.451 (1,4) 0.438 (1,4) 0.398 (1,4) 0.414 (1,4) 0.377 (1,4) 0.724 (1,4) 0.561 (1,4)
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and CT.

Figure 4 shows the variation of the CUT depending on the l/a ratio within different
theories, as the CNT cylindrical shell characteristics are h/a = 0.05, h = 0.002 m, and
V∗cnt = 0.28. As can be observed, CUT values decrease continuously depending on the
l/a ratio, and this decrease is evident. The fastest decrease is observed in the U- and
X- patterned cylindrical shell in the framework of ST. The use of the shear deformation
theory significantly reduces the critical temperature values compared to the CT. The shear
deformations effect on the CUT demonstrates that it decreases with the increase in l/a. For
example, at l/a = 0.75, the effects of TSDs on the CUT are 36.96%, 26.51%, 26.44%, and
49.3% for the U-, V-, O-, and X-patterns, respectively, while those effects are 2.02%, 1.44%,
0.94%, and 3.56%, respectively, as l/a = 2.5. Although CT can be used instead of ST for
l/a > 2 ratios in some patterns, its use at high temperatures may lead to incorrect results.
When compared with the uniform pattern, the influences of the V- and O-patterns on the
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CUT reduce from (−15.09%) to (0.588%) and (−16.4%) and (−7.06%), respectively, with
the increase in l/a from 0.75 to 2.25, while this effect changes irregularly in the X-model, at
around 16.26–24.4%. As can be observed from the calculations, using CT does not cause an
error when l ≥ 2.5a in V-patterned cylindrical shells.
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Appendix A

In Equation (16), the following definitions apply:

c11 = a1
11b11 + a1

12b21, c12 = a1
11b12 + a1

12b22, c13 = a1
11b13 + a1

12b23 + a2
11

c14 = a1
11b14 + a1

12b24 + a2
12, c15 = a1

11b15 + a1
12b25 + a1

15, c18 = a1
11b18 + a1

12b28 + a1
18,

c21 = a1
21b11 + a1

22b21, c22 = a1
21b12 + d1

22b22, c23 = a1
21b13 + a1

22b23 + a2
21,

c24 = a1
21b14 + a1

22b24 + a2
22, c25 = a1

21b15 + a1
22b25 + a1

25, c28 = a1
21b18 + a1

22b28 + a1
28,

c31 = a1
66b31, c32 = a1

66b32 + 2a2
66, c35 = a1

35 − a1
66b35, c38 = a1

38 − a1
66b38,

b11 =
a0

22
d , b12 = − a0

12
d , b13 =

a0
12a1

21−a1
11a0

22
d , b14 =

a0
12a1

22−a1
12a0

22
d ,

b15 =
a0

25a0
12−a0

15a0
22

d , b18 =
a0

28a0
12−a0

18a0
22

d , b21 = − a0
21
d ; b22 =

a0
11
d ,

b23 =
a1

11a0
21−a1

21a0
11

d , b24 =
a1

12a0
21−a1

22a0
11

d , b25 =
a0

15a0
21−a0

25a0
11

d , b31 = 1
a0

66
,

b28 =
a0

18a0
21−a0

28a0
11

d , d = a0
11a0

22 − a0
12a0

21, b32 = − 2a1
66

a0
66

, b35 =
a0

35
a0

66
, b38 =

a0
38

a0
66

(A1)

in which akm
ij are described by

ak1
11 =

h/2∫
−h/2

A11(z)zk1dz, ak1
12 =

h/2∫
−h/2

A12(z)zk1dz =
h/2∫
−h/2

A21(z)zk1dz = ak1
21,

ak1
22 =

h/2∫
−h/2

A22(z)zk1dz, ak1
66 =

h/2∫
−h/2

A66(z)zk1dz ; k1 = 0, 1, 2.

ak2
15 =

h/2∫
−h/2

zk2 I1(z)A11(z)dz, ak2
18 =

h/2∫
−h/2

zk2 I2(z)A12(z)dz,

ak2
25 =

h/2∫
−h/2

zk2 I1(z)A21(z)dz, ak2
28 =

h/2∫
−h/2

zk2 I2(z)A22(z)dz,

ak2
35 =

h/2∫
−h/2

zk2 I1(z)A66(z)dz, ak2
38 =

h/2∫
−h/2

zk2 I2(z)A66(z)dz, k2 = 0, 1.

(A2)
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