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A B S T R A C T 

We developed self-consistent dynamical models of stellar systems in the framework of quasi-linear modified Newtonian dynamics 
(QUMOND). The models are constructed from the anisotropic distribution function of Gunn and Griffin, combined with the 
modified Poisson equation defining this gravitation theory and take into account the external field effect. We have used these 
models, and their Newtonian analogues, to fit the projected density and the velocity dispersion profiles of a sample of 18 Galactic 
globular clusters, using the most updated data sets of radial velocities and Gaia proper motions. We have thus obtained, for 
each cluster, estimates of the dynamical mass-to-light ratio ( M / L ) for each theory of gravity. The selected clusters have accurate 
proper motions and a well-sampled mass function down to the very low-mass regime. This allows us to constrain the degree of 
anisotropy and to provide, from comparison with stellar evolution isochrones, a dynamics-independent estimate of the minimum 

mass-to-light ratio ( M / L ) min . Comparing the best-fitting dynamical M / L with ( M / L ) min , we find that for none of the analysed 

clusters the two gravity theories are significantly incompatible with the observational data, although for one of them (NGC 5024) 
the dynamical M / L predicted by QUMOND lies at 2.8 σ below ( M / L ) min . Though the proposed approach suffers from some 
limitations (in particular the lack of a treatment of mass se gre gation), the obtained results suggest that the kinematics of globular 
clusters in a relatively weak external field can be a powerful tool to prove alternative theories of gravitation. 

Key words: gravitation – methods: data analysis – stars: kinematics and dynamics – globular clusters: general. 

1  I N T RO D U C T I O N  

One of the most astonishing astronomical disco v eries of the 20th 
century has been the tension between the estimate of the mass budget 
through luminous and dynamical tracers, suggesting the existence of 
a large amount of ‘dark matter’. Such an evidence was first noticed 
by Zwicky ( 1933 , 1937 ) as an anomaly in the velocity of galaxies 
inside the Coma cluster, and later confirmed at all scales, in the 
rotation of Galactic discs (Babcock 1939 ; Kent 1986 ; Korsaga et al. 
2019 ), in the mass-to-light ratio ( M / L ) of dwarf spheroidal galaxies 
(Faber & Lin 1983 ; Walker et al. 2009 ), in the gravitational lensing 
of background objects by galaxy clusters (Wu et al. 1998 ; Clowe 
et al. 2006 ), in the temperature distribution of hot gas in galaxies 
and clusters (Mushotzky 1991 ; Mulchaey et al. 1993 ), and in the 
pattern of anisotropies in the cosmic microwave background (Smoot 
et al. 1992 ; Planck Collaboration XLIII 2016 ). According to the last 
estimate provided by the Planck satellite (Planck Collaboration VI 
2020 ) ∼85 per cent of the mass budget of the Universe is constituted 
by non-baryonic matter. The freedom in the distribution of the dark 
mass in general allows one to solve the aforementioned tensions, 
so the dark matter paradigm is very hard to dispro v e. Nev ertheless, 
despite the large effort in searching for dark matter particles, there 
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has been no well-established detection of dark matter from a direct 
detection experiment (Carmona-Benitez et al. 2016 ; Aprile et al. 
2021 ). 

Since the early ’80s, Milgrom ( 1983 ) hypothesized an alterna- 
tiv e e xplanation, postulating a modification of the standard New- 
tonian gravitation law at the regime of very low accelerations 
( < 10 −10 m s −2 ), known as modified Newtonian dynamics (MOND). 
In particular, in spherical symmetry, the MOND gravitational field, 
∇φM 

, is related to the Newtonian gravitational field, ∇φN , by 

∇φM 

μ( ‖ ∇φM 

‖ /a 0 ) = ∇φN , (1) 

where a 0 is a characteristic acceleration ( a 0 ≈ 1 . 2 × 10 −10 m s −2 ) 
and μ is a function that smoothly runs from μ( x ) ∼ x when x � 1 to 
μ( x ) ∼ 1 when x � 1. 

So, any stellar system behaves as Newtonian when ‖∇φN ‖ � a 0 , 
while its gravitational field deviates from Newtonian prediction as 
‖∇φM 

‖ ∼ √ 

a 0 ‖ ∇φN ‖ > ‖ ∇φN ‖ when ‖∇φN ‖ � a 0 . As a conse- 
quence, objects crossing regions characterized by low acceleration 
mo v e faster in MOND than in Newtonian gravity, which potentially 
can solve the tension between luminous and dynamical mass without 
the need of dark matter. Such a simple and elegant modification, 
besides solving the dark matter issue, naturally reproduces the scaling 
relations of rotation- and pressure-supported galaxies like the Tully–
Fisher (Tully & Fisher 1977 ) and Faber–Jackson (Faber & Jackson 
1976 ) relations. 
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Following Milgrom’s original idea, a few non-relativistic (see 
Bekenstein & Milgrom 1984 ; Milgrom 2010 , 2023 ) and relativistic 
(see Bekenstein 2004 ; F amae y & McGaugh 2012 ; Skordis & Zło ́snik 
2021 ) MOND Lagrangian theories have been developed, such that 
the non-relativistic MOND gravitational field behaves essentially 
as in equation ( 1 ). In this work, we consider in particular the 
non-relativistic formulation of Milgrom ( 2010 ), dubbed quasi-linear 
modified Newtonian dynamics (QUMOND), where the potential can 
be derived from the canonical Poisson equation adopting a ‘f ak e’ 
density deri v able from the actual density and the corresponding 
Newtonian potential. This theory thus involves solving only linear 
differential equations, with one non-linear, algebraic step. The 
QUMOND potential φM 

obeys the equation 

∇ 

2 φM 

= ∇ · [ ν( y ) ∇φN ] (2) 

or 

∇ 

2 φM 

= 4 πGρf , (3) 

where y = ‖∇φN ‖ / a 0 , and ρf ≡ ∇ · [ ν( y ) ∇φN ]/(4 πG ) is the f ak e 
density which is the source term of the canonical Poisson equation for 
φM 

. The function ν is linked to the interpolating function μ so that 
μ( x ) ν( x μ( x )) = 1. 

Over the years, MOND has been remarkably successful, resisting 
several attempts of falsification (see Sanders & McGaugh 2002 ; 
Bekenstein 2009 ). Ho we v er, some features of observ ed systems 
and astrophysical phenomena are problematic for MOND, such as 
the dynamics and lensing of clusters of galaxies (The & White 
1988 ; Clowe et al. 2006 ; Natarajan & Zhao 2008 ), the survi v al 
of the Fornax dwarf galaxy globular cluster (GC) system (Nipoti 
et al. 2008 ), the internal and systemic dynamics of ultra-faint dwarf 
galaxies (Safarzadeh & Loeb 2021 ), the rotation curve of bulge- 
dominated galaxies (Fraternali, Sancisi & Kamphuis 2011 ), the X- 
ray isophotes of bright elliptical galaxies (Buote & Canizares 1994 ; 
Angus, F amae y & Buote 2008 ), the vertical kinematics of the Milky 
Way (Nipoti et al. 2007a ; Lisanti et al. 2019 ), the resolved kinematics 
of the ultra-diffuse galaxy AGC114905 (Mancera Pi ̃ na et al. 2022 ), 
and the phenomenon of galaxy merging (Nipoti, Londrillo & Ciotti 
2007b ). 

Another powerful class of objects useful to test this modified 
theory of gravitation is constituted by GCs (Baumgardt, Grebel & 

Kroupa 2005 ). They are almost spherical systems whose kinematics 
is determined by the balance between the gravitational force and 
the pressure due to the internal motions of their stars. Although the 
majority of GCs have dense cores and therefore internal accelerations 
exceeding a 0 by orders of magnitudes, the gravitational acceleration 
quickly decreases with the distance often reaching values below a 0 in 
their outskirts. So, the kinematics of an isolated GC with a sufficiently 
large radius is expected to be significantly different in Newtonian and 
MOND theories. 

GCs are immersed in the Milky Way gravitational field whose 
strength is larger than a 0 at Galactocentric distances R GC < 12 kpc 
(including ∼71 per cent of the Galactic GC system). Note that, 
for a satellite stellar system such as a GC, the gravitational field 
that appears in the argument of μ in equation ( 1 ) is due to the 
contributions of both the satellite and the host system. So, in MOND, 
even a uniform external field affects the internal kinematics of a 
stellar system (the so-called external field effect; Bekenstein & 

Milgrom 1984 ). Ho we ver, the fe w GCs populating the outer halo 
of the Milky Way feel negligible external accelerations ( ‖ a ext ‖ �
a 0 ) and are extended enough to show significant differences in their 
velocity dispersion profiles according to the Newtonian dynamics 
and MOND (Baumgardt et al. 2005 ; Sollima & Nipoti 2010 ; Ibata 

et al. 2011a , b ), and therefore constitute an ideal tool to test these 
theories. 

Two GCs have been analysed with this purpose till now: Palomar 
14 and NGC 2419. Jordi et al. ( 2009 ) compared the projected velocity 
dispersion of Palomar 14 calculated with radial velocities of 17 
member stars with a set of N -body simulations, reporting that the 
e xpected v elocity dispersion in MOND is more than three times 
higher than the observed value, and concluded that this evidence 
challenges MOND. On the other hand, Gentile et al. ( 2010 ) claimed 
that the confidence le vel achie v able using the small sample of 
stars used by Jordi et al. ( 2009 ) does not allow one to draw any 
significant conclusion on the validity of MOND. Finally, Sollima 
et al. ( 2012 ) performed N -body simulations of Palomar 14 in both 
Newtonian gravity and MOND investigating the effect of different 
assumptions on the M / L , binary fraction, anisotropy in the stellar 
velocity distribution, and cluster orbit. Comparing mock observations 
constructed from these simulations and the spectroscopic sample of 
Jordi et al. ( 2009 ), they concluded that both Newtonian and MOND 

models acceptably reproduce observations, with MOND models 
preferring low M / L . They also found that even the weak external 
acceleration ( ‖ a ext ‖ 
 0.16 a 0 ) felt by this GC produces significant 
effects on its kinematics. 

Deeper analyses have been conducted on NGC2419. This GC is 
located at ≈96 kpc from the Galactic centre, thus feeling a negligible 
external field ( ‖ a ext ‖ < 0.1 a 0 ). Moreover, it is massive enough ( M 
 

9.71 × 10 5 M �; Baumgardt & Hilker 2018 ) to contain hundreds of 
bright stars with accurate radial velocities. Ibata et al. ( 2011a , b ) used 
a large sample of ∼160 radial velocities and compared their velocity 
distribution with a set of dynamical models including the effect of 
anisotropy and binary fraction. They found that Newtonian models 
fit observations better than MOND providing likelihood larger by a 
factor 10 5 . These results on NGC2419 have been ho we ver criticized 
by Sanders ( 2012a , b ) who argued that polytropic MOND models 
provide a reasonable fit to the data and claimed that likelihood-based 
analyses (i) are dependent on the choice of the model stellar phase- 
space distribution function and (ii) can be used in a comparative test 
between different classes of models, but cannot rule out a model 
which adequately reproduces observations. 

A sound test to modified gravity would require the use of (i) 
a simple and robust observational quantity which is as much as 
possible independent on the underlying distribution function, and 
(ii) models flexible enough to reproduce those dynamical properties 
of the system (e.g. anisotropy) whose degrees of freedom are all well 
constrained. 

The shape and amplitude of the velocity dispersion profile (the 
main kinematic quantity used as observational constraint) in any 
dynamical model depend on the adopted M / L and on the degree of 
anisotropy. So, for a given pair of density and velocity dispersion 
profile, and once the anisotropy profile is fixed from the distribution 
of transverse motions, different gravitation theories will predict 
different dynamical M / L . 

The cluster M / L is therefore an excellent tool to test gravitation 
theories. Indeed, as discussed abo v e, for a giv en mass, MOND mod- 
els predict velocity dispersions systematically higher than Newtonian 
ones. This is a property set by construction (linked to the increased 
acceleration of MOND below a 0 ) and it is independent of the adopted 
distribution function. So, for a giv en v elocity dispersion, MOND 

models require lower masses (and therefore M / L ) than Newtonian 
ones. 

The M / L of a GC can be derived also with a method that is 
completely independent of dynamics, i.e. by summing the masses of 
individual stars detectable in deep photometric studies. This last task 
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requires, besides a deep and complete photometry, the knowledge 
of the cluster mass function (MF) down to the faintest (lowest 
mass) stars and a stellar isochrone with suitable age and metallicity. 
Comparing the dynamical M / L with such dynamics-independent M / L 

is thus a powerful method to test gravitational theories on the scale 
of GCs. 

Unfortunately, even the deepest photometric studies performed 
with the Hubble Space Telescope on a large number of GCs (Sara- 
jedini et al. 2007 ) are limited to the inner halo (at R GC < 30 kpc ). 
Similarly, the exquisite accuracy of proper motions provided by Gaia 
( σμ = 25 μas yr −1 at V ∼ 16; Gaia Collaboration 2018a ) translate 
into several kilometres per second beyond R GC ∼ 25 kpc . For GCs 
in this distance range the acceleration e x erted by the Milky Way 
gravitational field can be several times a 0 and the external field effect 
cannot be neglected. 

Dealing with the external field effect is technically simpler 
in QUMOND than, for instance, in the Bekenstein & Milgrom 

( 1984 ) formulation of MOND (see e.g. L ̈ughausen, F amae y & 

Kroupa 2015 ; Chae & Milgrom 2022 ), which makes QUMOND 

the natural choice if one wants to test MOND also with the GCs 
of the inner halo. These GCs are close enough to have well- 
sampled MF down to the hydrogen burning limit (Paust et al. 2010 ; 
Sollima & Baumgardt 2017b ; Ebrahimi et al. 2020 ; Baumgardt 
et al. 2023 ) and proper motions with accuracies comparable with 
those of radial velocities for hundreds of stars (Gaia Collaboration 
2021 ). 

In this paper, we present self-consistent dynamical models in the 
QUMOND theory that are analogues of those of Gunn & Griffin 
( 1979 ) in Newtonian gravity. We then use these models to derive the 
dynamical M / L in the V band ( M / L V ) by best fitting the line-of-sight 
and transverse velocity distributions provided by the most updated 
compilation of radial velocities (Baumgardt & Hilker 2018 ) and Gaia 
proper motions for a sample of 18 Galactic GCs located between 2.5 
and 18.5 kpc from the Galactic centre, in a regime of relatively 
weak (0.3 < a ext / a 0 < 4.9) external acceleration. The comparison 
with the M / L V derived independently using the observed MF, age, 
metallicity, and theoretical isochrones is used to test both Newtonian 
and QUMOND theories. 

In Section 2 , the models are presented. In Section 3 , we describe 
the selected sample of GCs and the data set used in this analysis. 
Section 4 is devoted to the description of the algorithm used to 
derive the M / L V from dynamics and its lower limit set from stellar 
models, together with their corresponding uncertainties. The results 
are presented in Section 5 and discussed in Section 6 . 

2  M O D E L S  

2.1 Model description 

For both Newtonian and QUMOND models we adopted the distri- 
bution function defined by Gunn & Griffin ( 1979 , based on Michie 
1963 and King 1966 ): 

f ( E, L ) = exp 

(
− L 

2 

2 σ 2 
K 

r 2 a 

)[
exp 

(
− E 

σ 2 
K 

)
− 1 

]
, (4) 

which can be written as 

f ( r, v r , v t ) = exp 

(
− v 2 t r 

2 

2 σ 2 
K 

r 2 a 

)[
exp 

(
−v 2 r + v 2 t 

2 σ 2 
K 

− φ( r) 

σ 2 
K 

)
− 1 

]
, 

(5) 

where E and L are the energy and angular momentum per unit 
mass, r is the distance from the cluster centre, φ is the grav- 

itational potential, r a is the characteristic radius beyond which 
orbits become significantly radially biased, σ 2 

K 

is an energy nor- 
malization, and v r and v t are the radial and tangential compo- 
nents of the v elocity, respectiv ely. The abo v e distribution func- 
tion represents the phase-space density and can be integrated 
o v er the v elocity domain to obtain, as functions of radius, the 
density 

ρ = 4 π
∫ √ −2 φ

0 
d v r 

∫ √ 

−2 φ−v 2 r 

0 
d v t v t f ( r, v r , v t ) , (6) 

and the radial ( σ r ) and tangential ( σ r ) velocity dispersions, respec- 
tively, which are given by 

σ 2 
r = 

4 π

ρ

∫ √ −2 φ

0 
d v r v 

2 
r 

∫ √ 

−2 φ−v 2 r 

0 
d v t v t f ( r, v r , v t ) , (7) 

and 

σ 2 
t = 

4 π

ρ

∫ √ −2 φ

0 
d v r 

∫ √ 

−2 φ−v 2 r 

0 
d v t v 

3 
t f ( r, v r , v t ) , (8) 

respecti vely. The dif ferential equation linking the potential deri v a- 
tives to the density is the canonical Poisson equation 

∇ 

2 φN = 4 πGρ (9) 

in the Newtonian case, and equation ( 3 ) in the QUMOND case. In 
all our MOND models we adopt the so-called simple interpolating 
function μ( x ) = x /(1 + x ) (F amae y & Binney 2005 ), whose 
corresponding ν function is 

ν( y ) = 1 + 

2 

y + 

√ 

y 2 + 4 y 
. (10) 

In the Newtonian case, equation ( 9 ) coupled with equation ( 6 ), 
can be solved in a straightforward way starting from a boundary 
condition at the centre for the potential φ = φ0 and integrating 
equation ( 6 ) outwards out to where the potential and the density 
vanish. In the QUMOND case, the situation is more complex because 
equation ( 6 ) provides, for a given potential φM 

, the actual density ρ, 
while equation ( 3 ) requires the f ak e density ρf . Note ho we ver that the 
relation between ρ and ρf can be derived by combining equations ( 2 ) 
and ( 3 ): 

ρf = νρ + 

ν ′ ( ∇ ‖∇ φN ‖ ) · ∇φN 

4 πGa 0 
. (11) 

So, the Newtonian field, ∇φN , becomes the only quantity necessary to 
determine at each radial step ρf and close the system of equations ( 6 ), 
( 3 ), and ( 13 ) for a given boundary condition for the potential at the 
centre. The natural choice is to adopt ∇φN = 0 at r = 0 and then 
derive the radial profile of ∇φN from equation ( 9 ) (see King 1966 ; 
Gunn & Griffin 1979 ). 

For a cluster immersed in an external field, the argument of the 
function ν is the magnitude of the total (internal plus external) 
gravitational field normalized to a 0 . Because of the vectorial nature 
of the acceleration and of the different symmetry of the internal and 
external acceleration field, the magnitude of the total acceleration 
varies with the angle with respect to the direction of the external 
acceleration. This breaks the spherical symmetry of the system whose 
density/potential contours will be elongated. This introduces an 
inconsistency with the distribution function adopted in equation ( 4 ). 
Indeed, while the energy remains an integral of motion regardless 
of the system geometry, the angular momentum magnitude L is not 
conserved in a non-spherical system. Ho we ver, in slightly flattened 
potentials, say with axial ratios � 0.9, L is conserved within a 
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few per cent (Binney & Tremaine 2008 , section 3.2.2, p. 163). As we 
will see below (Section 2.2 ), our models are in fact slightly flattened, 
so we neglect this issue. 

The outer boundary condition for the MOND and Newtonian 
gravitational fields are, respectively, 

lim 

r→∞ 

∇φM 

= −a M 

ext , 

where a M 

ext is the MOND external field, and 

lim 

r→∞ 

∇φN = −a N ext , 

where a N ext is the Newtonian external field. 
It is convenient to define the internal gravitational potentials ψ M 

and ψ N , such that 

∇ ψ M 

= ∇ φM 

+ a M 

ext 

and 

∇ ψ N = ∇ φN + a N ext . 

In order to account for the external field effect, in all the equations of 
this section we must replace ∇φM 

with ∇ψ M 

− a M 

ext and ∇φN with 
∇ψ N − a N ext . Remarkably, as pointed out by Milgrom ( 2010 ), a M 

ext 

drops from the equation for the internal potential ψ M 

, which thus 
depends on a N ext , but not on a M 

ext . In practice, the QUMOND internal 
field ∇ψ M 

can be obtained by solving, with boundary condition 
∇ψ M 

→ 0 at infinity, the equation 

∇ 

2 ψ M 

= 4 πGρf (12) 

where 

ρf = νρ + 

ν ′ ( ∇ ‖∇ ψ N − a N ext ‖ ) · ( ∇ψ N − a N ext ) 

4 πGa 0 
(13) 

(see Milgrom 2010 ; Chae & Milgrom 2022 ). As usual, ψ N can be 
obtained by solving 

∇ 

2 ψ N = 4 πGρ, (14) 

with standard boundary conditions. 
The internal potential ψ M 

is not spherically symmetric, but will 
maintain a symmetry with respect to the direction of the external 
field. So, it is possible to express all the involved quantities (density, 
potential, velocity dispersions, etc.) as functions of the spherical 
polar coordinates r and θ , where 0 < θ < π is the angle formed 
with the positive z-axis, which is taken to have the same direction 
and orientation as the external field, while there is no dependence 
on the azimuthal coordinate φ. We write the Newtonian and MOND 

potentials and densities as combinations of N Legendre polynomials: 

ψ = 

N ∑ 

k= 0 

u k ( r) P k ( θ ) , 

ρ = 

N ∑ 

k= 0 

g k ( r) P k ( θ ) , (15) 

where the functions u k and g k can be found by applying Laplace’s 
equation and the variation of constant formula (see Prendergast & 

Tomer 1970 ; Wilson 1975 ), so that 

u 0 = ψ 0 + 4 πG 

(∫ r 

0 
rg 0 d r − 1 

r 

∫ r 

0 
r 2 g 0 d r 

)
, (16) 

and 

u k = − 4 πG 

2 k + 1 

(
r k 

∫ ∞ 

r 

r 1 −k g k d r + r −1 −k 

∫ r 

0 
r k+ 2 g k d r 

)
, (17) 

where 

g k = 

2 k + 1 

2 

∫ π

0 
ρ P k sin θ d θ (18) 

and ψ 0 is the central potential. The same coefficients for QUMOND 

models can be calculated by replacing ρ with ρf in equations ( 18 ). 
The gradient of the internal Newtonian potential is therefore 

∇ψ N = 

( 

N ∑ 

k= 0 

d u k 

d r 
− ‖ a N ext ‖ cos θ

) 

ˆ e r 

+ 

( 

N ∑ 

k= 0 

u k 

r 

d P k 

d θ
− ‖ a N ext ‖ sin θ

) 

ˆ e θ . 

The model is computed iteratively, starting from N = 0 [for which 
the model is spherical, g 0 = ρ and equation ( 16 ) is simply the 
canonical Poisson equation in its integral form]. The density profile of 
the N = 0 model is then used to compute the f ak e density in the ( r , θ ) 
plane (from equation 13 ), the QUMOND potential (equation 3 ), the 
actual density and velocity dispersions (equation 6 ), and the higher- 
order asymmetric components g k and u k (equations 18 ), and a new 

model is computed. We found that N = 5 provides reasonably stable 
models with only negligible differences with respect to higher order 
models. Note that a symmetric Newtonian potential ψ N , because 
of the presence of the external field, produces an asymmetric f ak e 
density profile along the direction of the external field. So, the density 
distributions of subsequent iterations are shifted along this direction. 
The updated density distribution is then shifted to bring the system 

centre to the origin of the axes and used as input to construct the 
models of the next iteration. The density profiles of different steps are 
then compared and a new iteration is started if the average variation 
exceeds 0.1 per cent of the central density. 

The model is then projected in the plane of the sky and the ob- 
servational quantities (projected density 
 and velocity dispersions 
along the line of sight σ LOS , projected radial σ R and tangential σ T 

directions) are calculated. 
In practice, it is convenient to express all quantities as dimension- 

less by normalizing the densities to the central value ρ0 of ρ, the 
radii and the potential to characteristic values ( r c and σ 2 

K 

) and the 
external acceleration to a 0 : 

˜ ρ = ρ/ρ0 , ˜ ρf = ρf /ρ0 , 

˜ r = r/r c , W = −ψ/σ 2 
K 

, 

˜ a = | a N ext | /a 0 , ˜ r a = r a /r c . (19) 

The shape of each QUMOND model is completely defined by five 
parameters: the central dimensionless potential W 0 , the parameter 
ξ = σ 2 

K 

/ ( a 0 r c ), the strength of the external acceleration ˜ a and the 
anisotropy radius ˜ r a , and the cluster mass M , which determine both 
σ 2 

K 

and r c through the relations 

r c = 

√ 

4 πGM 

9 I ξa 0 
, (20) 

σ 2 
K 

= 

√ 

4 πGMξa 0 

9 I 
, (21) 

and 

ρ0 = 

9 σ 2 
K 

4 πGr 2 c 

, (22) 

where 

I = 2 π
∫ π

0 

∫ ∞ 

0 
˜ r 2 sin θ ˜ ρd ̃ r d θ
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(see also Sollima & Nipoti 2010 ). 
In appendix, we report more details about the computation of the 

models (Appendix A ) and of the external acceleration (Appendix B ). 

2.2 Model properties 

To illustrate the characteristics of our models, we start with two 
reference sets of parameters corresponding to an isotropic and a 
maximally radially anisotropic model. Both reference models have a 
mass of 10 5 M �, a central dimensionless potential W 0 = 5, a MOND 

parameter ξ = 1, and are immersed in a uniform external field with 
magnitude ˜ a = 1. So, the only varying parameter is ˜ r a which is 
obviously set to ∞ in the isotropic case and to ˜ r a , min = 1 . 3 in the 
anisotropic case. This value corresponds to a value of the Fridman–
Poliachenko index ζ lower than 1.7, which is the maximum value 
for which an anisotropic system remains stable against bar instability 
(Nipoti, Ciotti & Londrillo 2011 ). We recall that ζ is a global measure 
of anisotropy, defined as the ratio of kinetic energy in radial and 
tangential motions: 

ζ = 

2 T r 
T t 

= 

2 
∫ π

0 

∫ ∞ 

0 ˜ r 2 sin θ ˜ ρσ 2 
r d ̃ r d θ∫ π

0 

∫ ∞ 

0 ˜ r 2 sin θ ˜ ρσ 2 
t d ̃ r d θ

(23) 

(Fridman & Poliachenko 1984 ). In the following, we will quantify 
the degree of local anisotropy using the parameter 

β = 1 − σ 2 
t 

2 σ 2 
r 

for the three-dimensional (3D) structure of the system, and, when 
dealing with projected quantities, its analogue 

β ′′ = 1 −
(

σT 

σR 

)2 

, 

where σ R and σ T are, respectively, the radial and tangential com- 
ponents in the plane of the sky of the velocity dispersion integrated 
along the line of sight (Sollima et al. 2015 ). 

In the top panels of Figs 1 and 2 , the maps of density, potential, 
velocity dispersion, and anisotropy in the meridional plane ( x , z) 
(with the positive z-axis with the same direction and orientation 
as the external field) are shown, for the isotropic and anisotropic 
models, respectively. It can be seen that both models are almost 
spherical. A zoom of the abo v e profiles along the x - and the z- 
axes inside the core is shown in the bottom panels of the same 
figures. Here, the small ( z peak ∼ 0.1 r c ) shift of the peak den- 
sity towards the direction of the external field is noticeable. The 
profiles of other quantities along the x - and z-axes are almost 
indistinguishable. As expected, in the anisotropic model the β

parameter progressively increases towards the outer region of the 
system. 

Fig. 3 shows the flattening ( q ) and asymmetry ( e ) profiles, defined 
as 

q = 1 − x/z + 

, 

e = 1 − z −/z + 

, 

where x , z −, and z + 

are the distances from the density peak of a given 
density level along the x -axis, and along the ne gativ e and positive 
branches of the z-axis, respectively. It can be noted that there is an 
inversion of the trends of these quantities moving from the centre to 
the outer part of the system. In particular, in the very central region 
(at r < 0.5 r c ) the system is elongated in the direction of the external 
field, but outside this region the trend inverts reaching very small 
( e , q < 0.1) flattening and asymmetry in the opposite direction. The 

same trend is magnified in the anisotropic model, never reaching 
significant levels of flattening and anisotropy. On the basis of the 
abo v e evidence of small deviations from spherical symmetry, we 
can consider the angular momentum as a quasi-conserved quantity 
and safely adopt equation ( 4 ) also for QUMOND models (see 
Section 2.1 ). 

The deviations from central symmetry are even smaller when 
considering projected quantities. In Figs 4 and 5 , the projected 
density and the three components of the velocity dispersion are 
shown along the x , z −, and z + 

directions. Here, x , z −, and z + 

are the equi v alent of the 3D distances x , z −, and z + 

, but projected 
into the plane of the sky assuming a line of sight orthogonal to 
z to maximize the flattening and the asymmetry. Note that all 
profiles are extremely similar with differences of the order of 
0.1 dex in the logarithmic density and < 0.1 km s −1 in the velocity 
dispersion for both isotropic and anisotropic models. In this case, 
the model appears slightly elongated in the direction of the external 
field. 

We plot in Fig. 6 the projected density and velocity dispersion 
of the isotropic reference model by changing one parameter at 
time. Here, it can be visualized that W 0 mainly affects the model 
concentration (as in all canonical Newtonian models; see King 1966 ; 
Gunn & Griffin 1979 ) with models with high W 0 asymptotically 
approaching the isothermal sphere. The parameter ξ is instead an 
indicator of the internal acceleration field, and therefore determines 
the contribution of internal gravity to keep the system in the MOND 

regime. Indeed, models with large values of ξ progressively approach 
their Ne wtonian equi v alent. The same occurs for the ˜ a parameter for 
the external acceleration: the stronger the external field, the closer the 
system to the Newtonian model. Finally, the parameter ̃  r a determines 
the degree of anisotropy, with lower values of ˜ r a corresponding to 
elongation of the velocity ellipsoids occurring at smaller distance 
from the centre. 

A different experiment is shown in Fig. 7 . Here, the projected 
density profile of the QUMOND isotropic reference model is fit 
with a Newtonian model, and the Newtonian and MOND pro- 
jected velocity dispersion profiles are compared. It is apparent 
that the QUMOND model predicts a larger velocity dispersion 
across the entire extent of the system. As already discussed in 
Section 1 , this is a consequence of the stronger gravitational field 
predicted by MOND in regimes of low accelerations (equation 1 ). 
In MOND all cluster stars able to cross the low-acceleration 
region need more kinetic energy with respect to the classical 
Newtonian gravitation la w. An y re gion of the cluster contains a 
fraction of these stars, so the velocity dispersion is inflated at all 
radii. 

3  OBSERVA  T I O NA L  DA  TA  

3.1 GC data 

Among the 160 Galactic GCs, only a small subsample can be useful 
for our analysis. 

The selection has been made on the basis of three different criteria: 
(i) the absence of significant rotation, (ii) the availability of accurate 
MFs sampled down to the least massive stars ( m ∼ 0.1 M �), close to 
the hydrogen burning limit, and (iii) the availability of a significant 
number of accurate kinematic data (proper motions and line-of-sight 
velocities). 

The first criterion is based on the fact that our models lack a 
treatment of internal rotation. Note that in some GCs rotation is 
significant, and the rotation and pressure supports are comparable 
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Figure 1. Properties of the reference isotropic model (from top to bottom). First row: Maps of the logarithmic density (left-hand panel) and dimensionless 
potential (right-hand panel). Second row: Radial velocity dispersion (left-hand panel) and anisotropy parameter (right-hand panel). Darker contours indicate 
larger values in steps of 10 per cent of the central value. The direction of the external acceleration is shown by an arrow. Third row: Central density (left-hand 
panel) and potential (right-hand panel) profiles, along (solid lines) and orthogonal to (dashed lines) the direction of the external field. Fourth row: Radial velocity 
dispersion (left-hand panel) and anisotropy parameter (right-hand panel; here β = 0 everywhere) profiles, along (solid lines) and orthogonal to (dashed lines) 
the direction of the external field. 

(Sollima, Baumgardt & Hilker 2019 ). So, we first exclude all those 
GCs which are classified as ‘significant’ or ‘uncertain’ rotators in 
any of the compilations of Sollima et al. ( 2019 ) and Vasiliev & 

Baumgardt ( 2021 ). 
The second criterion is based on the approach we will adopt in 

Section 4 to compute the consistency of our best-fitting models 
with observations. Indeed, we need to compare our dynamical M / L 

with those obtained from the comparison of the stellar population 
synthetically derived from stellar models. A fundamental input of 
these models is the MF which needs to be well sampled across 
the entire e xtent co v ered by each GC, including the very low- 
mass stars contributing to the cluster mass more than to the light. 
We adopted the MF measurements by Baumgardt et al. ( 2023 ) 
and restricted our sample to those GCs with a lower mass 
limit m < 0.26 M �. 

The third criterion is based on the statistical robustness of 
the derived M / L and of the constraint on the anisotropy param- 
eters. We limit our analysis to GCs with at least 50 radial ve- 
locities and 50 proper motions with the required accuracy (see 
Section 3.3 ). 

After the application of the abo v e criteria, we selected a sample of 
18 GCs. They are listed in Table 1 . They span a heliocentric distance 
range 1 . 8 < R �/ kpc < 18 . 5 and a Galactocentric distance range 
2 . 5 < R GC / kpc < 18 . 5. 

In Fig. 8 , the 160 GCs of the Baumgardt & Hilker ( 2018 ) sample 
are plotted in the log ( a N int, hm 

/a 0 ) versus log a N ext /a 0 plane. Here, 

a N int, hm 

= 

GM 

2 r 2 h 

is the Newtonian internal acceleration magnitude of the cluster mea- 
sured at the half-mass radius r h and a N ext is the external acceleration 
magnitude calculated as described in Appendix B (equation B2 ). 
Clusters distribute in this plane along a diagonal, because of the 
well-known Galactocentric distance-size relation (van den Bergh, 
Morbe y & P azder 1991 ). It is apparent that all GCs with both 
a N int, hm 

< a 0 and a N ext < a 0 are outside the region where all the 
selection criteria are satisfied. Indeed, they are too far to have accurate 
proper motions and a properly sampled MF. Instead, those matching 
all the criteria occupy a region shared by many GCs in the external 
acceleration range 0 . 32 < ˜ a < 4 . 88. 
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Figure 2. Same as Fig. 1 , but for the anisotropic reference model. In the map of the anisotropy parameter, colours range from red (more isotropic) to blue (more 
radially anisotropic). 

3.2 Surface density profiles 

We account for the structural properties of the observed GCs, con- 
sidering circularized surface density profiles. In particular, we adopt 
the surface density profiles of Miocchi et al. ( 2013 ) when available 
and those of Trager, King & Djorgovski ( 1995 ) otherwise. For 
six GCs (NGC4833, NGC6101, NGC6352, NGC6362, NGC6496, 
and NGC6838) we calculated profiles using the Advanced Camera 
for Surv e ys (ACS) Hubble Space Telescope (HST) catalogues of 
Anderson et al. ( 2008 ) for the cluster cores and those of Stetson 
et al. ( 2019 ) for the outskirts. For this purpose, we converted F606W 

HST magnitudes into Johnson ones using the transformations of 
Sirianni et al. ( 2005 ), and selected stars along the main sequence in 
the common magnitude interval 12 < V < 19 where the photometric 
completeness is expected to be >90 per cent . The surface density 
has been calculated by counting stars in circular annuli and dividing 
by the correspondent area. 

3.3 Proper motions and radial velocities 

To account for the kinematic properties of the observed GCs, we rely 
mainly on the proper motions provided by the 3rd data release of the 
Gaia surv e y (Gaia Collaboration 2021 ) and the data base of radial 
velocities collected by Baumgardt & Hilker ( 2018 ) using a com- 
pilation of high-resolution spectroscopic data properly aligned. We 
cross-matched the two data sets in order to obtain a single catalogue 
per cluster containing all the three components of the velocities. 

From this catalogue, we want to extract a selection of sufficiently 
accurate kinematic measurements for a subsample of bona fide 
cluster members. For this purpose, we find it convenient to use as 
reference a Newtonian dynamical model of the cluster. We thus fit the 
surface density profiles (Section 3.2 ) of each cluster with an isotropic 
( r a / r c = ∞ ) Newtonian Gunn & Griffin ( 1979 ) model providing a 
normalized velocity dispersion ( ̃  σ 2 

v,i and ˜ σ 2 
μ,i for radial velocities and 

proper motions, respectively) at the projected radius of each star R i . 
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Figure 3. Flattening (blue lines) and asymmetry (red lines) profiles for the 
isotropic (solid lines) and anisotropic (dashed lines) reference models. 

To obtain the corresponding velocity dispersions in physical units 
σ v, i ≡ σ v ( R i ) and σμ, i ≡ σμ( R i ), we need two scaling factors ( σ v,0 

and σμ,0 ) such that σv,i = σv, 0 ̃  σv,i and σμ,i = σμ, 0 ̃  σμ,i . The relation 
between the two scaling factors is 

σv, 0 = 4 . 74 

(
R �
kpc 

)(
σμ, 0 

mas yr −1 

)
km s −1 , (24) 

where R � is the cluster distance. Throughout this work, we adopt 
the distances from Baumgardt & Vasiliev ( 2021 ), so in the following 
σ v,0 is left as a free parameter of the model, while σμ,0 is obtained 
from σ v,0 using equation ( 24 ). 

The best-fitting isotropic Newtonian model is found by maximiz- 
ing the likelihood 

ln L 
 = −1 

2 

M ∑ 

j= 1 

(
log 
 obs ,j − log ̃  
 ( R j ) − log 
 0 

δ log 
 obs ,j 

)2 

, (25) 

where 
 obs, j is the observed surface density at radius R j , δlog 
 obs, j is 
the uncertainty on log 
 obs, j , ˜ 
 ( R) is the normalized model’s surface 
density at projected radius R , and 
 0 is the central surface density of 
the model, which is left as a free parameter. 

Then, we fit iteratively the mean cluster velocity components 
( 〈 μ∗

α〉 , 〈 μδ〉 , and 〈 v〉 ) starting from the initial guesses of Vasiliev & 

Baumgardt ( 2021 ), together with the scaling factor σ v,0 , selecting 
those providing the maximum likelihood defined as ln L kin = ln L v + 

ln L μ, where 

ln L v = 

N ∑ 

i= 1 

ln L v,i , 

ln L v,i = −1 

2 

[
δ2 
v,i + ln s 2 v,i + ln (2 π ) 

]
, 

ln L μ = 

N ∑ 

i= 1 

ln L μ,i , 

ln L μ,i = −1 

2 
[ δX 

2 
i + δY 

2 
i − 2 ̃ � i δX i δY i + ln (1 − ˜ � 2 i ) 

+ ln ( s 2 μX,i s 
2 
μY,i )] − ln (2 π ) , (26) 

where 

δX 

2 
i = 

( μ∗
α,i − 〈 μ∗

α〉 ) 2 
(1 − ˜ � 2 i ) s 

2 
μX,i 

, 

δY 

2 
i = 

( μδ,i − 〈 μδ〉 ) 2 
(1 − ˜ � 2 i ) s 

2 
μY,i 

, 

s 2 μX,i = ε2 
μα,i + σ 2 

μ,i , 

s 2 μY,i = ε2 
μδ,i + σ 2 

μ,i , 

˜ � i = 

� αδ,i εμα,i εμδ,i 

s μX,i s μY,i 

, 

δv 2 i = 

( v i − 〈 v〉 ) 2 
s 2 v,i 

, 

s 2 v,i = ε2 
v,i + σ 2 

v,i . 

Here N is the number of bona fide cluster members at the current 
iteration; μ∗

α,i , μδ,i , and v i are the proper motions and radial 
velocity of the i th star; εμα, i , εμδ, i , and εv, i are their respective 
uncertainties, � αδ, i is the correlation coefficient between μ∗

α,i and 
μδ,i . We adopted Powell’s gradient descent algorithm (Powell 1964 ) 
to find the maximum likelihood in the considered 4D parameter 
space. At each iteration, we eliminated from the sample of bona fide 
cluster members all those stars with velocity lying at more than 5 σ
in the model’s velocity distribution at their radius. The algorithm 

converges after ∼10 iterations, providing the systemic motion of the 
cluster ( 〈 μ∗

α〉 , 〈 μδ〉 , and 〈 v〉 ) and the central scaling factor of radial 
velocity ( σ v,0 ). This value has been converted, using equation ( 24 ) 
and the distances provided by Baumgardt & Vasiliev ( 2021 ), into 
proper motion scaling factor σμ,0 , which we adopted as upper limit in 
proper motion uncertainty ( εμ,max = σμ,0 ). The parallaxes of member 
stars have been also used to determine the systemic cluster parallax 
( 〈 p 〉 ) and its dispersion ( σ p ). 

All the Gaia proper motions of stars contained within the tidal 
radius of the best-fitting Gunn & Griffin ( 1979 ) model have been 
selected. Among them, we selected for our final sample the stars 
(i) lying along the characteristic sequences of the G , ( G BP − G RP ) 
colour–magnitude diagram, (ii) with a parallax contained within 5 σ p 

from the mean systemic cluster parallax, (iii) with ln L μ, i > ln L μ,best 

− 5 (where L μ,best = max i L μ, i ), and (iv) with min ( εμα, i , εμδ, i ) 
< εμ,max . Of course, from equation ( 24 ), it is apparent that proper 
motions and their associated errors are proportional to the cluster 
distance. So, the more distant is the tar get GC the lar ger will be 
its proper motion uncertainty . Consequently , criterion (iv) greatly 
reduces the number of suitable proper motions for distant clusters. 

In the next steps (Section 4 ), we use separately the sample of N v 

line-of-sight velocities of bona fide members and the Gaia sample of 
proper motions for N μ stars selected according to the abo v e criteria. 

4  T E C H N I QU E  

In this section, we describe how we derived for each cluster the 
dynamical M / L V predicted by the two different gravitation theories 
and its minimum value independently derived from stellar evolution 
models. 

4.1 Model fit and dynamical M / L V 

Proper motions have been corrected for perspective rotation using 
equation 1 of Gaia Collaboration ( 2018b ) and equations 4 and 6 of 
van de Ven et al. ( 2006 ). The celestial coordinates (RA, Dec) have 
been converted into projected distances from the cluster centre using 
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Figure 4. Projected density (lower left panel) and velocity dispersion (lower right panel) profiles of the isotropic reference model, along the positive (black 
curv es) and ne gativ e (red curv es) branches of the z -axis, and along the x -axis (blue curves). We recall that the positive z -axis is parallel to and oriented as the 
external field (see text). The upper panels show zooms of the green regions marked in the corresponding bottom panels. 

equation ( 1 ) of van de Ven et al. ( 2006 ) and adopting the centres 
of Baumgardt & Hilker ( 2018 ). The α and δ proper motions of each 
star have been converted into radial ( μR ) and tangential ( μT ) proper 
motions in the plane of the sky, relative to the cluster centre. 

The models have been projected along the line of sight, taking into 
account that the model symmetry z-axis (aligned with the external 
field, which points towards the Galactic centre) forms with the line 
of sight an angle 

i = cos −1 

(
R GC · R �

‖ R GC ‖‖ R �‖ 
)

, 

where R GC and R � are the vectors connecting the cluster to the 
Galactic centre and to the Sun, respecti vely. Gi ven that the projections 
of the models in the plane of the sky deviate negligibly from 

circular symmetry (see Section 2.2 ), for comparison with the data we 
computed for the model the angle averaged profiles of the following 

quantities integrated along the line of sight: the surface density 
( R ), 
the line-of-sight velocity dispersion σ LOS ( R ), and the radial σμR ( R ) 
and tangential σμT ( R ) components of the proper-motion dispersion, 
calculated using the cluster distance R � (here R is the distance from 

the centre in the plane of the sky). 
For both Newtonian and QUMOND models we defined a sequence 

of values of M and ̃  r −1 
a : for the latter we consider the range from 0 to 

˜ r −1 
a , min in steps of 0.1, where ̃  r a , min is such that ζ 
 1.7 (see Section 2.2 ). 

As in Section 3.3 , the normalization factor of proper motions has been 
calculated separately and used only to calculate the contribution of 
anisotropy to the likelihood. Then, for each pair ( M, ̃  r a ), using a 
Powell’s gradient descent algorithm (Powell 1964 ), we searched for 
the pair of values of parameters, ( W 0 , r c ) for Newtonian models and 
( W 0 , ξ ) for QUMOND ones, that maximize the following likelihood: 

ln L = ln L 
 + ln L v + ln L μ, (27) 
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Figure 5. Same as the lower panels of Fig. 4 , but for the anisotropic reference model. Here, given that the model is anisotropic, we show separately the 
line-of-sight, and plane-of-the-sky radial and tangential velocity dispersion profiles. 

where ln L 
 is defined in equation ( 25 ), 

ln L v = 

N v ∑ 

i= 1 

ln L v,i , 

ln L μ = 

N μ∑ 

i= 1 

ln L μ,i , (28) 

and ln L v, i and ln L μ, i are defined as in equation ( 26 ), but with 

δX 

2 
i = 

( μR ,i − 〈 μR 〉 ) 2 
(1 − ˜ � 2 i ) s 

2 
μX,i 

, 

δY 

2 
i = 

( μT ,i − 〈 μT 〉 ) 2 
(1 − ˜ � 2 i ) s 

2 
μY,i 

, 

s 2 μX,i = ε2 
μR ,i + σ 2 

μR ( R i ) , 

s 2 μY,i = ε2 
μT ,i + σ 2 

μT ( R i ) , 

˜ � i = 

� RT ,i εμR ,i εμT ,i 

s μX,i s μY,i 

, 

δv 2 i = 

( v i − 〈 v〉 ) 2 
s 2 v,i 

, 

s 2 v,i = ε2 
v,i + σ 2 

LOS ( R i ) , 

where μR, i and μT, i are, respectively, the radial and tangential 
proper motions of the i th star, εμR, i and εμT, i are the corresponding 
uncertainties, and � RT, i is the correlation coefficient between μR, i and 
μT, i . 

By marginalizing o v er ˜ r −1 
a we obtain the global likelihood for a 

given cluster mass M : 

L ( M) = 

∫ ˜ r −1 
a , min 

0 
L ( M, ̃  r −1 

a ) d ̃ r −1 
a . 

Masses have been then divided by the cluster luminosity, derived 
using the absolute V -band magnitudes by Baumgardt, Sollima & 

Hilker ( 2020 ) and the solar absolute V magnitude M V = 4.84 (Pr ̌sa 
et al. 2016 ), to obtain the corresponding distribution of L for M / L V , 
which is then normalized and fitted with a Gaussian. The best-fitting 
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Figure 6. Projected density (left-hand panels) and velocity dispersion (right-hand panels) profiles of QUMOND models which are obtained from the isotropic 
reference model by varying one parameter at a time. From top to bottom panel: W 0 = 3, 5, 7; ξ = 0.1, 1, 10; ̃  a = 0 . 1 , 1 , 10 (marked in each panel with dotted, 
dashed, and dot–dashed lines, respectively); and ̃  r a = 1 . 3 , ∞ (marked with dotted and dashed lines, respecti vely). In the panels relati ve to the parameters ξ and 
˜ a , the Newtonian model with the same value of W 0 is also plotted with solid lines. 

value of the data of NGC5024 with Newtonian and QUMOND 

models is shown in Fig. 9 , as an example. The dynamical M / L V 

of our sample of GC is reported in Table 1 . 

4.2 Minimum M / L V 

The goal of this paper is to compare the dynamical M / L V of 
our GCs sample with a dynamics-independent estimate, to test 

the validity of the Newtonian and QUMOND theories of grav- 
itation. In particular, it is important to estimate an observation- 
ally inferred ( M / L V ) min of the GC, independent of kinematics: 
As pointed out in the introduction section, for a gravitational 
theory to be acceptable, the dynamical M / L V predicted by the 
theory must not be lower than this minimum value. Thus the 
estimate of the ( M / L V ) min is a fundamental piece of the present 
investigation. 
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Figure 7. Projected density (left-hand panel) and velocity dispersion (right-hand panel) profiles of the QUMOND isotropic reference model (blue lines) and of 
the Newtonian model with the same projected density profile (red lines). 

Table 1. Properties of the Newtonian and QUMOND best-fitting models. 
Column 1: Name of the GC. Column 2: Minimum mass-to-light ratio 
[( M / L V ) min ; see Section 4.2 ]. Columns 3 and 4: M / L V and probability (see 
Section 4.1 ) of the best Newtonian model. Columns 5 and 6: M / L V and 
probability of the best QUMOND model. M / L s are in solar units. 

Newtonian QUMOND 

NGC ( M / L V ) min M / L V P M / L V P 

288 0.988 2.931 1.000 1.400 0.997 
1261 0.811 1.896 1.000 1.097 0.965 
1851 0.887 2.132 1.000 2.069 1.000 
4590 1.187 2.960 1.000 1.883 0.984 
4833 0.872 1.348 1.000 1.069 0.844 
5024 1.232 2.028 1.000 0.927 0.005 
5897 1.329 2.393 1.000 1.339 0.591 
6101 1.329 2.568 1.000 1.386 0.640 
6121 1.059 1.895 1.000 1.549 0.977 
6171 0.953 2.078 1.000 1.518 1.000 
6254 0.900 1.749 1.000 1.485 0.983 
6352 0.943 2.067 0.999 3.198 1.000 
6362 0.868 1.965 1.000 1.274 1.000 
6366 0.720 1.564 1.000 1.077 0.994 
6496 1.151 1.643 0.981 1.270 0.754 
6723 0.927 2.232 1.000 1.697 1.000 
6779 0.844 3.147 1.000 3.063 1.000 
6838 0.725 1.207 1.000 1.191 1.000 

A viable option is provided by the M / L V predicted by stellar 
evolution models. Indeed, each cluster star contributes to both mass 
and luminosity in a different way according to its initial mass and 
evolutionary stage. As a first step, we choose a set of isochrones from 

the Cassisi et al. ( 2000 ) data base with suitable metal content Z and 
age. These isochrones use a solar mixture and extend from very low 

mass stars ( m ∼ 0.1 M �) to asymptotic giant branch stars and include 
mass-loss occurring during cluster evolution. The metal content has 
been derived using the metallicities [Fe/H] from the Harris ( 1996 , 
2010 edition) catalogue, accounting for the effect of α-enhancement 
using the relation from Salaris, Chieffi & Straniero ( 1993 ): 

log Z = log (0 . 02) + [[ Fe / H ] + log (0 . 638 f α + 0 . 362)] 

Figure 8. Location of the 160 GCs of the Baumgardt & Hilker ( 2018 ) data 
base (open dots) in the log ( a N int, hm 

/a 0 ) versus log ( a N ext /a 0 ) plane. The 18 
GCs analysed in this paper are marked by full dots. 

with 

f α = 

{
10 0 . 28 if [ Fe / H ] < −0 . 8 
10 −0 . 35 [ Fe / H ] if [ Fe / H ] > −0 . 8 . 

The age of each cluster has been derived by converting colours and 
magnitudes of isochrones of different ages into absolute magnitudes 
and dereddened colours using the distance of Baumgardt & Vasiliev 
( 2021 ), the reddening of Harris ( 1996 , 2010 edition), and the 
extinction coefficients by Cardelli, Clayton & Mathis ( 1989 ). We 
choose the age providing the lowest χ2 , calculated using the stars 
within 2 magnitudes from the turn-off point. 

As stars of different masses contribute to the cluster mass and 
luminosity budget in a different way, it is essential to know their 
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Figure 9. Projected density (upper left panel), line-of-sight velocity dispersion (lower left panel), and projected anisotropy parameter (lower right panel) 
profiles of the best-fitting Newtonian (red solid curves) and QUMOND (blue solid curves) models of NGC 5024. The dashed blue curve indicates the best-fitting 
QUMOND model assuming the ( M / L V ) min = 1.232. The black dots mark binned observational data for comparison, but the analysis has been conducted using 
unbinned data. The probability distributions of M / L V for QUMOND models and of ( M / L V ) min are shown in the upper right panel with red and empty histograms, 
respectively. M / L s are in solar units. 

relative fraction (the existing MF). We model the MF as a single 
power law with slope αMF , which has been shown to be a good 
approximation for many GCs (Ebrahimi et al. 2020 ). In particular, 
we adopt the MF measured by Baumgardt et al. ( 2023 ). 

We assume that mass-dependent depletion of stars has turned an 
initial Kroupa ( 2001 ) MF into the observed MFs. We model the 
passi ve e volution of the initial population, using the relations of 
Kruijssen ( 2009 ). According to these relations, stars abo v e 8 M �
evolve into neutron stars or into black holes depending on their 
original mass. Ho we v er, most of these stars are e xpected to quickly 
escape from the system because of the natal kick occurring at the 

end of their evolution (Drukier 1996 ). As we want to estimate the 
( M / L V ) min , we exclude all stars with initial masses m > 8 M �. 
The stars with m < 8 M � become white dwarfs and do not suffer 
from natal kicks. The mass in main-sequence stars is computed by 
inte grating the e xisting MF between 0.1 M � and the turn-off mass. 
To this mass, we add the mass in white dwarfs, computed assuming 
that white dwarfs are lost at the same rate as main-sequence stars of 
the same mass, and using the initial–final mass relation of Kalirai 
et al. ( 2008 ). The luminosities of all stars, derived from the best- 
fitting isochrone, have been finally summed to provide L V , and thus 
an estimate of M / L V which is independent of the cluster dynamics. 
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Note that this M / L V is a lower limit to the actual value, mainly 
because the mass in white dwarfs is a lower limit. White dwarfs 
are being lost at a lower rate compared to main-sequence stars of 
the same mass, since they are more massive stars for a significant 
fraction of the time and, also when they turn into white dwarfs, they 
start from the centre, so it takes them a long time to drift towards the 
tidal radius. N -body simulations have shown that white dwarfs can 
contribute up to 70 per cent of the total mass in an evolved cluster 
(see fig. 11 of Baumgardt & Makino 2003 ). Instead, in our estimates 
of the existing cluster mass, in which this effect is neglected, the 
contribution of white dwarfs never exceeds 25 per cent. 

For each cluster we repeat the abo v e task 10 3 times by adding 
to cluster distances and metallicities a random shift extracted by 
Gaussian distributions centred on the nominal value and with a 
standard deviation equal to the 1 σ uncertainties quoted by Baum- 
gardt & Vasiliev ( 2021 ) for distances and a typical value of 0.1 dex 
for metallicities. The distribution of the output ( M / L V ) min has been 
assumed as representative of the probability distribution of ( M / L V ) min . 

For each GC 10 6 pairs [dynamical M / L V and ( M / L V ) min ] have 
been extracted from the estimated distributions and the fraction of 
occurrences of dynamical M / L V > ( M / L V ) min has been assumed as the 
probability P of compatibility between the data and the considered 
model. 

5  RESULTS  

The probability of agreement P for the 18 GCs of our sample is listed 
in Table 1 for both Newtonian and QUMOND models. None of the 
analysed clusters has been found with a dynamical M / L V significantly 
incompatible ( P < 0.003, corresponding to ∼3 σ ) with the predicted 
lower limit. For one of them (NGC5024) the QUMOND prediction 
lies at 2.8 σ below such a lower limit ( P = 0.005). 

In Fig. 10 , the dynamical M / L V estimated by Newtonian and 
QUMOND models are compared with ( M / L V ) min and with the M / L s 
measured by Baumgardt & Vasiliev ( 2021 ). The M / L V of our Newto- 
nian models is in good agreement with those of Baumgardt & Vasiliev 
( 2021 ), with the exception of three GCs (NGC288, NGC4590, and 
NGC6779). 

As expected, the Newtonian models are systematically more 
massive than QUMOND ones. As already discussed in Section 1 , 
this is a direct consequence of the increased acceleration in MOND 

models, which therefore require less mass to keep the cluster in 
equilibrium. An exception is the cluster NGC6352, for which the 
Ne wtonian M / L is lo wer than the QUMOND M / L : This can be 
explained by the fact that for this cluster the QUMOND best fit 
has a lower anisotropy than the Newtonian one. 

When comparing the dynamical M / L V with the minimum ones 
estimated from stellar evolution, it is apparent that the M / L V of New- 
tonian models are systematically higher than ( M / L V ) min , indicating 
a consistency between these models and independent observational 
constraints. The M / L V of QUMOND models are on average closer 
to ( M / L V ) min . Remarkably, in QUMOND the cluster NGC5024 has 
a best-fitting dynamical M / L V lower than ( M / L V ) min , thus showing a 
deficiency of mass (though contained within the uncertainties). 

6  C O N C L U S I O N S  

In this paper we developed dynamical models of stellar systems 
within the framework of the QUMOND, which include radial 
anisotropy in the same fashion as their analogues in the standard 
Newtonian dynamics (Gunn & Griffin 1979 ). We compared them 

with the most updated set of observational kinematics of a sample of 

18 GCs located in the Galactic halo in a range of Galactocentric 
distances 2 . 5 < R GC / kpc < 18 . 5, a region characterized by 
external accelerations in the range 0 . 32 < a N ext /a 0 < 4 . 88 and 
derived their dynamical M / L V . We then tested the validity of both 
Newtonian and QUMOND theories by comparing these values with 
independent lower limits derived through the use of synthetic stellar 
evolution models. 

As reported in Section 5 , none of the analysed clusters has a dy- 
namical M / L V formally incompatible ( > 3 σ ) with the ( M / L V ) min pre- 
diction of stellar evolution models, although one of them (NGC5024) 
reaches a disagreement with the QUMOND prediction at 2.8 σ . 

Considering that there is still room to impro v e the accurac y of the 
estimated M / L V and their corresponding lower limits, it is possible 
that the incompatibility of this cluster (or others not sampled by our 
surv e y) could become significant when better data are available. 

A limit of our QUMOND model is that we neglect the fact that the 
external field varies while a GC moves along its orbit. In particular, if 
the external field experienced by NGC5024 was stronger in the past, 
the kinematics of this object might retain memory of when it was in 
a more Newtonian regime, which in principle could help explain the 
low dynamical M / L V found for our QUMOND model. Ho we ver, this 
effect is expected to be unimportant because (i) the time-scale o v er 
which the GC reacts to any change of the external field is typically 
much shorter than the orbital time-scale (even for very eccentric 
orbits; Wu & Kroupa 2013 ) and (ii) NGC5024 should not experience 
strong variations of the external field because its orbit has a relatively 
low eccentricity of ≈0.4 (Vasiliev & Baumgardt 2021 ). 

Binaries cannot solve the discrepancy found for NGC5024: The 
effect of such objects is to inflate the actual velocity dispersion 
because of the velocity oscillation of the primary component around 
the centre of mass that spuriously adds a spread to the actual velocity 
dispersion (see e.g. Bradford et al. 2011 ). So, the net effect would be 
to further decrease the required mass (and consequently the M / L V ) 
needed to fit observations. 

Similar considerations hold for the tidal heating. Also in this 
case, the kinetic energy released by the Galactic tidal field to the 
cluster stars would result in an increase of their velocity dispersion, 
thus enhancing the tension between predictions and observations 
(Spitzer & Che v alier 1973 ). 

An opposite effect is instead produced by mass se gre gation. 
Indeed, the radial velocities available for most GCs are those of the 
red giant stars, which are the most massive stars of the sample. These 
stars tend to sink in the central region of the cluster because they 
tend to release kinetic energy to less massive stars. Therefore, they 
populate preferentially inner orbits with a velocity dispersion which, 
for a given mass, is lower than that predicted by single-mass models. 
So, by neglecting this effect, the best fit of the velocity dispersion 
neglects the contribution of the dynamically hot low-mass stars, 
resulting in an underestimated mass and M / L V up to a factor of ∼2 
(Sollima et al. 2017a ). F or this reason, ev en a formal disagreement 
could not falsify MOND theories until multimass models in this 
gravitational framework are developed. The models used in this paper 
can be generalized to allow for the presence of a spectrum of mass, as 
described in Gunn & Grif fin ( 1979 ). Ho we ver, multimass QUMOND 

models of GCs would require some inputs from simulations with 
QUMOND collisional N -body codes, which, as far as we know, have 
not been developed so far (see Ciotti & Binney 2004 for a discussion 
of two-body relaxation in MOND). 

Summarizing, although the present analysis is not able to provide 
firm conclusions on the validity of QUMOND, we show that this 
approach can be valuable for this purpose in the future. Indeed, 
while previous analyses (Ibata et al. 2011a ; Sollima et al. 2012 ) 
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Figure 10. Comparison among different estimates of M / L V (in solar units) for our sample of GCs. In the upper panels we compare the best-fitting Newtonian 
M / L V with that of QUMOND (left-hand panel) and that of Baumgardt & Vasiliev ( 2021 ) (right-hand panel). In the lower panels we compare the ( M / L V ) min with 
the best-fitting M / L V of Newtonian (left-hand panel) and QUMOND (right-hand panel) models. The location of NGC5024 in the ( M / L V ) M 

versus ( M / L V ) min 

plane is shown. 

were limited to only two GCs subject to a negligible external 
field, here we can include GCs populating the inner Galactic halo, 
enlarging the number of target clusters. Note that many GCs in 
this external acceleration range have promising properties (such as 
relatively steep MFs and low mass), but could not be included in 
our sample because of the lack of a significant number of radial 
velocities and/or proper motions with the required accuracy. The 
next releases of Gaia foresee an improvement in the accuracy and 
depth of proper motions (Gaia Collaboration 2018a ), and surv e ys 
of radial velocities are continuously in progress. This could further 
enlarge the number of available target GCs and decrease the width 
of the M / L V probability distributions, thus improving the efficiency 
in detecting tensions between models and observations. On the 
theoretical side, the development of multimass QUMOND models 
will account for the effects of mass se gre gation, pro viding a more 
complete representation of real GCs. 
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APPENDI X  A :  C O M P U TAT I O N  O F  T H E  

M O D E L S  

In this appendix, we describe in more details the computation of the 
models presented in Section 2 . 

Using the normalizations of parameters given in equation ( 19 ), the 
QUMOND modified Poisson equation ( 12 ) can be written as 

˜ ∇ 

2 W M 

= −9 ν ˜ ρ + ν ′ ˜ ∇ y ·
(

˜ ∇ W N + 

˜ a 

ξ

)
(A1a) 

= −9 ̃  ρf , (A1b) 

where ˜ ∇ 

2 ≡ r 2 c ∇ 

2 , ˜ ∇ ≡ r c ∇, and 

˜ ρf = ν ˜ ρ − ν ′ 

9 
˜ ∇ y ·

(
˜ ∇ W N + 

˜ a 

ξ

)
. (A2) 

As far as we use the simple interpolating function μ( x ) = x /(1 + x ), 
ν( y ) is given by equation ( 10 ) and 

ν ′ ( y) = − 1 

y 
√ 

y 2 + 4 y 
, (A3) 

where 

y = ‖ ξ ˜ ∇ W N + ˜ a ‖ (A4) 

in terms of dimensionless quantities. 
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We define the Newtonian and MOND potentials and densities as 
combinations of Legendre polynomials (equation 15 ): 

W = 

N ∑ 

k= 0 

˜ u k ( r) P k ( θ ) , 

˜ ρ = 

N ∑ 

k= 0 

˜ g k ( r) P k ( θ ) , 

where we normalized the functions u k and g k as 

˜ u k = − u k 

σ 2 
K 

˜ g k = 

g k 

ρ0 

or, in expanded form, 

˜ u 0 = W 0 − 9 

(∫ ˜ r 

0 
˜ r ̃  g 0 d ̃ r − 1 

˜ r 

∫ ˜ r 

0 
˜ r 2 ˜ g 0 d ̃ r 

)
, (A5) 

˜ u k = 

9 

2 k + 1 

(
˜ r k 
∫ ∞ 

˜ r 
˜ r 1 −k ˜ g k d ̃ r + ̃  r −1 −k 

∫ ˜ r 

0 
˜ r k+ 2 ˜ g k d ̃ r 

)
, (A6) 

and 

˜ g k = 

2 k + 1 

2 

∫ π

0 
˜ ρ P k sin θ d θ. (A7) 

Note that there are two sets of coefficients u k and g k for Newtonian 
and QUMOND, with the same functional definitions, but calculated 
using ρ of ρf , respectiv ely. F or simplicity, in the following we omit 
the suffixes N and M for u k and g k , keeping in mind that these 
coefficients are calculated for both Newtonian and MOND models. 

At the first iteration, we choose W M,0 , ξ , and ˜ a , and assume N = 

0. This implies 

˜ g 0 = ˜ ρ (A8) 

and then 

˜ u 0 = W N , 0 − 9 

(∫ ˜ r 

0 
˜ r ̃  ρ d ̃ r − 1 

˜ r 

∫ ˜ r 

0 
˜ r 2 ˜ ρ d ̃ r 

)
. (A9) 

The abo v e model is spherical and can be easily inte grated from the 
centre outward. Note that our input is W M,0 while the Newtonian 
potential at the centre is unknown. To o v ercome to this problem, we 
run a pre-iteration with W N,0 = W M,0 and construct a model starting 
from the inner boundary conditions: 

˜ ρ = 1 , 

y = | ̃ a | , 
d W N 

d ̃ r 
= 0 . (A10) 

After substitution of variables and integration, equations ( 6 ), ( 7 ), 
and ( 8 ) can be written as functions of W and ˜ r a as 

˜ ρ = 

√ 

πe W erf ( 
√ 

W ) + 

√ 

πe −˜ r 2 a W erfi( ̃ r a 
√ 

W ) 
˜ r 3 a 

− 2 
√ 

W (1 + ̃ r 2 a ) 
˜ r 2 a 

(1 + ̃  r 2 a ) 
[√ 

π e W 0 erf ( 
√ 

W 0 ) − 2 
3 (2 W 0 + 3) 

] , (A11) 

σ 2 
r = σ 2 

K 

j 0 − j 2 

( j 0 + j 2 ̃  r 2 a ) 
(A12) 

and 

σ 2 
t = σ 2 

K 

2 j 0 + j 2 
[
(5 + 2 W (1 + ̃  r 2 a )) ̃  r a 

2 + 3 
]− 2 W 

5 
2 (1 + ̃  r 2 a ) 

( j 0 + j 2 ̃  r 2 a )(1 + ̃  r 2 a ) 
, 

(A13) 

where 

j 0 = 

3 

4 

√ 

πe W erf ( 
√ 

W ) −
√ 

W ( W + 3 / 2) , 

j 2 = 

3 
4 

√ 

πe −˜ r a W erfi( ̃ r a 
√ 

W ) + ̃  r a 
√ 

W ( ̃ r 2 a W − 3 / 2) 

˜ r 5 a 

, 

and erf and erfi are the real and imaginary error functions, respec- 
tively. 

At each radial step, we calculate the quantities ρ, ˜ g 0 , and ˜ u 0 using 
equations ( A11 ), ( A8 ), and ( A9 ), respecti vely. The v alue of W at the 
origin of the axes is adopted as W N ,0 , and a new iteration is started 
using only the first two equations of ( A10 ), until the value of W N ,0 

converges within 1 per cent. 
Once the spherical zero-model is computed, it is used to compute 

u k and g k for the desired value of N through equations ( A6 ) and 
( A7 ), respectiv ely. F or conv enience, we report below the expansion in 

Legendre polynomials to compute the terms y and ˜ ∇ y ·
(

˜ ∇ W N + 

˜ a 
ξ

)
needed in equation ( A2 ): 

y = 

√ √ √ √ 

( 

ξ

N ∑ 

k= 0 

d u k 

d ̃ r 
P k + ˜ a cos θ

) 2 

+ 

( 

ξ

˜ r 

N ∑ 

k= 0 

d P k 

d θ
u k + ˜ a sin θ

) 2 

and 

˜ ∇ y · (ξ ˜ ∇ W + ̃  a 
) = 

1 

y 

⎡ ⎣ 

( 

ξ

N ∑ 

k= 0 

d u k 

d ̃ r 
P k + ˜ a cos θ

) 2 
N ∑ 

k= 0 

d 2 u k 

d ̃ r 2 
P k 

+ 

1 

˜ r 

( 

ξ

˜ r 

N ∑ 

k= 0 

d P k 

d θ
u k + ˜ a sin θ

) 2 

×
( 

1 

˜ r 

N ∑ 

k= 0 

d 2 P k 

d θ2 
u k −

N ∑ 

k= 0 

d u k 

d ̃ r 
P k 

) 

+ 

2 

˜ r 

d u k 

d ̃ r 

d P k 

d θ

( 

ξ

N ∑ 

k= 0 

d u k 

d ̃ r 
P k + ˜ a cos θ

) 

×
( 

ξ

˜ r 

N ∑ 

k= 0 

d P k 

d θ
u k + ˜ a sin θ

) ] 

. 

As already discussed in Section 2 , because of the presence of the 
external field, the isodensity surfaces are asymmetric and elongated 
along the direction of the external field. So, at each iteration, the 
density profiles are shifted to match the origin of axes with the centre 
of the system. The new density map is used as input to compute the 
updated values of u k and g k . The density profiles of different steps are 
then compared and a new iteration is started if the average variation 
exceeds 0.1 per cent of the central density. 

APPENDI X  B:  C O M P U TAT I O N  O F  T H E  

EXTERNA L  FIELD  

The properties of the external field for each GC depend on the adopted 
Galactic model. For simplicity, in this work we adopt a spherical 
Galactic model. This choice has some advantages. First, while in 
general 

ν( ‖ ∇φN /a 0 ‖ ) ∇ φN = ∇ φM 

+ ∇ × A , (B1) 

where ∇ × A is some unknown solenoidal field, in spherical 
symmetry the term ∇ × A vanishes and equation ( 1 ) can be 
properly used. Second, in spherical symmetry the external field points 
e verywhere to wards the Galactic centre and its strength depends 
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only on the Galactocentric distance. We assume that the QUMOND 

acceleration must reproduce the rotation velocity of the Galactic 
disc ( v rot = 229 km s −1 ; Eilers et al. 2019 ). So, from equation ( B1 ), 
assuming ∇ × A = 0, we have 

ν( ‖ ∇φMW 

N ‖ /a 0 ) ‖ ∇φMW 

N ‖ = 

v 2 rot 

R GC 
, (B2) 

where φMW 

N ( R GC ) is the Newtonian potential generated by a den- 

sity distribution with QUMOND potential φMW 

M 

( R GC ) such that 
‖∇φMW 

M 

‖ = v 2 rot / R GC . Equation ( B2 ) can be solved numerically, 
pro viding for an y giv en Galactocentric distance R GC the associated 
value of ˜ a = a N ext /a 0 = ‖∇φMW 

N ‖ /a 0 . 
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