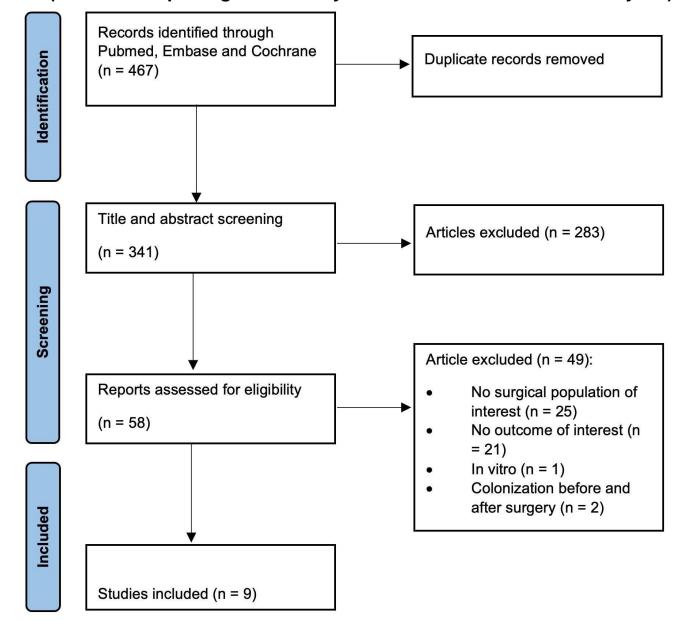
Colonisation with Extended-Spectrum Cephalosporin-Resistant Enterobacterales and Infection Risk in Surgical Patients: a Systematic Review and Meta-Analysis Supplementary Material

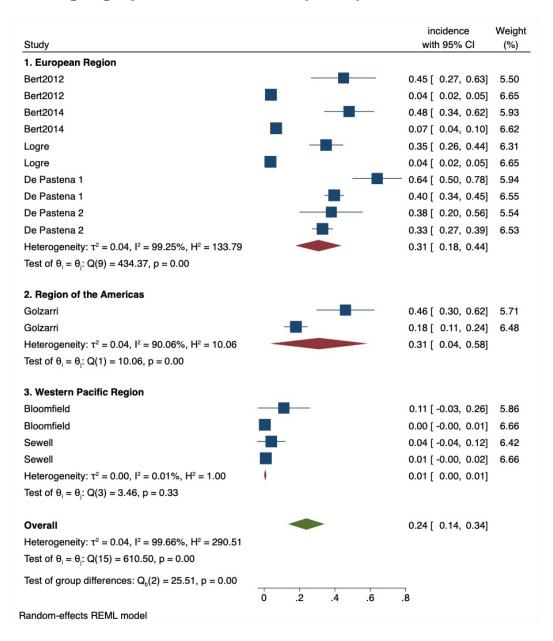
Elda Righi¹, Luigia Scudeller², Massimo Mirandola¹, Alessandro Visentin¹, Nico T. Mutters³, Marco

Meroi¹, Anna Schwabe³, Anna Erbogasto¹, Gianluca Vantini⁴, Elizabeth Cross⁵, Maddalena Giannella⁶, Xavier Guirao⁷, Evelina Tacconelli¹.

¹ Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona,


Italy

- ² Research and Innovation Unit, IRCCS Bologna University Hospital, Bologna, Italy ³ University Hospital Bonn, Institute for Hygiene and Public Health, Bonn, Germany
- ⁴ Department of Medicine, University of Verona, Verona, Italy
- ⁵ Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
- ⁶ Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Department of Medical and Surgical Sciences, University of Bologna, Italy
- ⁷ Surgical Endocrine Unit, Department of General Surgery, Surgical Site Prevention Unit, Parc Tauli University Hospital, Sabadell, Spain

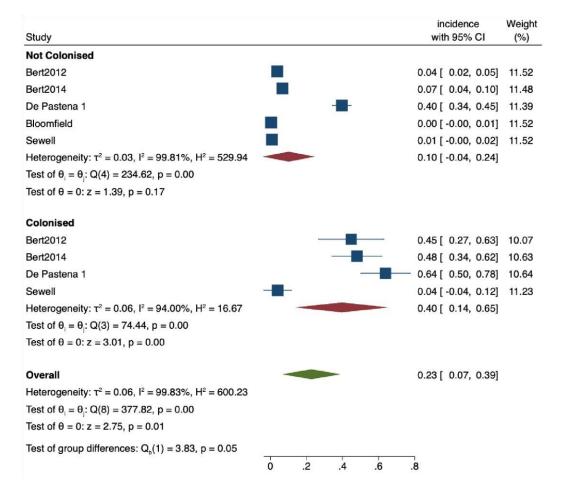

Corresponding author

Elda Righi, MD PhD
Infectious Diseases Division
Diagnostics and Public Health Department
University of Verona
P.le L.A. Scuro 10, 37134 Verona, Italy e-mail:
elda.righi@univr.it

Supplementary Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram

Supplementary Figure 2. Forest plots of geographic distribution of postoperative infections according to the area

Supplementary Figure 3. Forest plots reporting the pooled OR in colonized vs. noncolonized patients

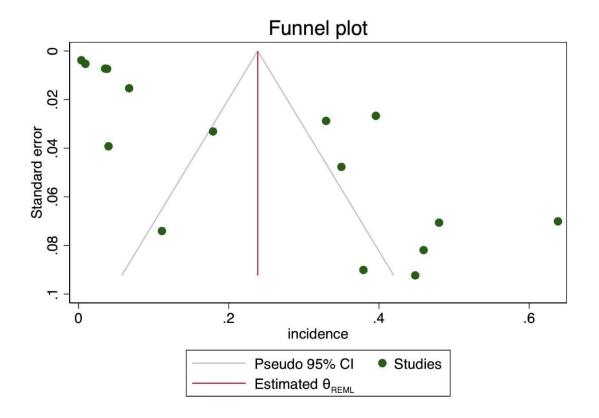

A) Postoperative infections

B) SSIs

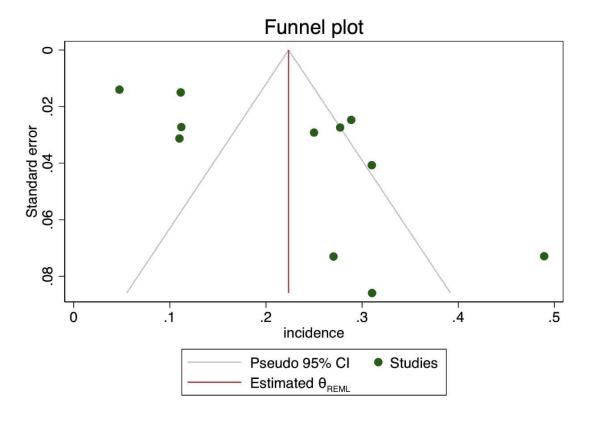
Study	Color +	nised -		ntrol -			Odds ra with 95%		Weight (%)	Study	Color +	nised -	Co +	ntrol -					Odds ra with 95%		Weight (%)
Bert2012 (2012) Bert2014 (2014)		16 26		655 249			20.47 [8.92, 12.77 [6.14,	-		Apisarnthanarak (2019)	40	89		220					8.99 [4.41,	-	
Logre (2020)	35	65		626		-	14.66 [8.17,	-		Golzarri (2019) De Pastena 1 (2020)	10 23			119 239					2.94 [1.19, 2.36 [1.27,	-	
De Pastena 1 (2020)	30	17	133	203			2.69 [1.43,	5.08]	14.93	De Pastena 2 (2020)	9	20	74	193			-		1.17 [0.51,	2.69]	18.09
De Pastena 2 (2020)	11	18	88	179 —			1.24 [0.56,	2.75]	14.15	Dubinsky-Pertzov (2018)	55	165	49	391		-	_		2.66 [1.74,	4.07]	23.83
Bloomfield (2017)	2	16	1	262	-	-	– 32.75 [2.82 ,	380.64]	6.33	Overall									- 2.90 [1.56,	5.38]	
Sewell (2019)	1	24	3	324 —	_		4.50 [0.45,	44.92]	6.84		76.7	C0/ L	12 _ /	1.00					2.30 [1.30,	3.30]	
Golzarri (2019)	17	20	24	110	_	_	3.90 [1.78,	8.52]	14.20	Heterogeneity: $\tau^2 = 0.37$, I^2					colonisad	Favor	e control	ı			
Overall				├		6.63 [3.02,	14.54]		Test of $\theta_i = \theta_j$: Q(4) = 14.85, p = 0.01 Favors colonised Favors control Test of $\theta = 0$: z = 3.37, p = 0.00												
Heterogeneity: $\tau^2 = 0.9$	$7, I^2 =$	84.50	0%, F	$H^2 = 6.45$, p	0.00				1/0	1 0	1 1	16	-		
Test of $\theta_i = \theta_j$: Q(7) = 45.59, p = 0.00 Favors colonised				Favors	control									1/2	1 2	4 8	16				
Test of θ = 0: z = 4.72, p = 0.00						_															
1/2				4	32 25	6															

Supplementary Figure 4. Forest plots of infection incidence risk excluding targeted PAP

A) Postoperative infections



B) SSIs


Study	incidence with 95% CI	Weight (%)	
Not Colonised			
De Pastena 1	0.29 [0.24, 0.34]	26.17	
Dubinsky-Pertzov	0.11 [0.08, 0.14]	26.66	
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 97.34\%$, $H^2 = 37.61$	0.20 [0.03, 0.37]		
Test of $\theta_i = \theta_j$: Q(1) = 37.61, p = 0.00			
Test of θ = 0: z = 2.24, p = 0.02			
Colonised			
De Pastena 1	0.49 [0.35, 0.63]	21.31	
Dubinsky-Pertzov	0.25 [0.19, 0.31]	25.86	
Heterogeneity: $\tau^2 = 0.03$, $I^2 = 89.23\%$, $H^2 = 9.29$	0.36 [0.13, 0.59]		
Test of $\theta_i = \theta_j$: Q(1) = 9.29, p = 0.00			
Test of $\theta = 0$: $z = 3.02$, $p = 0.00$			
Overall	0.27 [0.13, 0.42]		
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 96.59\%$, $H^2 = 29.30$			
Test of $\theta_i = \theta_j$: Q(3) = 64.00, p = 0.00			
Test of $\theta = 0$: $z = 3.73$, $p = 0.00$			
Test of group differences: $Q_b(1) = 1.18$, $p = 0.28$			
	0 .2 .4 .6		

Supplementary Figure 5. Funnel plots

A) Postoperative infections

B) SSIs

